EE3602 - POWER SYSTEM OPERATION AND CONTROL

OBJECTIVES:

To impart knowledge on the following topics

- Significance of power system operation and control.
- > ⑦ Real power-frequency interaction and design of power-frequency controller.
- C Reactive power-voltage interaction and the control actions to be implemented for maintaining the voltage profile against varying system load.
- > ② Economic operation of power system.
- SCADA and its application for real time operation and control of power systems

UNIT I PRELIMINARIES ON POWER SYSTEM OPERATION AND CONTROL

Power scenario in Indian grid – National and Regional load dispatching centers – requirements of good power system - necessity of voltage and frequency regulation – real power vs frequency and reactive power vs voltage control loops - system load variation, load curves and basic concepts of load dispatching - load forecasting - Basics of speed governing mechanisms and modeling - speed load characteristics - regulation of two generators in parallel.

UNIT II REAL POWER - FREQUENCY CONTROL

Load Frequency Control (LFC) of single area system-static and dynamic analysis of uncontrolled and controlled cases - LFC of two area system - tie line modeling – block diagram representation of two area system - static and dynamic analysis - tie line with frequency bias control – state variability model - integration of economic dispatch control with LFC.

UNIT III REACTIVE POWER – VOLTAGE CONTROL

Generation and absorption of reactive power - basics of reactive power control – Automatic Voltage Regulator (AVR) – brushless AC excitation system – block diagram representation of AVR loop - static and dynamic analysis – stability compensation – voltage drop in transmission line - methods of reactive power injection - tap changing transformer, SVC (TCR + TSC) and STATCOM for oltage control.

UNIT IV ECONOMIC OPERATION OF POWER SYSTEM

Statement of economic dispatch problem - input and output characteristics of thermal plant - incremental cost curve - optimal operation of thermal units without and with transmission losses (no derivation of transmission loss coefficients) - base point and participation factors method - statement of unit commitment (UC) problem - constraints on UC problem – solution of UC problem using priority list – special aspects of short term and long term hydrothermal problems.

UNIT V COMPUTER CONTROL OF POWER SYSTEMS

Need of computer control of power systems-concept of energy control centers and functions – PMU - system monitoring, data acquisition and controls - System hardware configurations - SCADA and EMS functions - state estimation problem – measurements and errors - weighted least square estimation - various operating states - state transition diagram.

OUTCOMES:

- > ⑦ Ability to understand the day-to-day operation of electric power system.
- Ability to analyze the control actions to be implemented on the system to meet the minute - to- minute variation of system demand.
- > ⑦ Ability to understand the significance of power system operation and control.
- > ⑦ Ability to acquire knowledge on real power-frequency interaction.
- > ⑦ Ability to understand the reactive power-voltage interaction.
- > ⑦ Ability to design SCADA and its application for real time operation.

TEXT BOOKS:

1. Olle.I.Elgerd, 'Electric Energy Systems theory - An introduction', McGraw Hill Education Pvt. Ltd., New Delhi, 34th reprint, 2010.

2. Allen. J. Wood and Bruce F. Wollen berg, 'Power Generation, Operation and Control', John Wiley & Sons, Inc., 2016.

3. Abhijit Chakrabarti and Sunita Halder, 'Power System Analysis Operation and Control', PHI learning Pvt. Ltd., New Delhi, Third Edition, 2010.

REFERENCES

1. Kothari D.P. and Nagrath I.J., 'Power System Engineering', Tata McGraw-Hill Education, Second Edition, 2008.

2. Hadi Saadat, 'Power System Analysis', McGraw Hill Education Pvt. Ltd., New Delhi, 21st reprint, 2010.

3. Kundur P., 'Power System Stability and Control, McGraw Hill Education Pvt. Ltd., New Delhi, 10th reprint, 2010.

EE 3602 - POWER SYSTEM OPERATION AND CONTROL

UNIT I

PRELIMINARIES ON POWER SYSTEM OPERATION AND CONTROL

Power scenario in Indian grid – National and Regional load dispatching centers – requirements of good power system - necessity of voltage and frequency regulation – real power vs frequency and reactive power vs voltage control loops - system load variation, load curves and basic concepts of load dispatching - load forecasting - Basics of speed governing mechanisms and modeling - speed load characteristics - regulation of two generators in parallel.

www.EnggTree.com

Prepared by Dr.T.Dharma Raj, Associate Professor / EEE V V College of Engineering

EnggTree.com Power Scenario in Indian grid

* India is the third largest produces and second . largest consumes of electricity would wide, with an installed power capacity of 401.01GW as of April 30, 2022.

* growing population along with increasing electrification and per capita usage will provide further impetus. Paus consumption is estimated to reach 1894.7 Twh in 2022.

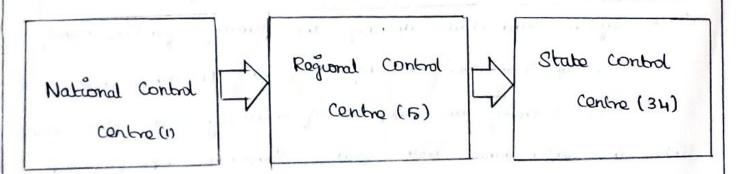
* power is among the most crucial for the economic growth and welfare of nations.

* India's power sector is one of the most diversified in the world. Sources of power generation sange from convontional sources such as coal , lignite, natural gas, oil, hydro and nuclear power, to viable non - conventional sources such as with , solar, agraultural vand domestic waste.

* India was stanked forwith in wind power, fifth in solar pares and forwith in scenewable power installed capacity, as of 2020.

Over 80.1. of India's energy needs are met by strong fuels : coal, Oil and Solid Liomans.

Engghteeleenn
Installed rapacity by source in India as on 20 july 2022.
-> (oal: (204,080 MW) (50.5%)
→ Llgnite: 6,620 MW (1.6010)
-> Cras: 24,856 MW (6.2.1.)
-> Diesel: FID MW LO.100)
-> Hydro: 46,850 MW (11.6.10).
-, wind, Solar & Other RE: 114,065 MW (28.340)
→ Nudear : 6,780 MW (1.70%)
the product the data we get the section court the
* The total installed power generation capacity is
the sum of utility capacity, captive power capacity,
and other non -utilities.
along the set has been as all a
* The breakup of Ronewable Pnergy downces (RES) is:
-> Solar Power (53, 996.54 MW).
-> Wind Power (40,357.58 MW)
-> Bio mars (10,205.61 MW).
-> Small hydro (4,848.90 MW)
-> Waste - to every (476. 75 MW)



* Load dispatch centor is a coordinating agency for state electricity boards for ensuring a mechanism for rafe and recure grid operation.

* Load dispatch centor is a impositant link between generation and dranimission, which co-ordinates the power requirements of consumers of electricity.

* Power System Operation Componiation Limited (POSOCO) is a CPSE under the jurisdiction of Ministery of Power, Jovanment of India. * It is supportible to monitor and ensure sound www.EnggTree.com the clock integrated Operation of Indian Power system is a sublable officient and recure manner thus soring a minister cubical addivity.

* It consists of 5 Regional Load Despatch centres (RLDCs) and the National Load Despatch Centre (NLDC).

Locad Despatch centres in Indla

National Load Despatch Center

On 255 February 2009 the National Ived Departit Ontre (NIDC) was inauguenated by Sushilkuman Shinde (Former Union Minister of Power) vand Shiele Dirit (Former chief Minister, NCT of Delhi). National Lead Despatch centre (NIDC) Thas been constituted as per Menistry of Power (Mop) notification New Delhi dated 2 March 2005 and is the apex wordy to ensure integrated operation of the national power system.

Constitution :

There shall be a center at the national devel to be denown as National load Despatch centre for Optimum Schaduling and despatch of electricity among the Regional load Despatch certres

National Load pespatch contres shall be located at New Delhi with a back up at its center in kolkata.

Functions:

The National Load Despatch Centre shall be doe apex body to ensure integrated operation of the national Power system and shall discharge the following functions, namely:a) Supervision over the Regional toad Despatch centres; b) Scheduling and despatch of electricity over inter-regional Links in accordance with grid standards specified by the authority and grid code specified by Central commission in coordenation with Regional toad Despatch centres;

c) Coosidération with Regional Load Dospatch Centros for achleing maximum acomony and efficiency in the operation of National Grid;

d) Monstosing of Operations and gold security of the National grid;

e) Supervision and control over the inter-regional lenks as may be required for ensuring stability of the power system under its control;

f) coordenation with Regional Load Destatch centres for the energy accounting of inter-sugional exchange of power;

g) coordination of brans-national exchange of power;

Depending operational for back for national grid Planning to the authority and the Contral Trans-national exchange of power.

1) Déssemination of information relating to operations of transmission system in accordance with directions or soqueations issued by contral Electricity Regulatory Commission and the contral government from time to time.

J) coordénation with Regional Power Committees for segural outage schedule in the national perspective to ensure optimal utilisation of power suspectives. Regional Load Despatch Center: The five RLDCS Overse the interstate transmission for the following states: * Nosthrown Regional Load Despatch Center (NRLDC): Delhi, Haryana, Hernachal Pradesh, Jammu and Kashmin, Ladakh, Runjab, Rajasthan, Uttar Prodesh, Uttarkhand. * Western Regional Load Despatch Center (WRLDC): Maharashtra, Orugariat, Madhya Pradesh, Chatti garh, Croa, Daman and Die, Dadra and Nagar Harreli. * Eastern Regional Load Despatch Centor (ERLDC): Bihar, Thankhand, Odisha, west Bengal, Sekkin. * Southern Regional Load Despatch Center (SRLDC):

Tamil Nadu, Kovinatakar, Kerala, Andhra Pradesh, Telangana, Pondichemy.

* Nosith - Eastern Regional Load Despatch Center (NER LDC): Aswnachal Preddesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland, Tripura.

Each ELDC maintains their own dedicated websete where scheduling and despatch of power within their respective control areas are handled round the clock.

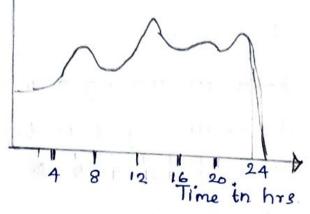
Economics of Generation

1) Load Curve

The curve showing the variation of load on the power station with respect to time is known as load curve.

Load on the power system is not Constant. It Varies from time to time

Types of Load Curve.


a) Daily load Curve.

- b) Monthly load Curve
- c) Yearly (or) Annual load Curve.

a) Daily load Curve

The Curve Showing the Variation of load on a whole day (08) &4 hours with respect to time is called as daily load curve.

In MW 1

b) Monthly load Curve

The Curve Showing the Variation of load for a Downloaded from EnggTree.com

month (091) 3.0 × 24 hours with respect to time is called monthly load curve.

c) Yearly Load Curve (09) Annual Load Curve.

The curve showing the Variation of load for a year (or) 365x24 hours with respect to time is Called yearly load curve.

Load curve gives the following information

i) The area condex the curve represents the total number of units generated in a day.

ii) The peak of the Curve represents the maximum demand on the Station.

iii) The grea under the load curve 'divided by the number of hours, gives the average load on the power System. iv) The ratio of average load to the maximum demand gives the load fectors.

2) Load Duration Curve

The loads are arranged in descending order of magnitudes with respect to time is called Load duration curve.

ie) greater Load on the left and lesser load on the right.

Important terms for deciding the type and Rating of Generating plant.

i) Connected Load

The Sum of the continous rating of all the electrical equipment connected to the Supply System is known as connected load.

ii) Maximum demand

The greatest demand occur on the power System for a short Interval of time is Called Mascimum Demand.

iii) Demand factor

The gatio of actual Maximum demand on the System to the total rated load Connected to the System.

> It is always less than Unity Demand factor = <u>Maximum demand</u> Connected Load

iv) Average load

The average loads (02) demands on the power Station is the average of loads occurring at Various events.

Daily average load = No of venite generated is day (kubber 24 (No of bre in a

Monthly average load = No: of units generated in a month

30 × 24 (No of hrs in a month)

Annual average load = No of units generated in a year 365x24 (No of his in a year)

V) Load factor

The statio of average load to the Maximum demand during a Certain period of time. Load factor = <u>Average load</u> Maximum load.

If the plant is operated for 'T' hours

Load factor = Brenage load x T Maximum x T

T= 24, for daily load are T= 24x7, for weekly load are

T= 24×365, for Annual load curve.

Vi) Diversity factor

The statio of Sum of the individual maximum demands of all the Consumers to the Maximum demand of the power Station is Called the Diversity factor.

Diversity factor = Sum of Individual Maximum Demand Mascimum demand of power Station.

It is always greater than onity If diversity factor is more, the cost of generation of Power is low.

Vii) Coincidence factor

The reciperocal of diversity factor is Called Coincidence factor.

Viii) Capacity factor (or) plast factor

It is the ratio of the average load to the rated Capacity of the power plant.

Capacity factor = Average demand Bated Capacity of Power plant

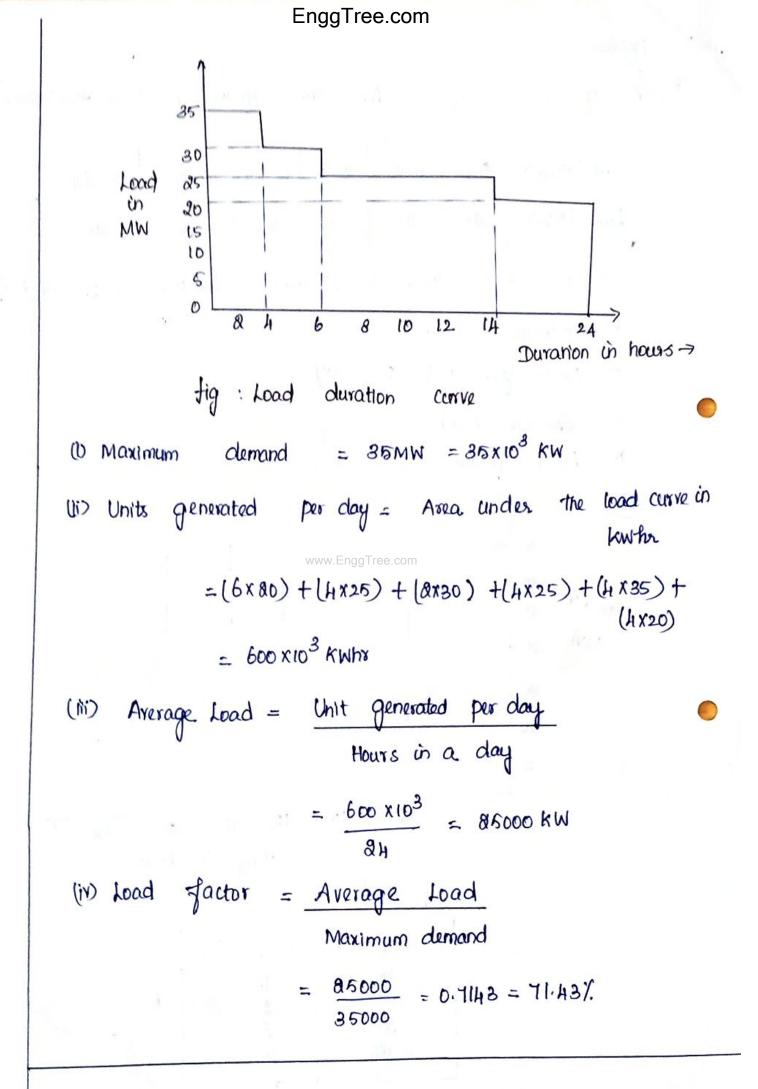
= Units (08) kusher generated

plant Capacity × Number of hours.

ix) Utilisation factor It is the viatio of Maximum demand to the rated Capacity of the Power plant. Utilisation factor = Moximum demand on the Power Station Rated Capacity of the power Downloaded from EnggTree.com Station.

*) plant operating factor (or) plant use factor.

It is defined as the ratio of the actual energy generated during a given period to the product of Capacity of plant and number of hours the plant has been actually operated during the period.

