EnggTree.com

Reg. No.: E N G G T R E E . C O M

Question Paper Code: 40984

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2024.

Fourth Semester

Electronics and Communication Engineering

For More Visit our Website EnggTree.com

EC 3452 - ELECTROMAGNETIC FIELDS

(Common to: Electronics and Telecommunication Engineering)

(Regulations 2021)

Time: Three hours Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Transform the cartesian coordinates (1, 2,3) into spherical coordinates.
- State Helmholtz's theorem.
- 3. Find the value of k, if the electric flux density in a charge free region is given by $D = 5x\overline{a}_x + 10y\overline{a}_y kz^2\overline{a}_z$.
- Determine the energy stored in parallel plate capacitor of 10cm by 10cm has a separation of 1 cm and a voltage difference of 10V.
- 5. State Biot Savart's law.
- Distinguish between magnetic scalar potential and magnetic vector potential.
- 7. In a material for which $\sigma = 5$ s/m, $\varepsilon_r = 1$ and $E = 100 \sin 10^6$ t v/m. Find its displacement current density.
- 8. State Guass's law for magnetic field and express in integral form.
- Define group velocity. Write its expression.
- Calculate the characteristic impedance of free space.

EnggTree.com

PART B - (5 \times 13 = 65 marks)

11. (a) State and verify Divergence theorem for its vector $A = 4x\overline{a}_x - 2y^2\overline{a}_y + z^2\overline{a}_z \text{ taken over the cube bounded by x=0, x=1,}$ y=0 and y=1.

Or

- (b) State and verify Stoke's theorem. Give its application.
- 12. (a) Derive
 - (i) Laplace equation (7)
 - (ii) Equation of continuity. (6)

Or

- (b) Calculate the capacitance of a parallel plate capacitor with two dielectrics $(\mathcal{E}_{r1} = 2 \text{ of thickness } 1 \text{ mm}, \ \mathcal{E}_{r2} = 1 \text{ of thickness } 2 \text{ mm})$ kept parallel to the plates of area of 50 cm². What is the voltage gradient in each dielectric if 100 V is applied across its plates.
- 13. (a) Derive an expression for the magnetic field intensity on the axis of solenoid.

www.EnggTree.com

Or

- (b) Derive expression for inductance of
 - (i) solenoid (7)
 - (ii) toroid (6)
- 14. (a) State and derive Maxwell's equation in integral form.

Or

- (b) Derive wave equation for conducting medium.
- 15. (a) Obtain the expression for reflection coefficient and transmission coefficient when a wave incident normally at a dielectric boundary.

Or

2

(b) State and prove Poynting theorem.

40984

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) Show that the displacement current through the parallel plate capacitor of capacitance C is equal to the conduction current I if a supply voltage $V=V_m\sin\,\omega t$ is applied across the capacitor.

Or

(b) A uniform plane wave is travelling at a velocity of 2.5×10^8 m/s having a wavelength of 0.5 mm in a non-magnetic good conductor. Calculate the frequency of wave and conductivity of the medium.

3 40984