EnggTree.com

Reg. No. : E N G G T R E E . C O M

Question Paper Code: 50960

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2024.

For More Visit our Website EnggTree.com Third Semester

Computer and Communication Engineering

EC 3354 - SIGNALS AND SYSTEMS

(Common to Electronics and Communication Engineering/Electronics and Telecommunication Engineering and Medical Electronics)

(Regulations 2021)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- Define continuous and discrete time signals.
- Distinguish between deterministic and random signals.
- Write the pair equations of the Fourier series of a periodic continuous time signals.
- 4. Recall the initial and final value theorems of Laplace transform.
- Define impulse response.
- State the condition for an LTI system to be stable.
- 7. What is aliasing?
- 8. State any two properties of DTFT.
- 9. Differentiate between recursive and non-recursive systems.
- List the condition for an LTI system to be causal.

EnggTree.com

PART B — $(5 \times 13 = 65 \text{ marks})$

11.	(a)	Describe the following signals with their graphical and mathematical representations.			
		(i)	Step (2)		
		(ii)	Ramp (2)		
		(iii)	Impulse (2)		
		(iv)	Pulse (2)		
		(v)	Real exponentials (3)		
		(vi)	Sinusoids (2)		
		50 - 150	Or		
	(b)		do you classify the discrete time systems based on their properties? cribe the property of each category. (13)		
12.	(a)	(i)	Determine the Fourier series representation of $x(t) = 2\sin(2\pi t - 3) + \sin(6\pi t)$. (7)		
		(ii)	Find the Fourier transform of the signal $x(t) = e^{2t}u(-t)$. (6)		
			Or		
	(b)	(i)	Determine the Laplace transform of $x(t) = e^{at}u(t)$, and depict the ROC and the locations of poles and zeros in the s-plane. Assume that a is real. (7)		
		(ii)	Determine the function of time $x(t)$ for the following Laplace transform and its associated region of convergence. (6)		
			$\frac{s+1}{s^2+5s+6}$, $-3 < \text{Re}\{s\} < -2$.		
13.	(a)		ve the equation of convolutional integral and summarize the uation procedure of convolution integral. (13) Or		
	(b)	(i)	The input and output of a stable and causal LTI system are related		
			by the differential equation $\frac{d^2y(t)}{dt^2} + \frac{6dy(t)}{dt} + 8y(t) = 2x(t)$. Find the		
			impulse response of this system. (7)		
		(ii)	A system has the transfer function $H(s) = \frac{2s-1}{s^2+2s+1}$		
			Determine the impulse response assuming		
			(1) that the system is causal. (3)		
			(2) that the system is stable. (3)		

2

14.	(a)	(i)	State and prove sampling theorem. (8)		
		(ii)	Compute the DTFT of the signal $x(n) = a^{ n }, a < 1$. (5)		
			Or		
	(b)	(i)	Determine the z-transform and ROC of the signal $x(n)=3^nu(-n-1)$. (7)		
		(ii)	Obtain the time domain signal corresponding to the z-transform (6) $X(z) = \frac{1 + \frac{7}{6}z^{-1}}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 + \frac{1}{3}z^{-1}\right)}, z > \frac{1}{2}.$		
15.	(a)	Eva	luate the discrete time convolution sum of the following.		
		y(n)	$= \left(\frac{1}{4}\right)^n u(n) * u(n+2). \tag{13}$		
			Or		
	(b)		ermine the transfer function and the impulse response for the causal system described by the difference equation. (13)		
		y(n)	$=\frac{1}{4}y(n-1)-\frac{3}{8}y(n-2)=-x(n)+2x(n-1).$		
			PART C — (1 × 15 = 15 marks)		
16.	(a)	(i)	Determine whether the continuous time signal $x(t) = 3\cos\left(4t + \frac{\pi}{3}\right)$		
			is periodic? If the signal is periodic, determine its fundamental period. (8)		
		(ii)	Categorize the following signal as an energy signal or a power signal, find the energy or time-averaged power of the signal		
			$x(t) = \begin{cases} t, & 0 \le t \le 1\\ 2 - t, & 1 \le t \le 2\\ 0, & otherwise \end{cases} $ (7)		
			Or		
	(b)	Determine whether the system $y(n) = nx(n)$ is			
		(i)	Memoryless (3)		
		(ii)	Time invariant (3)		
		(iii)	Linear (3)		
		(iv)	Causal (3)		
		(v)	Stable (3)		