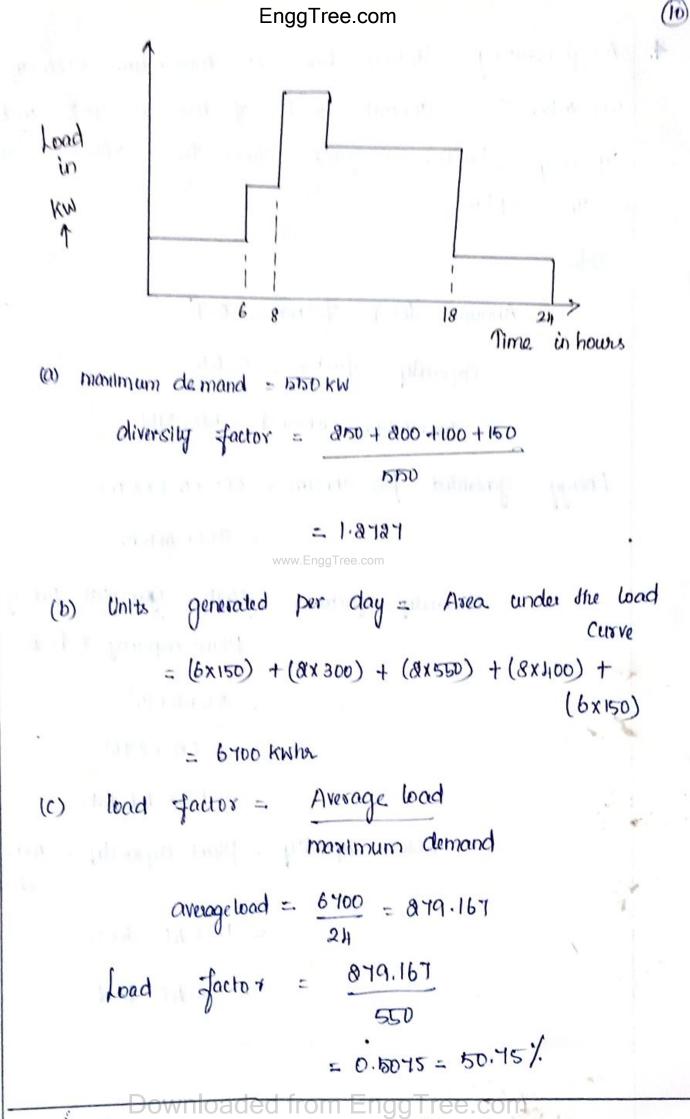

plant use factor = Total knohr Generated (Rated Capacity of) × (No of the plant) × Operating hours)

xi) Reserve Capacity

It is the difference b/w the plant Capacity and Maximum demand.

Reserve Capacity = plant Capacity - Maximum Demand.

1	EnggTree.com
¢.	Aroblems
り	A generating station has the following daily load curve
	Time (Hours) 0-6 6-10 10-12 12-16 16-20 80-84
	Load (MW) 20 25 30 25 35 20
	Draw the load curve, load duration curve and find
	(1) maximum demand
	(11) Units generated per day
	(ND Average Load
	(1) hoad factor
	8014 35
	loodin 20 100din 25
	NW 20
	10-
	5
	6 10 12 16 20 24
	Time in hours
	Fig load curve
	Load in MW Duration (hours)
	35 4 0 30 2 4
	au 10 ×4


(8) A generating station has a maximum demond of 35 MW. Load factor is 10%, plant capacity factor is 60% and plant use factor is 15%. Find the reserve capacity and daily energy produced. soly

> Load factor $=\frac{10}{100}=0.7$ Plant capacity factor = $\frac{60}{100} = 0.6$ maximum demand = 35 MW Load factor = Average demand www.EnggTree.com ximum demand Average demand = load factor x maximum demand = 0.7×35 = 84.5 MW Reserve capacity = plant capacity - maximum demand = 40,833-35 = 5.833 MW Plant use foctor = $\frac{75}{100} = 0.75$ Total kwha generated = 0.75×40.8×24 = 734.99 MWhr Downloaded from EnggTree.com

1			EnggTre	ee.com		
3)	A power	station	has to	met the	following c	lemand
34	Group A:	850 KW	blw 8	.A.M and 6p	рм	
	Group B : E		blw 6	AM & 10 P.DA	. Ang	,
	Gnoup C : 1	ioo kw		AM & 60 p.A4		
	Ginoup D :		blw lo	A.M & 6 PM	8 then t	slw
		6 pm 8	6 AM		1.20 P	
		Draw 1	he dai	ly load curv	re and det	esmine
	(a) diversity		ne. A	and the stand		
	(b) Units ge	nerated	per day			
	(c) load fo	ctor	www.Engg	Tree.com		
	Sofy			Letter and		
	Time (hours) Group	18-6 AM	bam-8 am	SAM to LOAM	IDAM-6PM	6pm-12pm
	A			850 KW	add kw	
	в		800 KW	200 KW		
	С		100 kw	LOD KIN		

B		800 KW	200 KW		
С		100 KW	100 KW		
D	150 KW			150 KW	150 KW
Power Station	150 kw	300 KW	550 KW	HOO KW	150 KW

A generating station has a maximum demand of 500 MW. The annual load factor is 40% and Capacity factor is 65%. Find the reserve capacity of the plant.

Soly

Ð

Annual load factor = 0.7 Capacity factor = 0.65 Maximum demand = 1500 MW

Energy generated per annum = 500 x 0.7 x 8760 = 3066 M Why

www.EnggTree.com

Capacity factor = Units generated per year Plant capacity × hours = 3066×10³ 0.65×8760

= 538.46 MW

Reserve capacity = plant capacity - manimum demand

= 538.46 - 500

= 38,46 MW

A diesel station supplies the following loads to various consumers:

Industrial load - 1000 KW commercial Load - 750 KW Domentic load - 500 kw

_ 500 KW

Domestic Light the maximum demand on the station is 2500 kw and the number of kwhr generated per year is 45×105, determine the diversity factor and annual load factor.

Solution :

'www.EnggTree.com Gliven, Maximum demand = 2500 KW.

find, Diversity factor = Sum of individual maximum domarde Max. demand of power

station. Annual load Factor = Average load

Maximum load.

Diversity factor = 1000+ 750+ 500+500 =1.1 2500 Average load = Kubin generated /year = 45×10

Hours in a year 24×365

= 513.7 KW Annual load factor = 513.7/2500 = 0.20548

= 20.548 %.

Result : (i) Diversity Factor = 1.1

(ii) Annual Load Factor = 20.548%. Downloaded from EnggTree.com

A power supply is having the following loads Diversity factor Demand Maximum Type of factor demand (Kw) of group Load 0.8 Domestic 1.2 10000 Commercial 1.3 0.9 30000 Industrial 1.35 0.95 50000

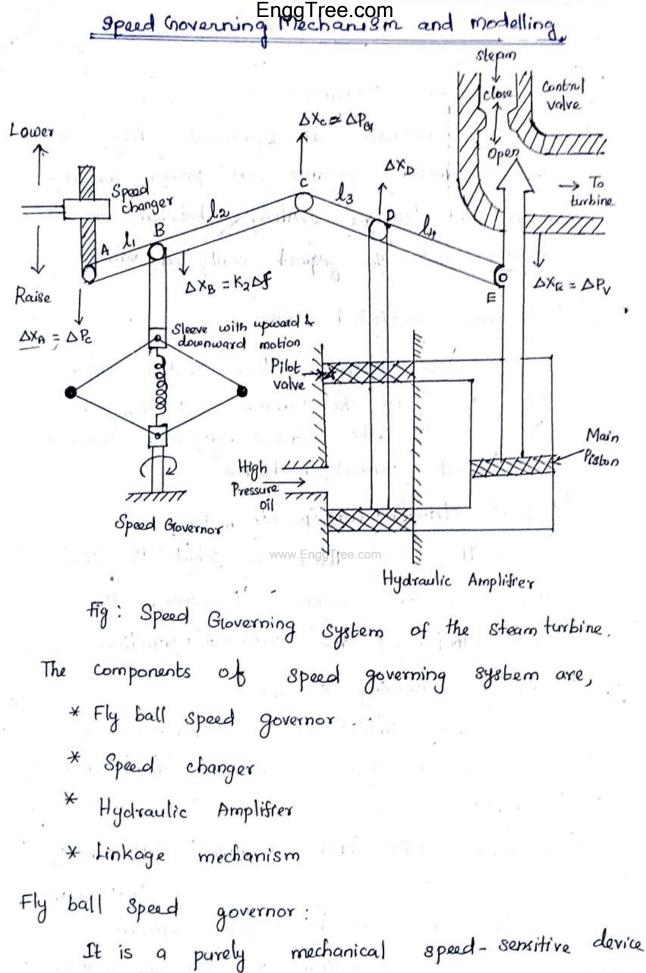
If the overall system diversity factor is 1.5, determine : a) the maximum demand

(b) Connected Load of each type. Solution:

(a) Maximum demanding The composition Total Maximum demand System diversity factor Total maximum demand = 10000 + 30000 + 50000 - 90000

Maximum demand = $\frac{90000}{1.5} = 60000$ KW.

(b) Connected Load of each type: Domestic load:


> Connected domestic? Maximum demand (domestic Load J = Demand factor of domestic load Maximum demand = Diversity × Maximum domestic of domestic load factor demand

> > = 1.2 x (0000

= 12000 KW.

Energy produced / day = 15 x 24 = 360 KWbr. Maximum energy produced = $\frac{360}{0.72}$ = 500 MWbr. Reverse capacity = Plant capacity - Maximum damand = 30 - 25 = 5 MW/

www.EnggTree.com

coupled directly to the hydraulic amplifier which adjusts the control value opening via the linkage mechanism

* As the load increases, speed of the burbine decrea and the speed changer gives raise commonol, so the downwo Sty ball move earlowards and the point B moves, & the reverse happens with the increased speed. Speed changer: M

⇒ It makes it possible to restore the frequency to the initial value after the operation of the speed governors which has sheady state characteristics. Jovernors which has sheady state characteristics. downward → A small movement of the linkage point A .corresponds to an increase ΔP_c in the reference

power Setting.

Hydraulic Amplifier :www.EnggTree.com

"It consists of pilot value & main piston. = coith this amongement, a low power pilot value movement is converted to high power level movement of the oil-servomotor.

The input to the amplifier is the position X_D of pilot value. The output is the position X_E of the main piston.

* Hydraulic amplification is necessary, so that the steam value (on gate could be operated against high pressure steam.

EnggTree.com Linkage Mechanism:

ABC is a rigid link pivoted at B and CDE another rigid link pivoted at D.

→ The function of link mechanism is to control the steam value (or) gate. We get the feedback from the movement of the steam value via link CD.

WORKING :

As load increases, the speed of the turbine decreases, the speed changer gives the raise command and the fly balls move outwoords and the point B move downwards and D moves upwards and high pressure woil enters into the upper pilot value and presses the main piston downwards and opens the value (on gate. (4) increases the flow of oteam to the turbine. Thereby, increase the speed of the turbine f maintain the constant frequency.

Downloaded from EnggTree.com

. a. 1. 9 Au (0. 3.

and the second of

and share of school f

افس ولي ال

Model of Speed Giovernor: Now Dec 2011 Consider the steam is Operating under stead, state and delivering power PG, from the generic at nominal frequency f°.

Let Xs° = steam value setting.

* Let us assume the raise command ΔP_{c} to the speed changer, the point A be moved dow -wards by a small amount ΔX_{A} which causes the turbine power output to change.

Let us assume, + => downward direction www_nggT=>com Upward direction (movement)

Movement of C: (i) ΔX_{A} contributes $\left(\frac{-l_{a}}{l_{1}}\right) \Delta X_{A} = -K_{1} \Delta X_{A}$ $= -K_{1} K_{c} \Delta P_{c}$

(ii) Decrease in frequency Af causes the fly balk to move outwards so that B moves downwards by a proportional amount ke Af

 $\Delta X_{c} = -k_{i}k_{c} \Delta P_{c} + k_{e}\Delta f$. (1) Movement of D:

It is contributed by $\Delta X_{\rm E} \& \Delta X_{\rm E}$. The movement $\Delta X_{\rm D}$ is the amount by which the pilot value opens, there by moving the main

piston and opening the steam value by.

$$\Delta X_{D} = \left(\frac{l_{4}}{l_{3}+l_{4}}\right) \Delta X_{c} + \left(\frac{l_{3}}{l_{3}+l_{4}}\right) \Delta X_{E}$$

 $\Delta X_{D} = k_{3} \Delta X_{c} + k_{4} \Delta X_{E}$ Movement of E:

The volume of oil admitted to the cylinder is proportional to the line integral of ΔX_D .

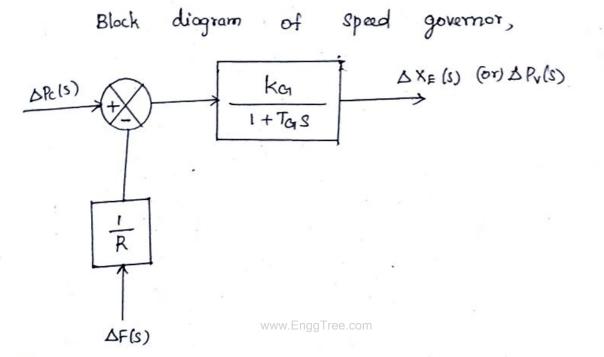
$$\Delta X_{E} = k_{5} \int_{0}^{t} -(\Delta X_{b}) dt. \qquad (3)$$

Taking laplace transform of 0, @ 43,

$$\Delta X_{c}(s) = -k_{kc} \Delta P_{c}(s) + k_{a} \Delta F(s)$$

$$\Delta X_{b}(s) = k_{3} \Delta X_{c}(s) + k_{4} \Delta X_{E}(s)$$

$$\Delta X_{E}(s) = -k_{5} \cdot \Delta X_{D}(s)$$


$$Sub (f) in (f)$$

 $\Delta X_{D}(s) = k_{3} \left[-k_{1} k_{c} \Delta P_{c}(s) + k_{2} \Delta F(s) \right] + k_{4} \Delta X_{E}(s)$ (1)Sub (7) in (6),

$$\Delta X_{E}(s) = -\frac{k_{5}}{s} \left[k_{3} \left(-\frac{k_{1}k_{c}}{k_{1}k_{c}} \Delta P_{c}(s) + \frac{k_{2}}{k_{2}} \Delta F(s) \right) + k_{4} \Delta X_{E}(s) \right]$$

 $\Delta X_{E}(s) + \frac{k_{5}k_{4}}{Dowr$paded from Engg} \left[-k_{3}k_{1}k_{c} \Delta P_{c}(s) \right]$

The output of the generating unit at a given system frequency can be varied only by changing its 'load reference (or) contro) point' which is integrated with the speed governing system.

Turbine Model:

→ When a stearn value opening is increased, the power generation ΔP_{GF} is also increased. → There is incremental increase in turbine power ΔP_{T} due to change in value position ΔX_{E} , which will result in an increased generator power ΔP_{GF} . → If the generator incremental closs is neglected then $\Delta P_{T} = \Delta P_{GF}$.

=> The prime mover driving a generator unit may be steam turbine (or) a hydroturbine.

The model of a non-reheat turbine is,

$$\Delta P_{v} (or) \Delta X_{E}(s) \xrightarrow{k_{E}} I + s T_{E} \xrightarrow{k_{E}} \Delta P_{r}(s) = \Delta P_{Gr}(s)$$

=> the position of the value that controls the emissio of steam into the turbine to the power output of the turbine

where Tt = Time constant of turbine

Kt = Glain Constant.

 $\Delta P_V = Per unit change in value position from nominal value.$

Generator Load Model:

To develop the mathematical model of an isolated generator, which is only supplying local load and is not supplying power to another area, suppose there is a real load change of APD.

→ Due to the action of the turbine controllers, the generator increases its output by an amount ΔP_{01} . * The net surplus power ($\Delta P_{01} - \Delta P_D$) will be Obsorbed by the system in two ways.

(1) By increasing the kinetic energy in the rotor at the rate $d(W_{k,F})$

(2) As the frequency changes, the motor load changes being sensitive to speed.

(1) By increasing the kinetic energy in the rotor at the rate of (WK.E) (OT) APG. WRIE = H x Pr KWSec. where H = Inertia constant = Stored energy in MJ $W_{k-\epsilon}^{\circ} = \frac{1}{2} J W_{0}^{2} \implies W_{k-\epsilon}^{\circ} \propto f_{0}^{2} = ----$ $\frac{W_{k\cdot E}}{W_{k\cdot E}} = \left(\frac{f_0 + \Delta f}{f_0^2}\right)^2$ WK.E $W_{k\cdot E} = W_{k\cdot E} \left(\frac{f_0 + \Delta f}{f_0} \right)^a = W_{k\cdot E} \left(1 + \frac{\Delta f}{f_0} \right)$ $= W_{k,F} \left[1 + 2 \frac{\Delta f}{f_{0}} + \left(\frac{\Delta f}{f_{0}} \right)^{2} \right]$ Neglecting second order term, $W_{k-E} = W_{k-E} \left[1 + 2 \frac{\Delta f}{f} \right]$ Rate of change? $\frac{d W_{k,E}}{dt} = W_{k,E} \left[0 + \frac{2}{5} \frac{d(2f)}{dt} \right]$ of kinetic Energy $\frac{dW_{k,E}}{dt} = \frac{2W_{k,E}}{f_{t}} \frac{d(\Delta f)}{dt} - -$ ---- (10) ie, WKE = HPA. Sub WK.E in (10, $\frac{dW_{HF}}{dt} = \frac{2 HP_r}{f_r} \frac{d(\Delta f)}{dt} -$ 11 $\Delta P_{G_1} = 2 H P_r d(\Delta f)$ Downloaded from dtngg Tre

2) As the frequency changes, the motor load changes being sensitive to speed. $[\Delta F(s)]$

Rate of change of 2 a. P. = B. load w.r. to frequency af = B.

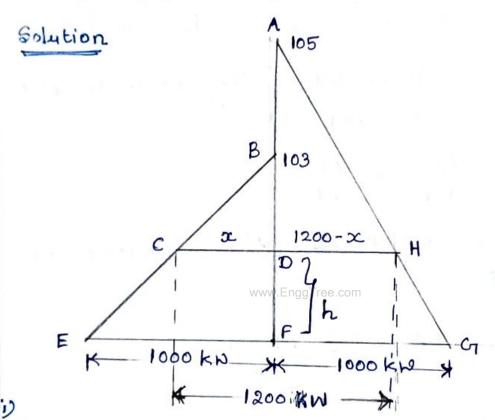
where B = Damping co-efficient in MW/Hz Value of damping co-efficient is positive for motor loss

for the generator, $\frac{\partial P_D}{\partial f} = -B$.

 $\partial P_{D} = -B \partial f$ $\Delta P_{D} = -B \Delta f \cdot - - - (12)$ The net surplus power, (power balance equation) $\Delta P_{G_{I}} - \Delta P_{D} = \frac{2HR}{dt} \frac{d}{dt} (\Delta f) + B \Delta f - - - (13)$ To find P.4 value, $\div ing$ the above equation by P.

 $\Delta P_{\text{emp.u}} - \Delta P_{DP.u} = \frac{2H}{f_0} \frac{d(\Delta f)}{dt} + B_{P.u} \Delta f.$

Taking Laplace transform,


 $\Delta P_{G_1}(s) - \Delta P_D(s) = \frac{2H}{f_D} \cdot S \ \Delta F(s) + B \ \Delta F(s)$ $\Delta P_{G_1}(s) - \Delta P_D(s) = \Delta F(s) \left[\frac{2Hs}{f_D} + B \right]$ $\Delta F(s) = \frac{\Delta P_{G_1}(s) - \Delta P_D(s)}{\left(\frac{2Hs}{f_D} + B \right)}$ $= \frac{\Delta P_{G_1}(s) - \Delta P_D(s)}{B \left[1 + \frac{2Hs}{Bf_D} \right]}$

Take 1/B = kp = Power System gain Downloaded from EnggTree.com

 $\frac{2H}{Bto} = T_p = Power system time constant.$ $\Delta F(s) = \Delta P_{G}(s) - \Delta P_{D}(s)$ $\left(\frac{1+T_{ps}}{k_{p}}\right)$ $\Delta F(s) = \left[\Delta P_{g}(s) - \Delta P_{p}(s) \right] \left(\frac{k_{p}}{1 + T_{p}s} \right)$ Block diagram of generator mode) is kp 1+ Tp S $\Delta F(s)$ $\Delta P_{GI}(s)$ AP_(S) Model of Load frequency Tree control of a single area system, sp, (s) APe (S) - K_{G1} $1 + T_{G1}S$ $\Delta P_{c}(s)$ KŁ BP7(S) AF(S) ∆x (s) I R $\Delta F(s)$ > Combining the governor moder, turbine model, and generator load model, we get the complete

block diagram of LFC [Load frequency control] of an isolated power system

EnggTree.com Two 100 kw alternators openate in parallel. The Speed Regulation of first alternators is 100% to 103% from full load to no load and that of other 100% to 105%. How will the two alternators Share a load of 1200ks and at what load will one machine Cease to Supply Supply any portion of the load.

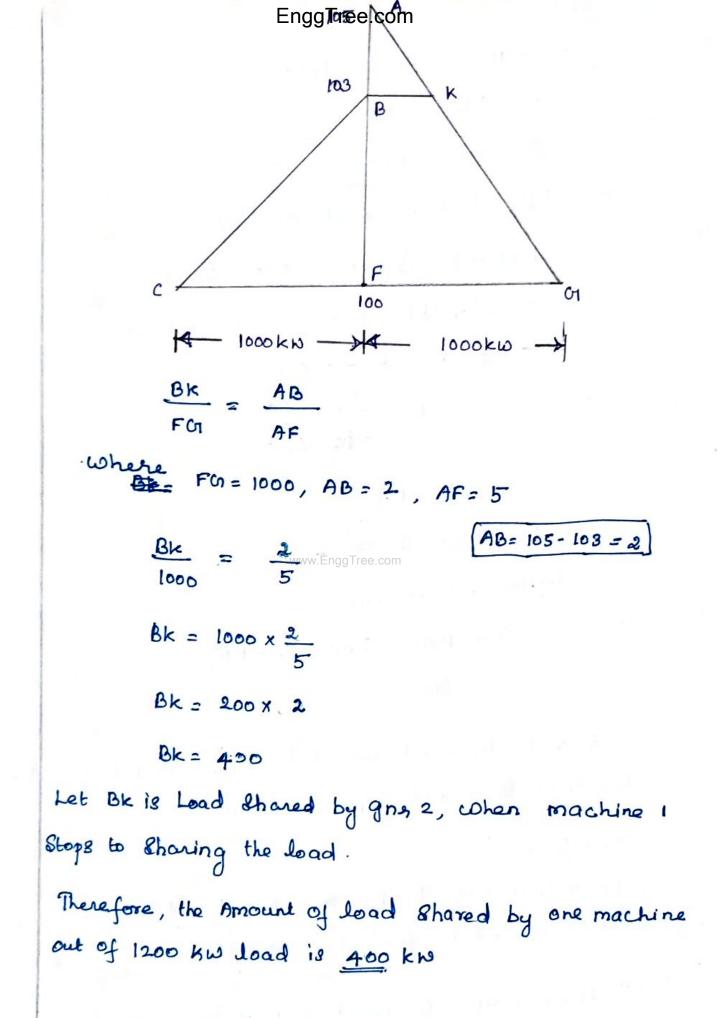
From the left hand side of the figure, the ABCD and ABFE are Similar

$$\frac{CD}{EF} = \frac{BP}{BF}$$

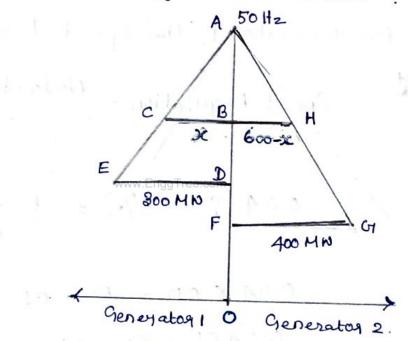
Where CD=x, EF= 1000, BD= BF- DE, BF=3

$$\frac{\mathcal{D}}{1000} = \frac{\mathrm{BF-DF}}{3}$$

where BF=3, DF=h


EnggTree.com $\frac{x}{1000} = \frac{3-h}{3}$ 3x = 1000 (3-h) $x = \frac{1000}{3} (3-h)$ x = 333.333(3-h)x = 1000 - 383.333h -> 1) From right hand side of the figure, the 4 ADH and A AFG are similian $\frac{DH}{FG} = \frac{AP}{PF}$ Where DH = 100 - x, F(1=1000, AD = AF- DF AF= 5 www.EnggTree.com $\frac{1200-x}{1000} = \frac{AF-DF}{5}$ where AF= 5, DF=h $\frac{1200-x}{1000} = \frac{5-h}{5}$ $1200 - x = 1000 \left(\frac{5 - h}{5}\right)$ 1200-x = 1000 (5-h) 1200-x = 200 (5-h) 1200 - x = 1000 - 200h

EnggTree.com -x = 1000 - 200h - 1200 -x = 200 - 200h $x = 200 - 200h \rightarrow 2$ Equating Equations (1) and (2) 1000 - 333.333h = 200 - 200h -333.338h - 200h = 200 - 1000 -533.833h = -800 $h = -\frac{800}{-533.333}$ h = 1.5


From Equations () or (3) Equation (1) becomes $x = 1000 - (333 \cdot 333 \times 1 \cdot 5)$ x = 500

Let x be the load shared by gnr 1 and 1200-x be the load shared by gnr 2.

Therefore Load Shared by gnr 1 is = x = 500 kW Load Shared by gnr 2 is = 1200-x = 700 kW ii) If we assume, the machine 1 is cease to Supply any Load, the line CH in figure 1 Shifted to point B

Two Synchronous generators operating in parallel. Their Capacities are soo MW and 400 MN. The drop characteristics of their governors are 4% and 5% from noload to full load. Assuming that the generators are operating at 50 Hz at no load, how would be a load of 600 MN shared between them. What will be the System frequency at this load? Assume free governor action?

Solution

OA > no load Speed (OA) no load frequency OD > full load speed (Or) full load frequency of Generator 1

OF -> full load speed (or) full load frequency of Generator 2

From the left hand sider, the 1 ABC and 4 ADE are similiar

$$\frac{CB}{ED} = \frac{AB}{AD}$$

where CB=x, ED=300, AB= OA-OB, AD= OA-OD

$$\frac{\alpha}{300} = \frac{OR-OB}{OR-OD}$$

where OA = 50, OB = f

$$\frac{x}{300} = \frac{50 - f}{50 - 0D} \longrightarrow 0$$

FOA generaton 1, the speed Regulation is given by Speed Regulation = <u>Noload Speed - full load</u> full load speed full load speed

$$0.04(given 4^{2}) = 50 - 00$$

$$0.04 \times 0D = 50 - 0D$$

$$0.04 \ 0D = 50 - 0D$$

$$0.04 \ 0D + 0D = 50$$

$$(0.04 + 1) \ 0D = 50$$

$$1.04 \ 0D = 50$$

$$0D = \frac{50}{1.04}$$

$$0D = 48.077 \ H_2$$

Let al burnle

111

Substitute OD in equation ()

$$\frac{x}{300} = \frac{50 - f}{50 - 48.077}$$

$$\frac{x}{300} = \frac{50 - f}{1.923}$$

$$1.923x = 300(50 - f).$$

$$x = \frac{300}{1.923}$$
 (50-f)

x = 156.006(50 - f)

oc = 7800.812 - 156.006 f → 2

www.EnggTree.com

From the right hand side of the figure, the
$$AABH$$
 and $AAFGI are similiar$

$$\frac{BH}{FG} = \frac{AB}{AF}$$

Where BH=600-x, FO=400, AB=0A-00 AF=0A-0F

 $\frac{600-x}{400} = \frac{00-00}{00-00}$

$$\frac{600-x}{400} = \frac{50-f}{50-0F} \longrightarrow 3$$

EnggTree.com For generator 2, the speed Degulation is given by Speed Regulation = Noload Speed _ full load speed full load speed $0.05 = \frac{50 - 0F}{0F}$ 0.05 OF = 50- OF 0.05 OF + OF = 50 (0.05 +1) OF = 50 105 OF = 50 OF= <u>50</u> 1.05 OF = "4"9"6"9"112 Substitute OF in eq. 3 $\frac{600-x}{400} = \frac{50-f}{50-47.619}$ $\frac{600-x}{400} = \frac{50-f}{2.381}$ (600-x)2.381 = 400(50-f)1428.6 - 2.381x = 20000 - 400f

> -2.381x = 20000 - 400f - 1428.6-2.381x = 18571.4 - 400f-x = 18571.4 - 400fDownloaded from Eng. 38 p.com

EnggTree.com

$$-x = \frac{18571\cdot4}{2\cdot381} - \frac{400}{2\cdot381}$$

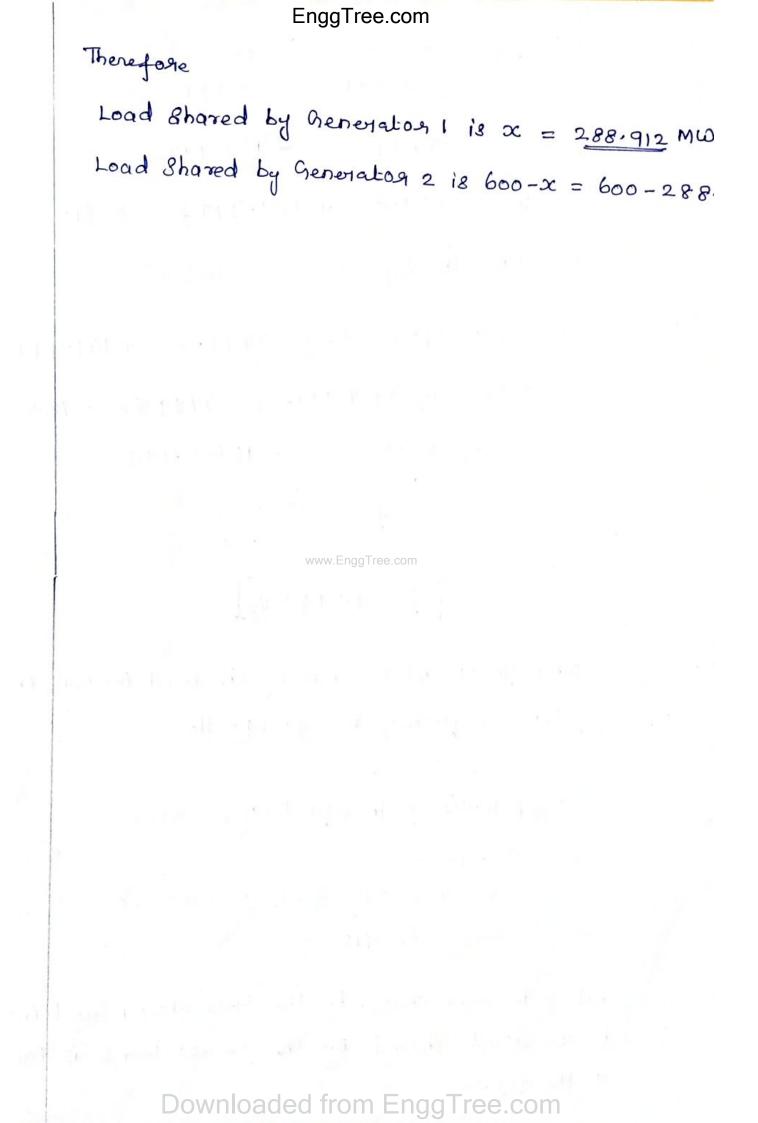
$$-x = 7799\cdot832 - 167\cdot997f$$

$$x = -7799\cdot832 + 167\cdot997f \rightarrow 4$$
Equations (2) and (4)

$$7800\cdot312 - 156\cdot006f = -7799\cdot832 + 167\cdot997f$$

$$-156\cdot006f - 167\cdot997f = -7799\cdot832 - 7800\cdot312$$

$$-324\cdot003f = -15600\cdot144$$


$$f = -\frac{15600\cdot144}{-324\cdot003}$$
WWW EnggTree.com

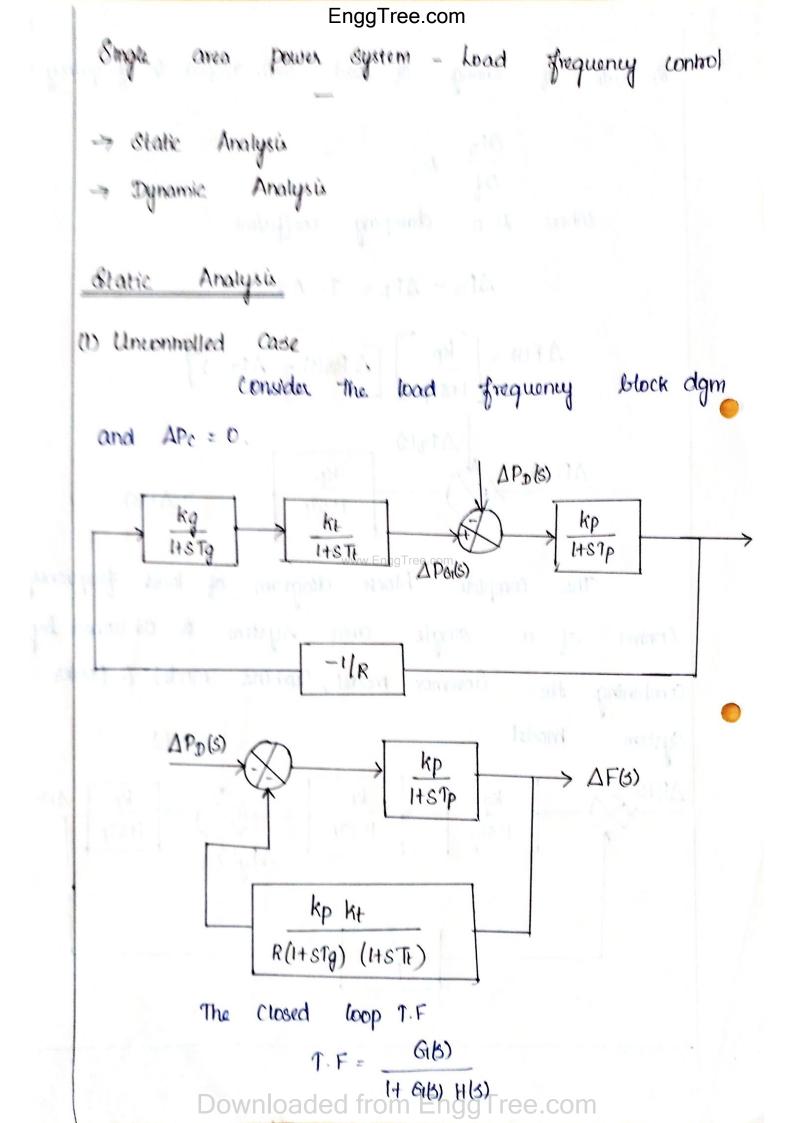
$$\int = 48\cdot148 H_2$$

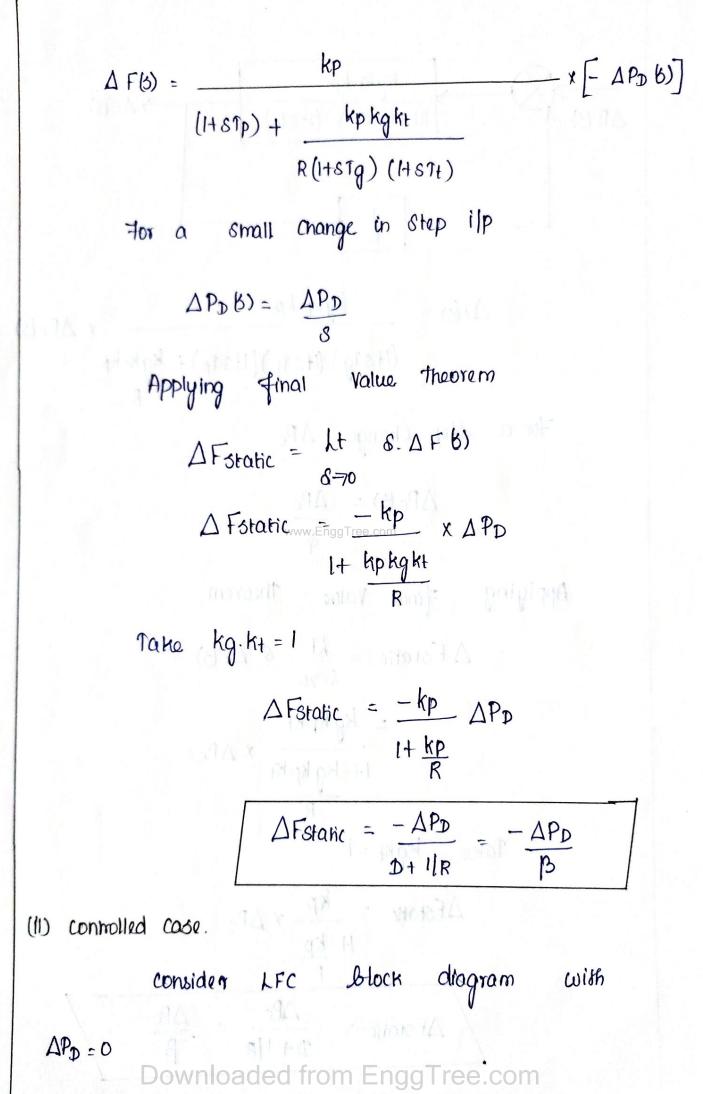
when gover 1 and 2 Sharing the load 600 mw, the System frequency is <u>48.148</u> Hz

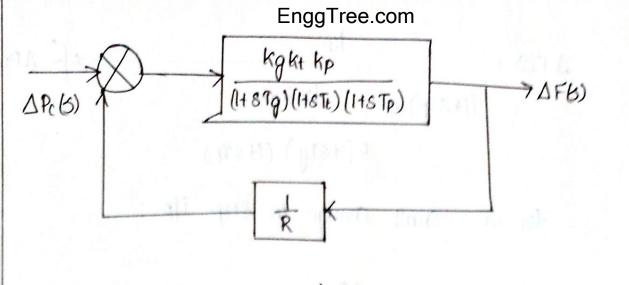
Substitute f in equation (2) og (2) In equation (2) $x = 7800 \cdot 312 - (156.006 \times 48.148)$ x = 288.912

Let x be load shared by the Generator 1 and 600-x be the load shared by the Generator 2 is taken in the figure. Downloaded from EnggTree.com

EE3602 - POWER SYSTEM OPERATION AND CONTROL


UNIT II


REAL POWER - FREQUENCY CONTROL


Load Frequency Control (LFC) of single area system-static and dynamic analysis of uncontrolled and controlled cases - LFC of two area system - tie line modeling – block diagram representation of two area system - static and dynamic analysis - tie line with frequency bias control – state variability model - integration of economic dispatch control with LFC.

www.EnggTree.com

Prepared by Dr.T.Dharma Raj, Associate Professor / EEE V V College of Engineering

 $\Delta F(s) = \frac{kgkt kp}{(1+s Tg)(1+s Tt)(1+s Tp) + kgkt kp} \times \Delta Pc(B)$ R

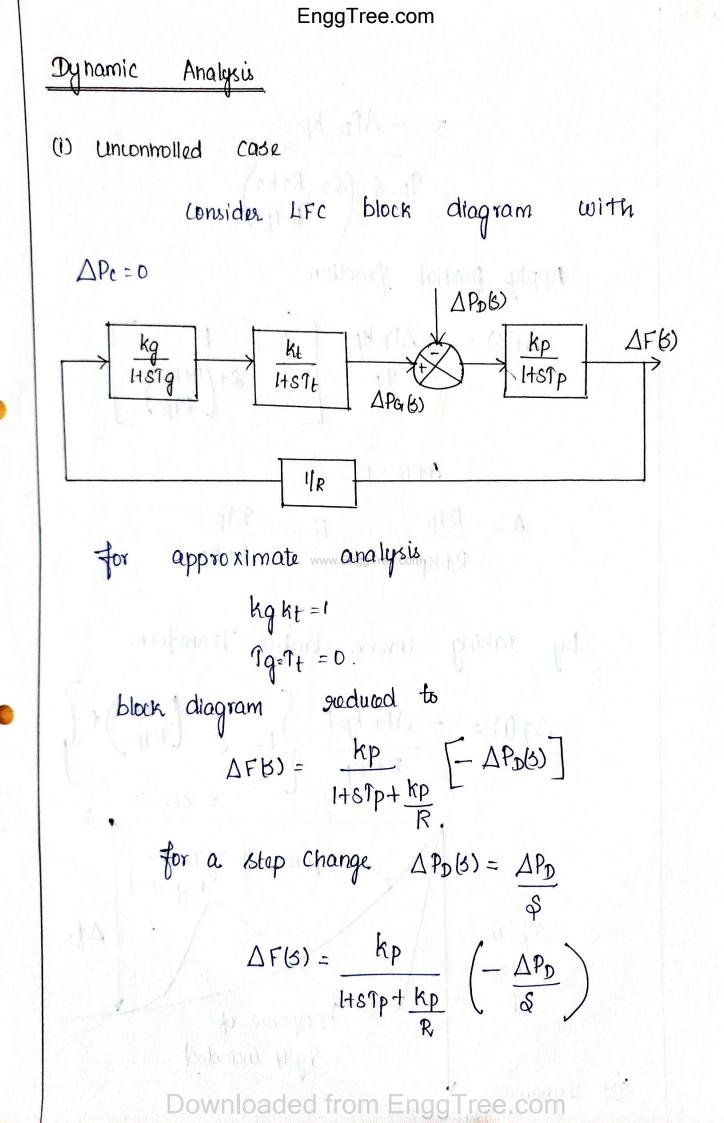
For a step change ΔPc .

 $\Delta P_{c}(B) = \Delta P_{c}$ www.Enggiree.com

Applying final value theorem,

 $\Delta F_{\text{Static}} = \begin{array}{c} \text{At} & 8. \, \text{AFB} \end{array}$

 $= \frac{kg kpkt}{l + kg kpkt} \times \Delta Pc$ R


Take kght = 1

and root #

 $\Delta F_{\text{static}} = \frac{kp}{H \frac{kp}{R}} \times \Delta P_{\text{c}}$

Downloaded from EnggTree.com

 $\Delta F static = \frac{\Delta P c}{D + 1 | R} = \frac{\Delta P c}{\beta}$

a plout Simony of

belleddamus (f)

$$= -\Delta P_{D} \cdot kp$$

$$T_{P} \cdot \delta \left(\delta + \frac{R+kp}{RT_{P}}\right)$$

Apply partial fraction

$$\Delta F(3) = -\Delta P_D k_p \left[\frac{A}{\delta} + \frac{B}{\delta + \left(\frac{R+k_p}{RT_p}\right)}\right]$$

$$A + B = 0.$$

$$A = \frac{RTp}{R+kp} = \frac{B}{R+kp} = -\frac{RTp}{R+kp}$$

By taking inverse laplace Transform April - ADakap (-R+kp)+7

$$\Delta f(t) = -\frac{\Delta P_{0} k_{p} R}{R + k_{p}} \left\{ l - 2 \left(\frac{R + h_{p}}{R + h_{p}} \right) t \right\}$$

$$\frac{t \sec 2}{t \sec 2}$$

$$\Delta f(t) = -\frac{\Delta P_{0} k_{p} R}{R + h_{p}} \left\{ l - 2 \left(\frac{R + h_{p}}{R + h_{p}} \right) t \right\}$$

$$\frac{t \sec 2}{t \sec 2}$$

$$\frac{t \sec 2}{h_{p}}$$

$$\frac{t \sec 2}{h_{p}}$$

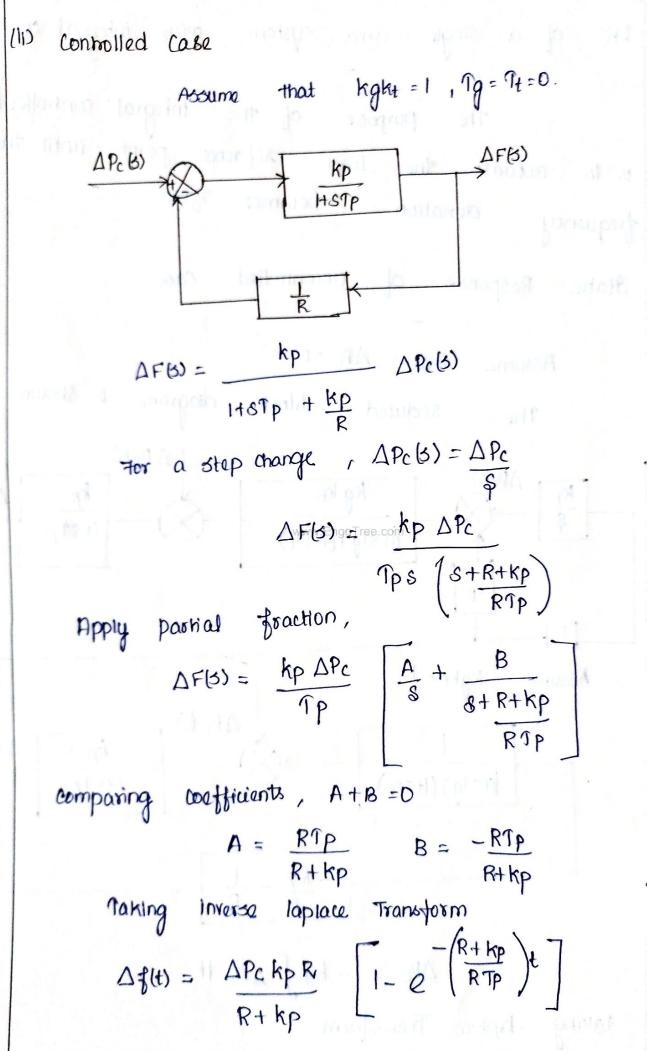
$$\frac{d f(t)}{h_{p}} \left\{ \frac{1}{R + h_{p}} \right\}$$

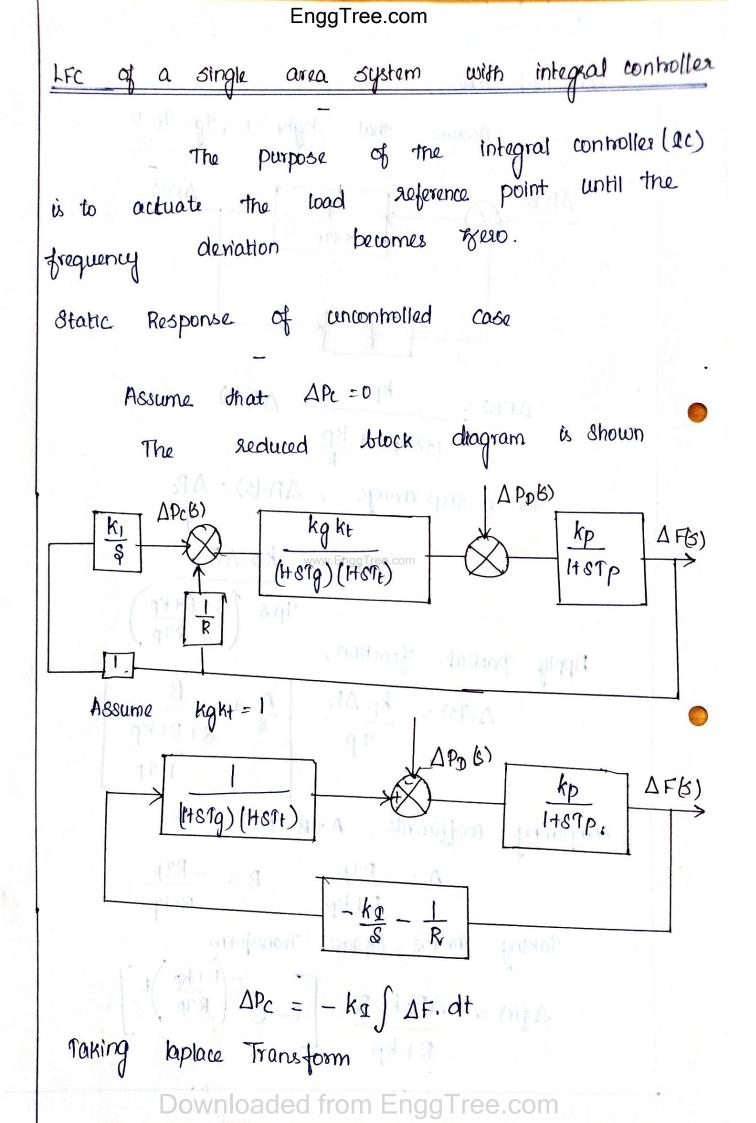
$$\frac{d f(t)}{R + h_{p}} \left\{ \frac{1}{R + h_{p}} \right\}$$

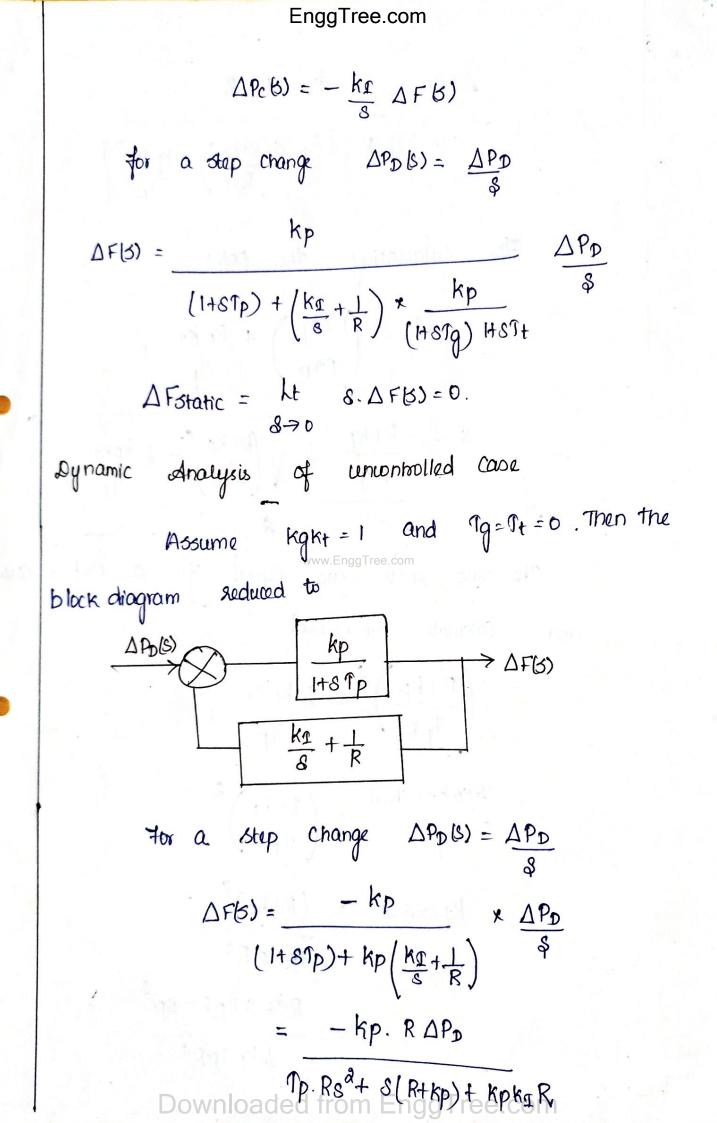
$$\frac{d f(t)}{t \sec 2}$$

$$\frac{d f(t)}{h_{p}} \left\{ \frac{1}{R + h_{p}} \right\}$$

$$\frac{d f(t)}{t \sec 2}$$


$$\frac{d f(t)}{h_{p}} \left\{ \frac{1}{R + h_{p}} \right\}$$


$$\frac{d f(t)}{h_{p}} \left\{ \frac{1}{R + h_{p}} \right\}$$


$$\frac{d f(t)}{t \sec 2}$$

$$\frac{d f(t)}{h_{p}} \left\{ \frac{1}{R + h_{p}} \right\}$$

Dynamic V Dousponseded from EnggTree.com

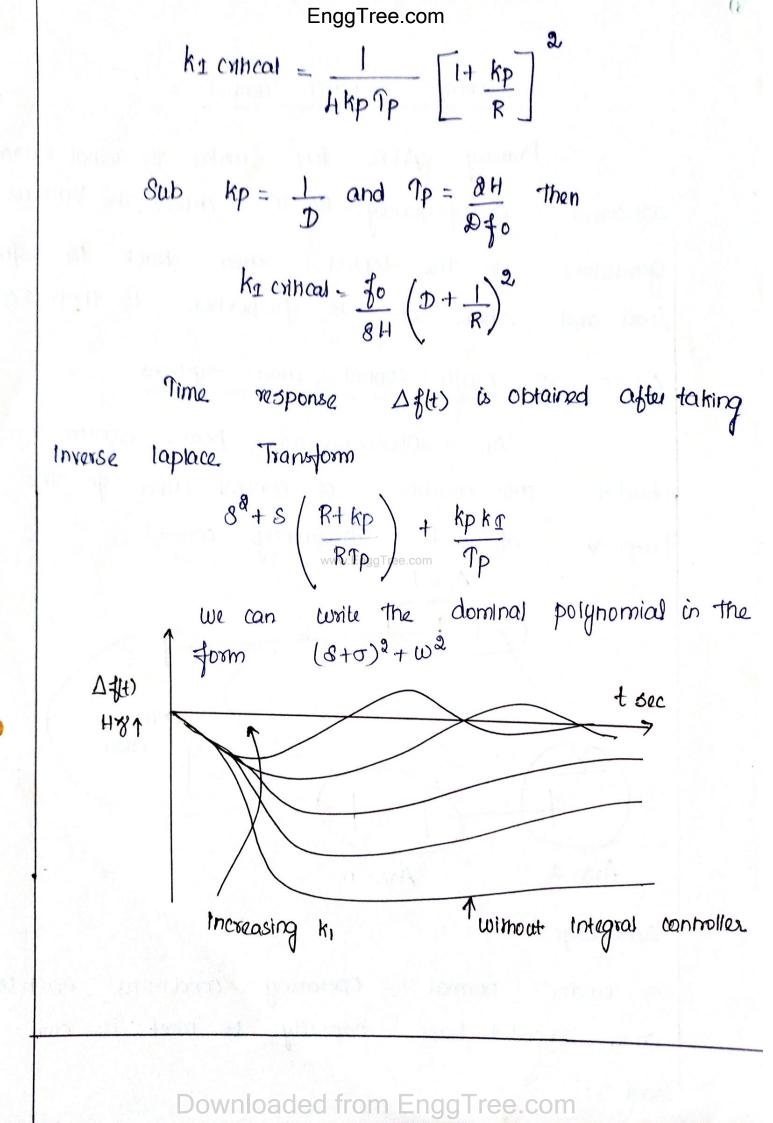
$$\Delta F B = -\frac{hp}{P} \Delta P_{D} R$$

$$Tp R \left[\frac{S^{2} + S\left(\frac{R+kp}{RTp}\right) + \frac{hp}{Tp}}{RTp} \right]$$
For calculating the poles
$$S^{2} + S \left(\frac{R+kp}{RTp}\right) + \frac{kp}{Tp} \frac{kr}{Tp} = 0$$

$$S = -\frac{R+kp}{RTp} \pm \sqrt{\frac{R+kp}{RTp}^{2} - 4\frac{kpkr}{Tp}}$$

$$R^{2}$$
The two roots are equal for a critical case and calculate k_{2} critical
$$\left(\frac{R+kp}{TpR}\right)^{2} - 4\frac{kpkr}{Tp} = 0$$

$$\frac{4kp}{TpR} \frac{k_{2} critical}{Tp} = \left(\frac{R+kp}{TpR}\right)^{2}$$

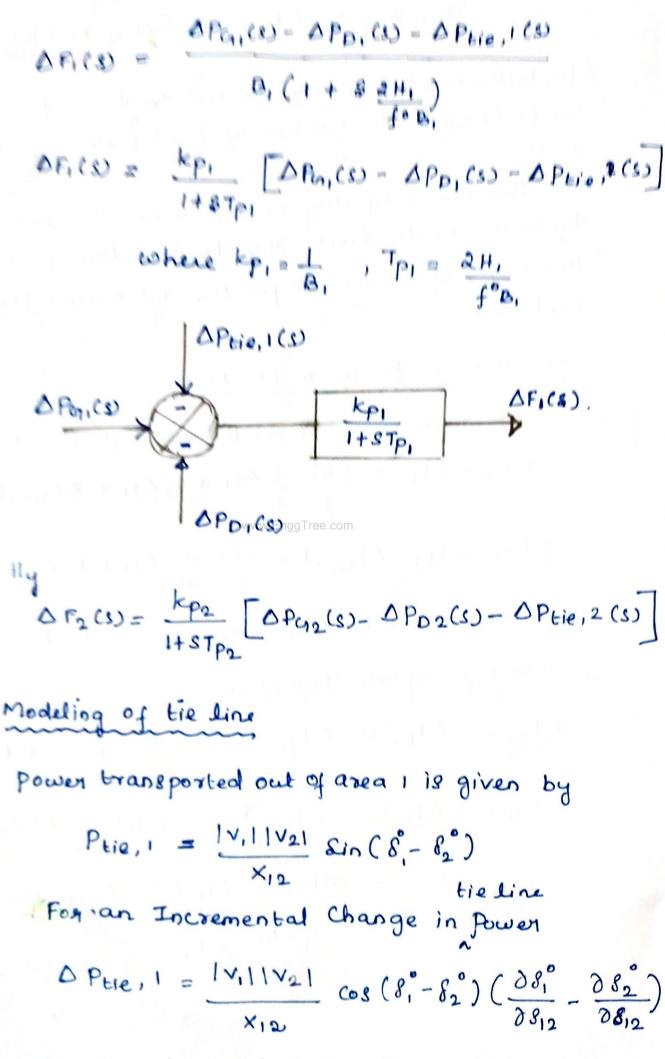

$$k_{3} critical = \left(\frac{R+kp}{TpR}\right)^{2}$$

$$k_{3} critical = \left(\frac{R+kp}{A}\right)^{2}$$

$$R^{3} + 3kpR + kp^{2}$$

$$R^{3} + 3kpR + kp^{2}$$

$$R^{3} + 3kpR + kp^{2}$$
Downloaded from EnggTree.com


Two Area Load Frequency Control Modelling

Fog betteg Load frequency Control, the large power System Can be divided into number of load frequency Control Greas.

This load frequency Control Areas are interconnected by means of the lines. This the line transport power in or out of a area as per the inter area power Contracts.

Location of the line in LFC model

The incremental Power Balance Equation is SPGI-DPDI = 2HI d Afi + BI Afi + DPHE, I fo dt DPC1-DPD1-DPtie, 1 = aH1 d of1 + B, of1 All quanties ather than frequency are in P.U Paking Laplace Pransform $\Delta P_{G_1}(s) - \Delta P_{D_1}(s) - \Delta P_{tie}, |(s) = \frac{2H_1 + \delta F_1(s)}{f^{\circ}} \Delta F_1(s) + B_1 \Delta F_1(s)$ $\Delta P_{c_1}(s) - \Delta P_{p_1}(s) - \Delta P_{tie}, I(s) = \Delta F_1(s) \left[\frac{2H_1s}{f^{\circ}} + B_1 \right]$ SPCIICS) - SPD, CS) - SPLIE, ICS) $\Delta F_1(S) = \frac{S \geq H_1}{f^{\circ}} + \Theta_1$

EnggTree.com $\Delta P_{\text{tie}} = \frac{|V_1||V_2|}{K_1} \log(8_1^{\circ} - 8_2^{\circ}) (\Delta 8_1^{\circ} - \Delta 8_2)$ $\Delta P_{\text{tie}} \, (P_{0}) = \frac{|V_{1}| |V_{2}|}{|X_{12}| P_{1}} \, \cos(8_{1}^{\circ} - 8_{2}^{\circ}) \, (\Delta 8_{1} - \Delta 8_{2}).$ \triangle Ptie, '(P·u) = T₁₂ ($\triangle 8_1 - \triangle 8_2$). Where $T_{1R} = \frac{|V_{11}| |V_{21}|}{X_{21} Pr_1} \cos(\theta_1 - \theta_2) \longrightarrow (1)$ $\omega = 2\pi f$, $f = \frac{\omega}{8\pi}$ $f = \frac{1}{2\pi} \frac{d8}{dL}$ $f = \prod_{n \neq \infty} \Delta \mathcal{S}^{\text{www.EnggTree.com}}$ $\Delta f = \pm \frac{\partial}{\partial t} \Delta S$

- $\int \Delta f dt = \perp \int \frac{\partial}{\partial t} \Delta \delta dt$
- $\int \Delta f \, dt = \frac{1}{2\pi} \Delta 8$ $\Delta 8 = .2\pi \int \Delta f \, dt$
- $\therefore \Delta \delta_1 = 2\pi \int \Delta f_1 dt$ $\Delta \delta_2 = 2\pi \int \Delta f_2 dt.$

$$\Delta P_{\text{tie}, 1} (p, v) = T_{12} \left[2\pi \int \Delta f_1 \, dt - 2\pi \int \Delta f_2 \, dt \right]$$

$$\Delta P_{\text{tie}, 1} (p, v) = 2\pi T_{12} \left[\int \Delta f_1 \, dt - \int \Delta f_2 \, dt \right]$$

$$Taking (aplacie transform.)$$

$$\Delta P_{\text{tie}, 1} (s) = 2\pi T_{12} \left[\Delta F_1(s) - \Delta F_2(s) \right]$$

$$\Delta P_{\text{tie}, 1} (s) = \frac{2\pi T_{12}}{s} \left[\Delta F_1(s) - \Delta F_2(s) \right] \rightarrow (2)$$

$$P_{\text{tie}, 2} (s) = \frac{2\pi T_{21}}{s} \left[\Delta F_1(s) - \Delta F_2(s) \right]$$

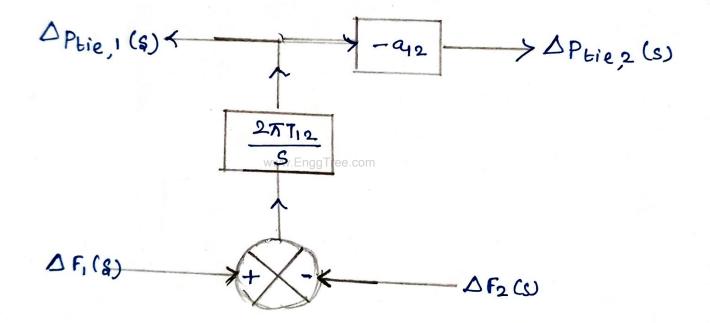
$$\Delta P_{\text{tie}, 2} (s) = -\frac{2\pi T_{21}}{s} \left[\Delta F_1(s) - \Delta F_2(s) \right]$$

$$P_{\text{tie}, 2} (s) = -\frac{2\pi T_{21}}{s} \left[\Delta F_1(s) - \Delta F_2(s) \right]$$
From Equation (3), we can write
$$T_{01} = \frac{|v_{2}||v_{1}|}{x_{12}} \cos \left(\theta_{1}^{\circ} - \theta_{2}^{\circ} \right) \times \frac{P\tau_{1}}{P\tau_{2}}$$

$$T_{01} = \frac{|v_{1}||v_{2}|}{x_{12}} \cos \left(\theta_{1}^{\circ} - \theta_{2}^{\circ} \right) \times \frac{P\tau_{1}}{P\tau_{2}}$$

$$T_{01} = \frac{|v_{1}||v_{2}|}{x_{12}} \cos \left(\theta_{1}^{\circ} - \theta_{2}^{\circ} \right) \times \frac{P\tau_{1}}{P\tau_{2}}$$

$$T_{01} = \frac{|v_{1}||v_{2}|}{x_{12}} \cos \left(\theta_{1}^{\circ} - \theta_{2}^{\circ} \right) \times \frac{P\tau_{1}}{P\tau_{2}}$$


$$T_{01} = \frac{|v_{1}||v_{2}|}{x_{12}} \cos \left(\theta_{1}^{\circ} - \theta_{2}^{\circ} \right) \times \frac{P\tau_{1}}{P\tau_{2}}$$

$$T_{01} = \frac{|v_{1}||v_{2}|}{x_{12}} \cos \left(\theta_{1}^{\circ} - \theta_{2}^{\circ} \right) \times \frac{P\tau_{1}}{P\tau_{2}}$$

$$T_{0} = \frac{|v_{1}||v_{2}|}{x_{12}} \cos \left(\theta_{1}^{\circ} - \theta_{2}^{\circ} \right) \times \frac{P\tau_{1}}{P\tau_{2}}$$

$$\Delta P_{\text{tre}}, \mathcal{Q}(S) = -\frac{2\pi T_{12} q_{12}}{S} \left[\Delta F_1(S) - \Delta F_2(S) \right] \rightarrow 3$$

Referring the equations (2) and (3), we can develop the Block dragram representation of the line is

EnggTree.com Static Analysis of Two area system for Case Uncontrolled Assume that $\Delta Pci = \Delta Pca = 0$ frequency deviation is, The AFI static = AFa static = AFstatic In steady state, $\Delta P_{G_{II}}$ static = $-\frac{1}{R_{I}} \Delta F_{Static}$ ΔPG_2 static = $-\frac{1}{R_2} \Delta F_2$ tatic [APGI- APDI- APtielw]w.EnggTrellDT = AFstatic 1+ &HS FoDI = $D \Delta F_{static} + \frac{\partial H}{\forall o} \cdot \frac{d}{dt} \Delta F_{static}$ Put d AFSIAtic = 0 for areas then, A Pon - APDI - APtiel = DI A Fstatic $\Delta Ptier = \Delta PGI - \Delta PDI - D\Delta Fstatic$ -7 1 similarly for area 2, APGIZ - APDI = Da AFStatic + APtie 2 = Da AFstoric - Q12 [APGI-APDI-DIAF Star Downloaded from EnggTree.com

andrug Com ΔF_{3} tanic $\left[\frac{-1}{R_{a}} - D_{a} - \frac{Q_{12}}{R_{a}} - Q_{12} D_{1} \right] = Q_{12} \Delta P_{D_{1}} + \Delta P_{D_{2}}$ $\Delta P tiel = -\Delta F static \left[\begin{array}{c} D + 1 \\ R_1 \end{array} \right] - \Delta P D I$ Let $\beta_1 = D_1 + \frac{1}{R_1}$ and $\beta_2 = D_2 + \frac{1}{R_2}$ Then, APtiel, BI APD2 - Ba APDI Ba+ a12B1 $\Delta F static = - \left[\Delta P D_2 + Q_1 \Delta P D_1 \right]$ www.EngeTree.cor Ba + Q12 B1 For Identical areas, $B_{l} = B_{2} = B$ $R_1 = R_2 = R$ $D_1 = D_2 = D$. If step load changes occur only at anoal $\triangle PDa = 0$ $\Delta F static = - \Delta P D$ 23 $\Delta P \text{tie}_1 = -\Delta P D_1$ Downloaded from EnggTree.com

EnggTree.com Dynamic Response of Uncontrolled Case of two area system

Assume that two areas are identical and time constants of generators and turbines are negligible as compared to power systems.

$$\Delta Pc_1 = \Delta Pc_2 = 0$$
.

$$\Delta f_{1}(5) = -\frac{kp_{1}}{1+sTp} \left[\frac{\Delta f_{1}(5)}{R_{1}} + \Delta PD_{1}(5) + \Delta Ptie_{1}(5) \right]$$

$$\Delta f_{a}(s) = -\frac{kp_{2}}{1+s_{1}p} \left[\frac{\Delta f_{2}(s)}{R_{2}} + \Delta P_{Da}(s) + \Delta P_{trea}(s) \right]$$

$$\Delta Prier(S) = \frac{\partial TI T_{12}}{\$} \left[\Delta f_1(S) - \Delta f_2(S) \right]$$

For identical areas,

$$\Delta P_{tie1} = -\Delta P_{tie2}$$

$$Q_{12} = 1$$

$$R_{1} = R_{2} = R$$

$$D_{1} = D_{2} = D$$

$$kp_{1} = kp_{2} = k_{1}$$

$$\Delta f_{1}(5) \left[\frac{1 + kp}{R(1 + sfp)} \right] = \frac{-kp}{1 + sfp} \left[\Delta P_{D_{1}}(5) + \Delta P_{tie1}(5) \right]$$

$$\Delta f_{0}(b) = \frac{-kpR}{sRTp+R+kp} \left[\Delta P_{D1}(b) + \Delta Pti(1/b) \right]$$

$$\Delta f_{0}(b) = \frac{-kpR}{sRTp+R+kp} \left[\Delta P_{D2}(b) - \Delta Pti(1/b) \right]$$
Sub $\Delta f_{0}(b)$ and $\Delta f_{0}(b)$

$$kp = \frac{1}{D}$$

$$\Delta f_{0}(c) = -\delta TI f_{12} \left[\Delta P_{D1}(b) - \Delta P_{D2}(c) \right]$$

$$Tp D \left[\frac{\delta^{2} + \delta}{\delta^{2} + \delta} \left(\frac{R + 1|D}{TpR} \right) + \frac{A TTTR}{TpD} \right]$$

$$Tp = \frac{\delta H}{D f_{0}} \quad sac$$

$$\delta^{2} + \delta s + tD^{2} = (\delta + s)^{2} + tb^{2} - s^{2}$$

$$\Delta = \frac{f_{0}}{H} \left(D + \frac{1}{R} \right)$$

$$W^{2} = \frac{\delta TTTR}{P} \frac{1}{P} \frac{\delta}{P}$$

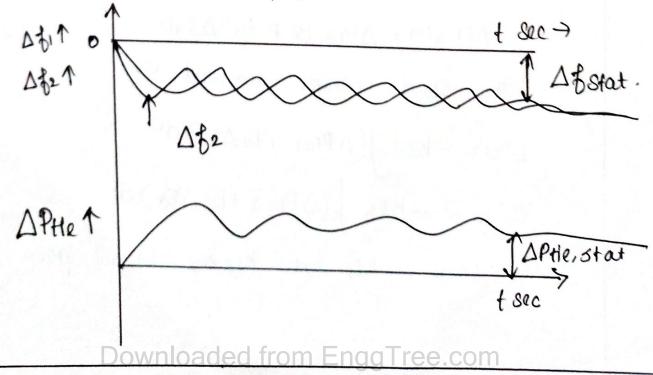
$$\delta r_{2} = -\delta x \pm \sqrt{(\delta x)^{2} - \mu w^{2}}$$

$$= -\alpha \pm \sqrt{\sqrt{\alpha^{2} - \omega^{2}}}$$
Downloaded from Engg Tree.com

Caseli)

If
$$d = \omega$$
 then the system will be critically damped and the roots are $3\omega = -\omega$

(ase (ii)


It x>10, 8

$$i_{12} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$$

Case (iti)

If
$$\alpha < \omega$$
, system will be overlapped.
 $S_{12} = -\alpha \pm j \sqrt{\omega^2 - \alpha^2}$
 $\omega d = \sqrt{\omega^2 - \alpha^2}$
 $= \sqrt{\frac{2\pi}{H} \sqrt{\frac{1}{H} - \frac{1}{H}} - \frac{1}{\frac{1}{H}} \left(\frac{1}{H} + \frac{1}{H}\right)^2}{\frac{1}{H}}$

$$D=0, d=\frac{1}{4HR}$$

EnggTree.com
The line with frequency Bias control of two ages
gistem
In two area power system, each area must
absorbs its own hoods.
In two area power system, the area 1 is responsible for frequency reset and the area 2 is responsible for the line power, $ACE_1 \simeq AF_1$ $ACE_2 \simeq APtie_2$ $ACE_1 = \Delta Ptie_1 + b_1 \Delta F_1 \rightarrow 0$ $ACE_2 = APtie_2 + b_2 \Delta F_2 \rightarrow 2$ where b_1 and b_2 are area frequency bias,
In laplace transform,
$ACE_1(S) = \Delta Ptie_1(S) + b_a \Delta F_1(S)$
$ACE_{a}(s) = \Delta Ptier(S) + ba \Delta Fa(S)$ The Speed Changes commands 090,
$\Delta Pc_{I} = -kr_{I} \int (\Delta Ptier + b_{I} \Delta F_{I}) dt$
$\Delta P_{ca} = -ksa \int (\Delta P_{tiea} + ba \Delta F_a) dt$
Where ks, and ksæ are integral gains

EnggTree.com State variable model of Load frequency Control

Optimum Linear Regulator (OLR) design results in a Controller that minimizes both transient variable oscillations and Control effects. OLR design is based open the availablity of a dynamic System model is Called State Variable model.

consider the LFC model of Single area, with assumption kg=kt=1 APD (3)

y Kp

 $\Delta P_{c}(s)$

DXE(S) I+ST+ DPG(S) www.EnggTree.com △F(\$). The State variable of a System is defined as

$$x(t) = A x(t) + B u(t) + p(t) \rightarrow (f)$$

X(E) is the State Variables of the LFC, they are APV, APT and Af. Therefore the State Variables

$$X_{1} = \Delta P_{V}$$

$$X_{2} = \Delta P_{T}$$

$$X_{3} = \Delta f$$

$$(2)$$

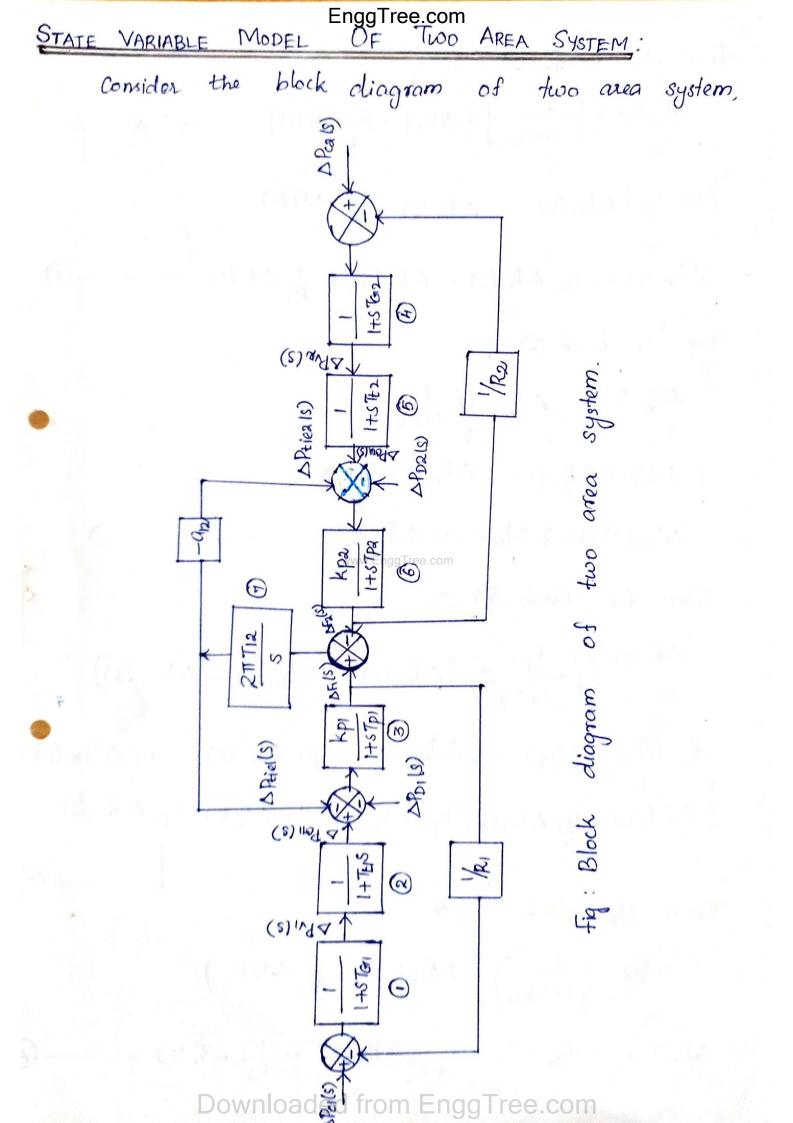
x(1) is the derivate of the State variables.

EnggTree.com $\dot{x}_{1} = \frac{d(\Delta P_{v})}{dt}$ $\dot{x}_{2} = \frac{d(\Delta P_{r})}{dt}$ $\dot{x}_{3} = \frac{d(\Delta P_{r})}{dt}$

ultip is the Control Variable $u = \Delta P_{c} \rightarrow \textcircled{A}$ P(t) is the Disturbance Variable $P = \Delta P_{D} \rightarrow \textcircled{S}$ From the Block Diagram $\Delta P_{V}(s) = (\underbrace{1}_{1+sT_{q}}) \stackrel{\circ}{=} (\underbrace{\Delta P_{c}(s) - \frac{1}{R}}$

 $\Delta P_{V}(s) = \left(\frac{1}{1+s\tau_{q}}\right) \left(\Delta P_{c}(s) - \frac{1}{R} \Delta F(s)\right)$ $\Delta P_{v}(s) (1 + sT_{q}) = \Delta P_{c}(s) - \frac{1}{R} \Delta F(s).$ $\Delta P_v(s) + ST_g \Delta P_v(s) = \Delta P_c(s) - \frac{1}{R} \Delta F(s)$ $ST_q \Delta P_v(s) = \Delta P_c(s) - \frac{1}{R} \Delta F(s) - \Delta P_v(s)$ $S' \Delta P_v(s) = \Delta P_c(s) - \frac{1}{RT_g} \Delta F(s) - \Delta P_v(s) - \frac{T_g}{T_g}$ Taking Inverse Laplace $\frac{d}{dt}(\Delta P_{v}) = \frac{\Delta P_{c}}{T_{g}} - \frac{\Delta f}{RT_{g}} - \frac{\Delta P_{v}}{T_{g}}$ From Equations (2), (3), (4) and (5) Downloaded from Engo

EnggTree.com $\dot{X}_{1} = \frac{u}{T_{q}} - \frac{K_{3}}{R^{T}_{q}} - \frac{X_{1}}{T_{q}} \rightarrow \bigcirc$ $\Delta P_T(S) = \left(\frac{1}{1+ST_L}\right) \Delta P_V(S)$ $\Delta P_T(s) [1+sT_t) = \Delta P_V(s)$ $\Delta P_T(s) + ST_t \Delta P_T(s) = \Delta P_V(s)$ $ST_{E} \Delta P_{T}(S) = \Delta P_{V}(S) - \Delta P_{T}(S)$ $S \Delta P_T(s) = \frac{\Delta P_V(s)}{T_t} - \frac{\Delta P_T(s)}{T_t}$ Taking Inverse Laplace transform $\frac{d(\Delta P_T)}{dL} = \frac{\Delta P_V}{T_L} - \frac{\Delta P_T}{T}$ From Equations 2, 3, 4 and 5 $X_{2} = \frac{X_{1}}{T_{L}} - \frac{X_{2}}{T_{L}} \rightarrow \textcircled{1}$ $\Delta F(s) = \frac{k_{p}}{1+sT_{p}} \left[\Delta P_{T}(s) - \Delta P_{p}(s) \right]$ DF(s) [1+STp] = kp DPT(s) - kp DPp(s) $\Delta F(s) + ST_{p} \Delta F(s) = k_{p} \Delta P_{T}(s) - k_{p} \Delta P_{D}(s)$ STPDF(S) = KpDPy (S) - KpDPD (S) SOF(S) = KP OPT(S) - KP OPD(S) Downloaded from EnggTrte.com

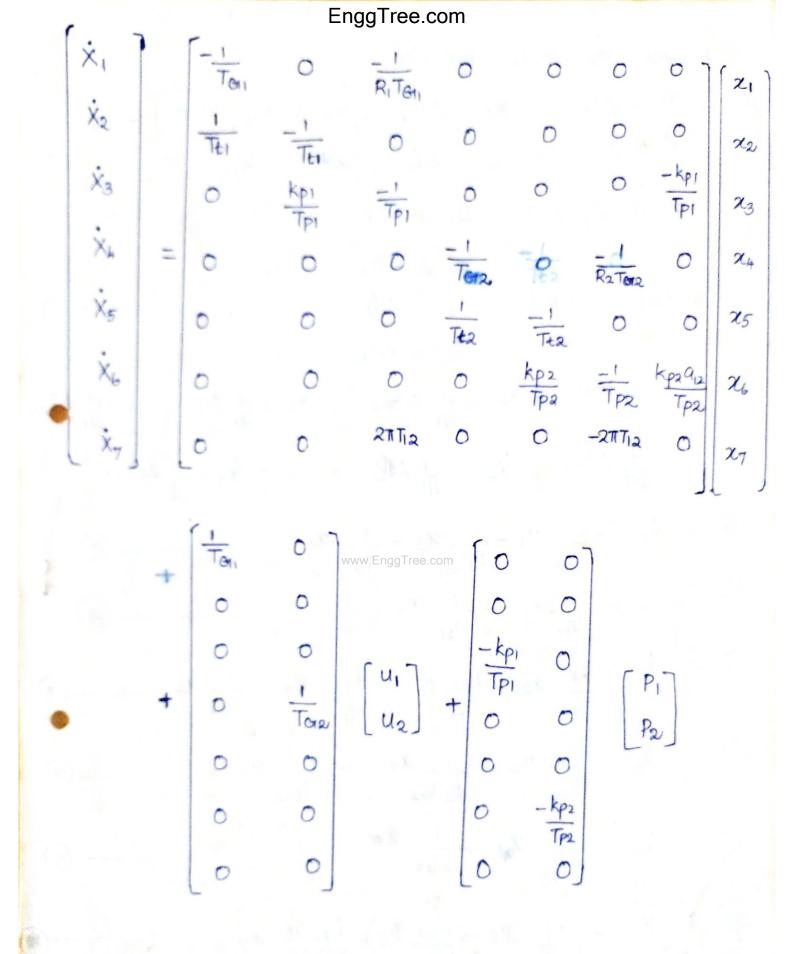

Taking Inverse Laplace transform

$$\frac{d}{dt}(\Delta f) = \frac{Lp}{T_p} \Delta P_T - \frac{kp}{T_p} \Delta P_D.$$
From Equations (2), (3), (3) and (5)

$$\frac{x_3}{x_3} = \frac{kp}{T_p} \frac{x_2}{x_2} - \frac{kp}{T_p} \frac{P}{T_p} \rightarrow (3)$$
Equations (3), (3) and (8), we can form the
state Variable Equation of LFC model as

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -\frac{1}{T_p} & 0 & -\frac{1}{R_Tg} \\ \frac{1}{T_E} - \frac{1}{T_E} & 0 \\ 0 & \frac{1}{R_Tg} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -\frac{kp}{T_p} \end{bmatrix} P$$
The block diagram of state variable model is
given as

$$\frac{d}{Ax} = \frac{1}{Ax} = \frac{1}{Ax}$$



EnggTree.com From the block (1) >> $\Delta R_{V_1}(s) = \begin{bmatrix} 1 \\ 1+sT_{G_1} \end{bmatrix} \left(\Delta R_{c_1}(s) - \frac{1}{P} \Delta F_1(s) \right)$ $(1+sT_{GI}) \Delta P_{v_1}(s) = \Delta P_{cI}(s) - \frac{1}{R_1} \Delta F_{I}(s)$ $\Delta P_{VI}(s) + ST_{GI} \Delta P_{VI}(s) = \Delta P_{CI}(s) - \frac{1}{P_{I}} \Delta F_{I}(s)$ \bigcirc From the block @ => $\Delta P_{G_{1}}(s) = \Delta P_{V_{1}}(s) \left(\frac{1}{1+sT_{t}}\right)$ $(1+ST_{H}) \Delta P_{G_{H}}(s) = \Delta P_{V_{H}}(s)$ $\Delta P_{en}(s) + s T_{t1} \Delta P_{en}(s) = \Delta P_{v_1}(s)$ (2) From the block (3) => $\Delta f_{1}(s) = \left(\frac{k\rho_{1}}{1+s\tau_{D1}}\right) \left(\Delta P_{G1}(s) - \Delta P_{D1}(s) - \Delta P_{tiel}(s)\right)$ DFI(S) (1+STPI) = kpi DPGI(S) - kpi DPDI(S) - kpi DPtier(S) DFI(S) + STPI DFI(S) = kpi DPGI(S) - kpi DPGI(S) - kpi DPtier(S) 5 the block $(f) \Rightarrow$ from $\Delta P_{v_2}(s) = \left(\frac{1}{1+sT_{G_2}}\right) \left(\Delta P_{c_2}(s) - \frac{1}{R_2}\Delta F_{2}(s)\right)$ $\Delta P_{v_2}(s) + s \operatorname{T_{Gra}} \Delta P_{v_2}(s) = \Delta P_{c_2}(s) - \frac{1}{R_n} \Delta F_2(s) - \frac{1}{R_n} \Delta$ (4)

EnggTree.com
From the block
$$(\mathbf{S}) \Rightarrow$$

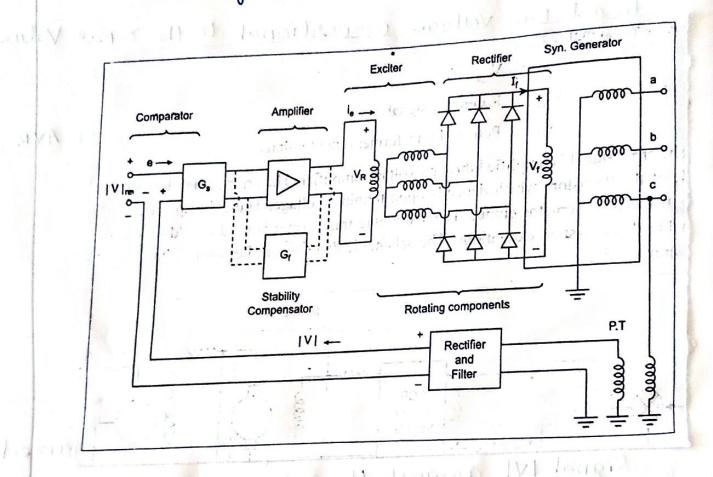
 $\Delta P_{dag}(s) = \left(\frac{1}{1+sT_{ta}}\right) \Delta P_{V_{2}}(s)$
 $\Delta P_{dag}(s) + s T_{ta} \Delta P_{dag}(s) = \Delta P_{va}(s) - (\mathbf{S})$
From the block $(\mathbf{S}) \Rightarrow$
 $\Delta F_{g}(s) = \left(\frac{kp_{2}}{1+sT_{pa}}\right) \left(\Delta P_{dra}(s) - \Delta P_{a}(s) - \Delta P_{trea}(s)\right)$
 $\Delta P_{trea}(s) = -Q_{12} \Delta P_{trea}(s)$
 $\Delta F_{ta}(s) = \left(\frac{kp_{2}}{1+sT_{pa}}\right) \left(\Delta P_{dra}(s) - \Delta P_{ba}(s) + Q_{12} \Delta P_{trea}(s)\right)$
 $\Delta F_{a}(s) = \left(\frac{kp_{2}}{1+sT_{pa}}\right) \left(\Delta P_{dra}(s) - \Delta P_{ba}(s) + Q_{12} \Delta P_{trea}(s)\right)$
 $\Delta F_{a}(s) + sT_{p2} \Delta F_{a}(s) = kp_{2} \Delta P_{dra}(s) - kp_{2} \Delta P_{ba}(s) + kp_{2} Q_{12} \Delta P_{trea}(s)$
From the block $(\mathbf{T}) \Rightarrow$
 $\Delta P_{trea}(s) = \left(\frac{2\pi T_{12}}{s}\right) \left[\Delta F_{1}(s) - \Delta F_{2}(s)\right]$
 $S \Delta P_{trea}(s) = 2\pi T_{12} \Delta F_{1}(s) - 2\pi T_{12} \Delta F_{a}(s) - (\mathbf{T})$
Taking inverse laplace transform of $(\mathbf{D}, (\mathbf{S}), (\mathbf{S}), (\mathbf{P}), (\mathbf{S}), (\mathbf{S})$

Enginee.com
(a) The
$$\frac{d}{dt} \Delta B_{01} = \Delta P_{01} - \Delta P_{01}$$

 $\frac{d}{dt} \Delta B_{01} = \frac{1}{T_{t1}} \Delta P_{01} - \frac{1}{T_{t1}} \Delta B_{01}$ (c)
 $\frac{d}{dt} \Delta B_{01} = \frac{1}{T_{t1}} \Delta P_{01} - \frac{1}{T_{t1}} \Delta B_{01} - \frac{1}{T_{t1}} \Delta B_{t1} - \Delta B_{11}$
 $\frac{d}{dt} \Delta B_{11} = \frac{k_{p1}}{T_{p1}} \Delta B_{01} - \frac{k_{p1}}{T_{p1}} \Delta B_{01} - \frac{k_{p1}}{T_{p1}} \Delta B_{t1} - \frac{1}{T_{p1}} \Delta B_{1}$
 $\frac{d}{dt} \Delta B_{12} = \frac{k_{p1}}{T_{p1}} \Delta B_{01} - \frac{k_{p1}}{T_{p1}} \Delta B_{t1} - \frac{1}{T_{p1}} \Delta B_{1}$
 $\frac{d}{dt} \Delta B_{12} = \Delta B_{22} - \frac{1}{R_{0}} \Delta B_{2} - \Delta B_{22}$
 $\frac{d}{dt} \Delta B_{22} = \frac{1}{T_{t2}} \Delta B_{22} - \frac{1}{T_{t2}} \Delta B_{22} - \frac{1}{T_{02}} \Delta B_{12} - \frac{1}{T_{02}} \Delta B_{12}$

Assume the state variables,

EE3602 - POWER SYSTEM OPERATION AND


CONTROL UNIT III

REACTIVE POWER – VOLTAGE CONTROL

Generation and absorption of reactive power - basics of reactive power control – Automatic Voltage Regulator (AVR) – brushless AC excitation system – block diagram representation of AVR loop static and dynamic analysis – stability compensation – voltage drop in transmission line - methods of reactive power injection - tap changing transformer, SVC (TCR + TSC) and STATCOM for oltage control.

www.EnggTree.com

Prepared by Dr.T.Dharma Raj, Associate Professor / EEE V V College of Engineering EnggTree.com Modelling of Automatic Voltage Regulator

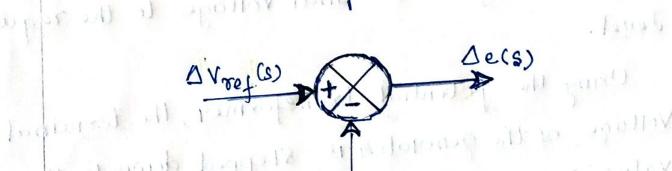
Schematic diagram of Bruchless Automatic Voltage Degulator Let us we assume that generator terminal Voltage IVI has been decreased. This results in an increased error Voltage (e) which in turn, Causes increased values of V_R, ie, V_f and i_f. The increased i_f increases the generator flux, resulting the raise magnitude of the terminal Voltage to the required level.

Using the potential transformer, the terminal Voltage of the generator is stepped down to the value required for control dignal and then rectified

The week all and a set EnggTree.com to get D.c Voltage proportional to the r.m.s Value of terminal voltage.

From the Diagram, the modelling of AVR includes

- i) Compagatog
- ii) Amplifier
- iii) Exciter
- iv) Generator


1) Comparator

The comparator compares the measured Signal IVI against the reference DC Signal IVroft. The difference between these two signals produce an error voltage 'Ve' called error lignal 1 2111 The error signal $\Delta e = \Delta |V_{ref}| - \Delta |V|$

Taking Laplace Transform

 $\Delta e(s) = \Delta V_{ref}(s) - \Delta V(s).$ The model of Camparaton is

Volue: 01

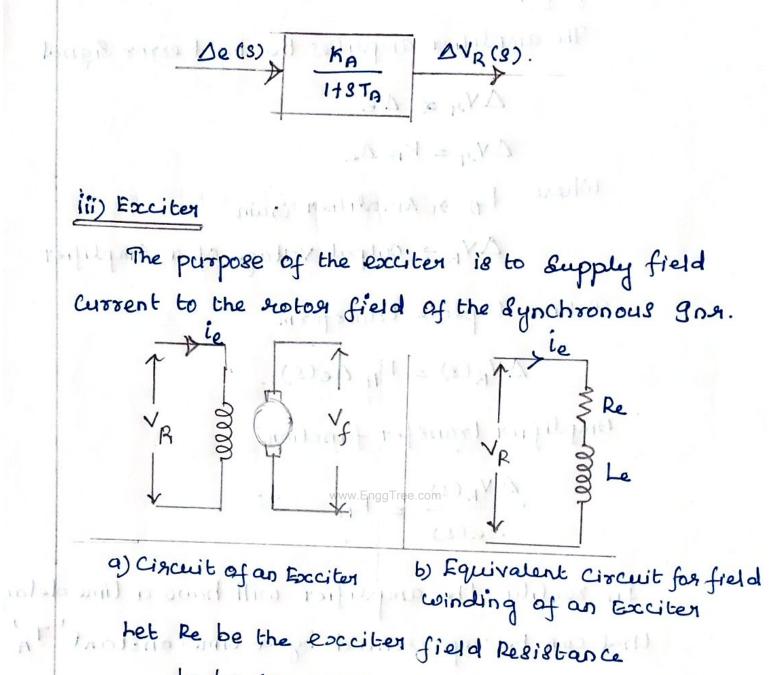
Willings of the generation and the mainter of the Downloaded from Anter Tree.com

2, Amplifier

11 ----

The amplifies amplifies the input error signal $\Delta V_{H} \propto \Delta e$ $\Delta V_{H} = K_{B} \Delta e$ Where $k_{B} \rightarrow Amplifier$ Usin $\Delta V_{R} \rightarrow Output$ Voltage of a Amplifier Paleing Caplace transform $\Delta V_{R}(s) = k_{B} \Delta e(s)$ Amplifier transfer function $\frac{\Delta V_{R}(s)}{\Delta e(s)} = wk_{R}$

ja labors off


In reality, the amplifier will have a time delay that can be represented by a time constant 'TA'

Therefore the modified Amplifer transfer function

$$\frac{\Delta V_{R}(s)}{\Delta e(s)} = \frac{k_{R}}{1+sT_{R}}$$
$$\Delta V_{R}(s) = \frac{k_{R}}{1+sT_{R}} \Delta e(s).$$
$$1+sT_{R}$$

Typical Value of KB are in the range of 10 to 400 and for TB is 0.02 to 0.1 Seconds. Downloaded from EnggTree.com The model of Amplifier le

A. Rey Lifer

Le be the exciter field Inductance.

From the equivalent Ciscuit

$$\Delta V_{R} = Re \Delta i_{e} + Le \stackrel{d}{=} (\Delta i_{e}) \rightarrow (1)$$

and
$$\Delta V_{f} \propto \Delta i_{e}$$

 $\Delta v_f = k_i \Delta i_e \rightarrow (2)$

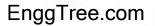
EnggTree.com Taking Laplace transform printer all 0> $\Delta V_{R}(s) = Re \Delta ie(s) + Le S \Delta ie(s)$ NY A $\Delta V_R(S) = \Delta i_e(S) [Re + LeS]$ The exciter bransfer function is VECS) KIDieCS) NUTS IST 1 3 $V_{\rm p}$ (s) Aie (s) [Re + Le S]V_R(s) Pettessing Allos (V) www.EngdThed.combocilines) all $\int du = \int \frac{\sqrt{F(s)}}{2} \int \frac{1}{2} \int$ $V_R(s) = \frac{1}{Re} \left(1 + \frac{Les}{Re}\right)$ $V_R(s)$ recs) kille V_R(s) I + Le S V where ke = ky/Re and Te = Le/Re ··· VF(s) ke VRCS) ItSTe.

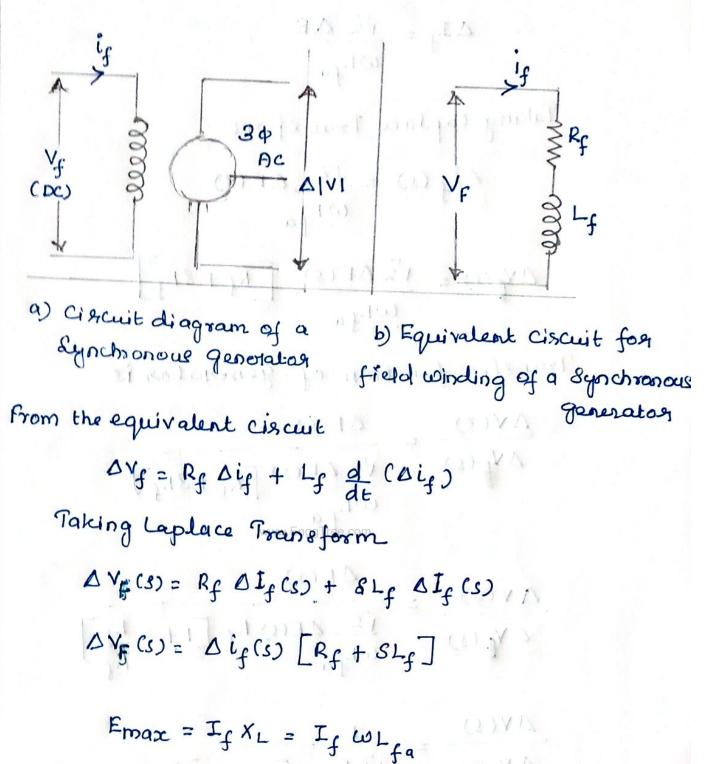
 $V_{F}(s) = \frac{ke}{\sqrt{R}(s)}$ Downlots from EnggTree.com

The model of annal and walked patholic

 $\Delta V_R(S)$ k_e $\Delta V_F(S)$ $1+ST_e$

iv) Synchronous Generator


Synchronous generator generators 30 Ac power at its terminals. The terminal voltage of the gnr is maintained Constant during its Varying Load, with the help of Excitation Systems.

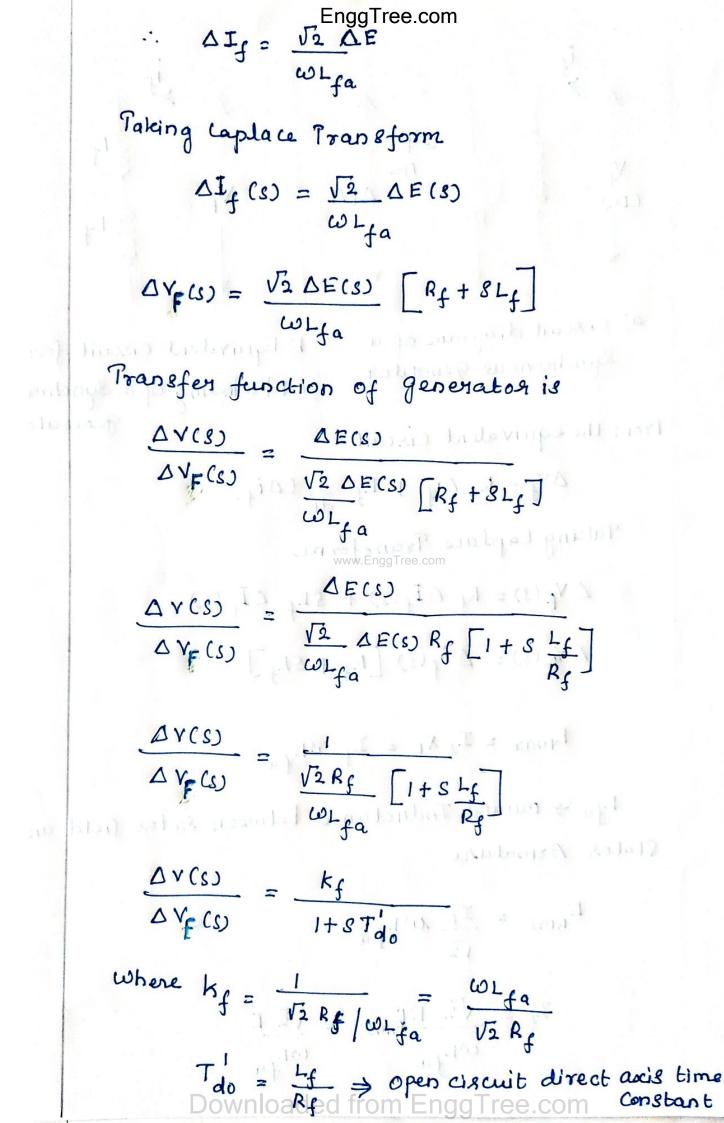

The terminal voltage (V) of the generator equals to difference b/w induced emf(E) and drop across the armature (Vdrop)

AV = DE - Vdrop At noload, the drop can be neglected the DV = DE

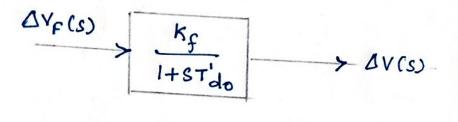
Taking Caplace transform

 $\Delta V(S) = \Delta E(S)$

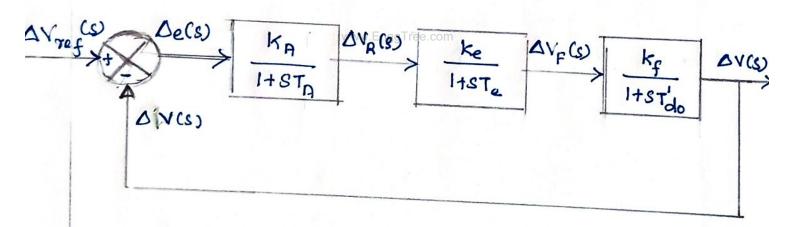
La > mutual Inductance between rotor field and Stator Armature


(3) X (3)

Jus del


$$E_{RMS} = \frac{I_f}{V_2} \omega L_{fa}$$

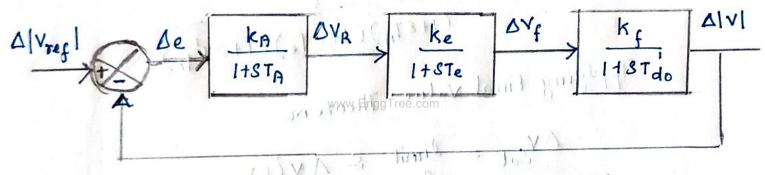
 $I_{f} = \frac{\sqrt{2} E}{\omega L_{fa}} = \frac{\sqrt{2} E}{\omega L_{fa}}$

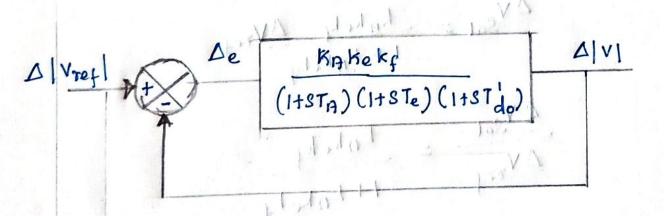

Downloaded from Engg free, com

EnggTree.com $\Delta v(s) = \frac{k_f}{1+s \tau'_{do}} \cdot \Delta v_f(s).$ The model of Synchronous generiator is

combining all the individual Blocks, we get the Closed loop model of AVR

Static Analysis of AVR loop.

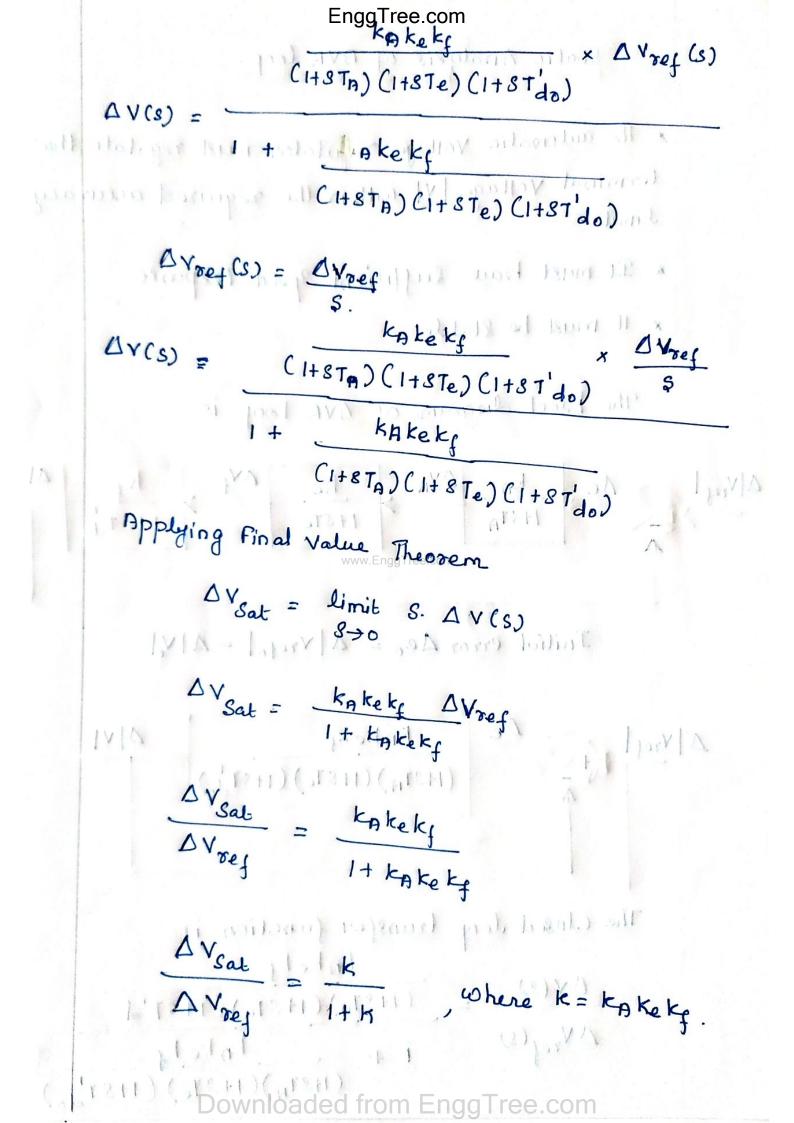

* The automatic voltage regulator must regulate the terminal voltage | V | with in the required accuracy limit.


2) V /V

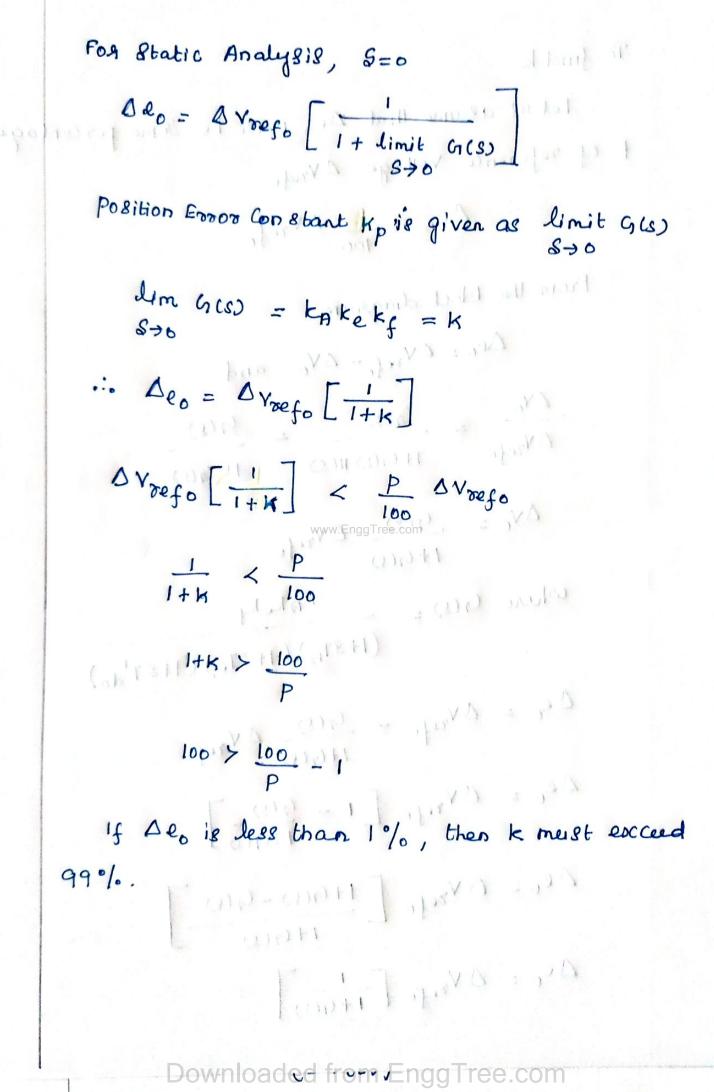
: (3)YL

- * It must have sufficient speed Response
- × It must be stable 1

The block diagram of AVR Loop is

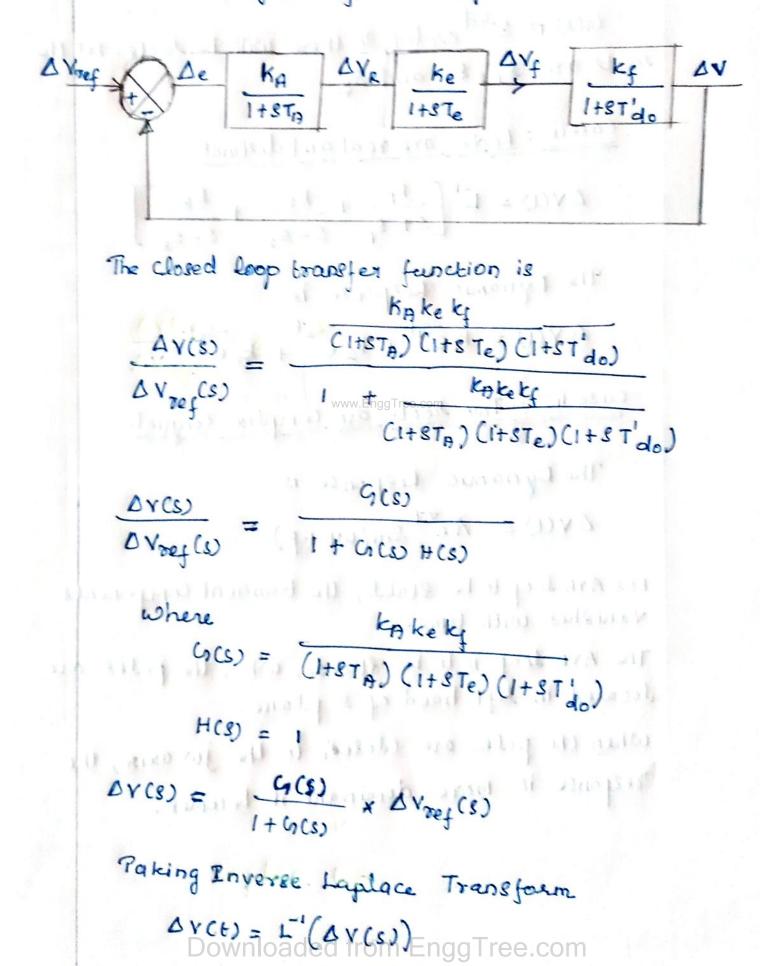


The closed loop transfer function is Kakekf 10.


 $DV(s) = (1+ST_A)(1+ST_e)(1+ST')$ $DV_{ref}(s) = 1 + k_B k_E k_f$

1+ ~

 $(1+sT_{B})(1+sT_{e})(1+sT_{d})$ Downloaded from Engg Tree.com


1 2 Signary South a Late with To find k Let us assume that DRO must be some percentage P of reference voltage 1 voots Deo < P DV rofo From the Block diagram Deo = AVrefo - AVo and $\frac{\Delta Y_0}{\Delta V_{refo}} = \frac{G(s)}{1+G(s)+(s)} = \frac{G(s)}{1+G(s)}$ 1+0,03 +(3) It GOSD VO $\Delta v_o = G(s) \dots E \Delta v_{refo}$ 1+GCS kakekg dHI where Cr(s) = (1+STA) (1+STe) (1+ST'do) $\Delta e_0 = \Delta v_{refo} - \frac{G(B)}{1+G(B)} \Delta v_{refo}$ $\Delta e_0 = \Delta v_{refo} \left[1 - \frac{G(s)}{1 + G(s)} \right]$. KPP $\Delta e_0 = O V_{Defo} \left[\frac{1 + G(cs) - G(cs)}{1 + G(cs)} \right]$ Deo = DV refo [1+G(S)]

Dynamic Analytis of AVR LOOP

The block diagram of AVR loop is

and kanally an laker in

The dynamic response depends upon the eigen Values (or) Closed loop pales, which are obtained from the Characteristic Equation 1+ (rs) = 0

GRED is 3rd order, So there will be roots. Let the roots are 5,052 and 53

Case(i): Roots are real and distinct

$$\Delta V(t) = \mathbf{L}' \left[\frac{k_1}{s-s_1} + \frac{k_2}{s-s_2} + \frac{k_3}{s-s_3} \right]$$

The Dynamic Response is $\Delta V(t) = k_1 e^{-s_1 t} + k_2 e^{-s_2 t} + k_3 e^{-s_8 t}$

Case ii) : Two roots are complex Conjuste

The Dynamic Response is $\Delta V(t) = Ae^{-t} Sin(wt + \beta)^{-1}$

FOG AVR loop to be Stable, the transient Components Nanishes with time. The AVR loop 18 to be Stable, when the poles are located in left hand of S plane. When the pales are closer to the jw axis, the response 18 more dominant it becomes.

Generation and Absorption of Reactive Power

Synchronous Generator

Synchronous generators can generate (or) absorb Reactive power. Reactive power (Q) is dupplied by Synchronous generator depending upon the Short Circuit statio (SCR)

An averexcited Synchronous machine operating on noload Condition generates reactive power.

An underexcited Synchronous machine absorbs reactive power. www.EnggTree.com

Shint Capacitors

It offers cheapest mean of reactive power Supply. Shunt Reactors

It offers the cheapest mean of Reactive Power absorption and these are connected in the transmission line during light load condition.

Trapsformers A AVISI

Transformer always absorb reactive power regardless of their loading.

EnggTree.com Pt pedend & shund magnetising washance effect is Prodominant et dulldend : Armes dealogs inductance effect is Fredominant For reactance Np = Antual X ... Detual X Prov Value VII Petual X = XT V = XT KV X1000 to be a white The solution with the present of the short advant will back of antibast backed X = XT X KV x V3 KV X 1000 www.Enggnee.com $X = \sqrt{3} X_T \frac{(kv)^2}{kvp} \times 1000 \text{ mills}$ Reactive power closs or absorbed QT Q1 = \$ |I| × VS XT (KV) × 1000 Deeper to an extended by KVA $= 3 \left(\frac{k_{NR}}{v_{S,k_{V}}}\right)^{2} \sqrt{3} X_{T} \left(\frac{k_{V}}{k_{NR}}\right)^{2} \times 1000$ Q = JS(kva) JS XT kv2 x1000 kv2 kvn2 Constant Average GT = VS AND XT 1000 VAR DownloadetNino & Ekygnree.com

where EnggTree.com

I-current in amps flowing through the tfo X - Transformer reactance | phase.

Cables

Cables generate more reactive power than transmission lines because the cables have high Capacitance.

Overhead lines

Transmission lines are considered as generating les KVAR in their Shunt Capacitance and consuming KVAR in their Series Inductance.

The inductive KVBR Varies with the line Curren Whereas, the Capacitive KVBR Varies with the System potential.

Consider transmission line be loaded such that load current be I' amperes and load Voitage 'V' Voits.

U Manda De Constant I V' voits

If we assume the transmission line to be lossless, the reactive power absorbed by the line Downloaded from EnggTree.com

will be

$$\Delta Q_{L} = |I|^{2} x_{L}$$
$$= |I|^{2} \omega_{L}$$

Due to the Capacitance of the line, the reactive Power generated by the line will be

$$\Delta Q_{c} = \frac{|v|^{2}}{x_{c}} = \frac{|v|^{2}}{|\omega c|^{2}} = \frac{|v|^{2}}{|\omega c|^{2}}$$

 $\frac{Case(i)}{|II|^2} : 1f \quad \Delta Q_L = \Delta Q_C \quad \text{(a)} \quad \text{(a$

 $\frac{|V|}{|V|} = \frac{|V|}{|V|} =$

And block Znei Vanissinaanst robrand Hat had sample "I' I have built hall

$$|z_n|^2 = \frac{L}{c}$$

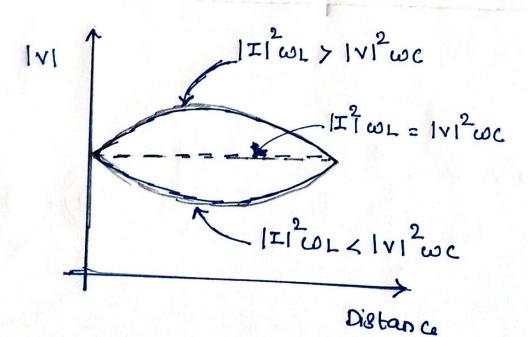
 $Z_n = \int \frac{L}{C} \Rightarrow Surge impedance of the$

line.

Hor. V

A line is Said to be openating at its Surge impedance loading. When it is terminated by a Downloaded from EnggTree.com EnggTree.com Resistance equal to its Lurge impedance. The power transmitted under this condition is called natural (or) furge power

In general, P = [Ellv] Ling x


 $Bt d= 90^{\circ}, P_{max} = \underbrace{|E||v|}_{x}$

By Varying X, 8, 11, we ge can get the Control power transfer.

Case ii: A QUL > A QUC

[I] 20L> 1V1200C

Here the line 18 loaded below Zn (ie) light loaded condition. The net effect of the line will be absorbed reactive power.

Case iii : Darch Darc

1I12002 > 1V1200C

Itere the line is loaded above Zn ie) Iteawy load condition. The net effect of the line will be generation of Reactive power.

Load

Loads absorbs Reactive power. Load change occurs depending on the day, session and weather Conditions.

Both active and reactive power of the Composite loads vary with the magnitudes of Voltages. Loads operating at low power factor gives Voltage drop in the line and is uneconomical. So the Industrial Consumers improve the power factor Using Shunt Capacitors.

IVI

Downloaded from EnggTree.com

A ...

Julion & Ivline

Jea IVISINI LIVI COC

notive infer

Dau/set

EnggTree.com

Stability Compensation

The block diagram of AVR loop is

EnggTree.com Stability compensation The block diagram of AVR loop is Ovref (s) Market Diagram Of AVR loop is Narket Diagram Of A

The open loop transfer function of AVE Loop is given by $\frac{\Delta V(s)}{\Delta V_{ref}(s)} = \frac{k_{B} k_{e} k_{s}}{(1+sT_{B})(1+sT_{e})(1+sT_{d})}$ Number of zeros = 0 Number of poles = 3. They are $-\frac{1}{T}$, $-\frac{1}{T_{e}}$

and
$$\frac{-1}{T'_{do}}$$

 $\frac{-1}{T'_{do}} > \frac{-1}{T_e} > \frac{1}{T_A}$
No: of Rook Locus (N) = 3
N= P, If P>Z
N=Z, If PLZ.

Root locus path excists on a point on the real axis, If there is odd number of placed on the righthand side of this point.

Asymptode angle gives the direction of the poles travel on the splane, cohen gain increased.

Angle of Asymptode @ 18 given by

$$Q^{\circ} = \frac{(2q+1)\pi}{P-2}$$
, where $q=0,1,...(P-2-1)$
 $q=0,1...(3-0-1)$

9=0,1,2

when q=0, $a=\frac{\pi}{3}$

$$q=1$$
, $a^{\circ}=\frac{8\pi}{3}=\pi$

$$\gamma = 2$$
; $\alpha_{\text{WV}} = \frac{5}{3} \cdot \frac{5}{4} \cdot \frac{5}{10}$

By increasing the loop gain, the open loop pole. S3 moves towards the left hand of the S plane. Not the poles S2 and S1 moves in opposite direction and at a point Collide each other and travels towards the Right hand Side of the S plane. This makes the System become Unstable.

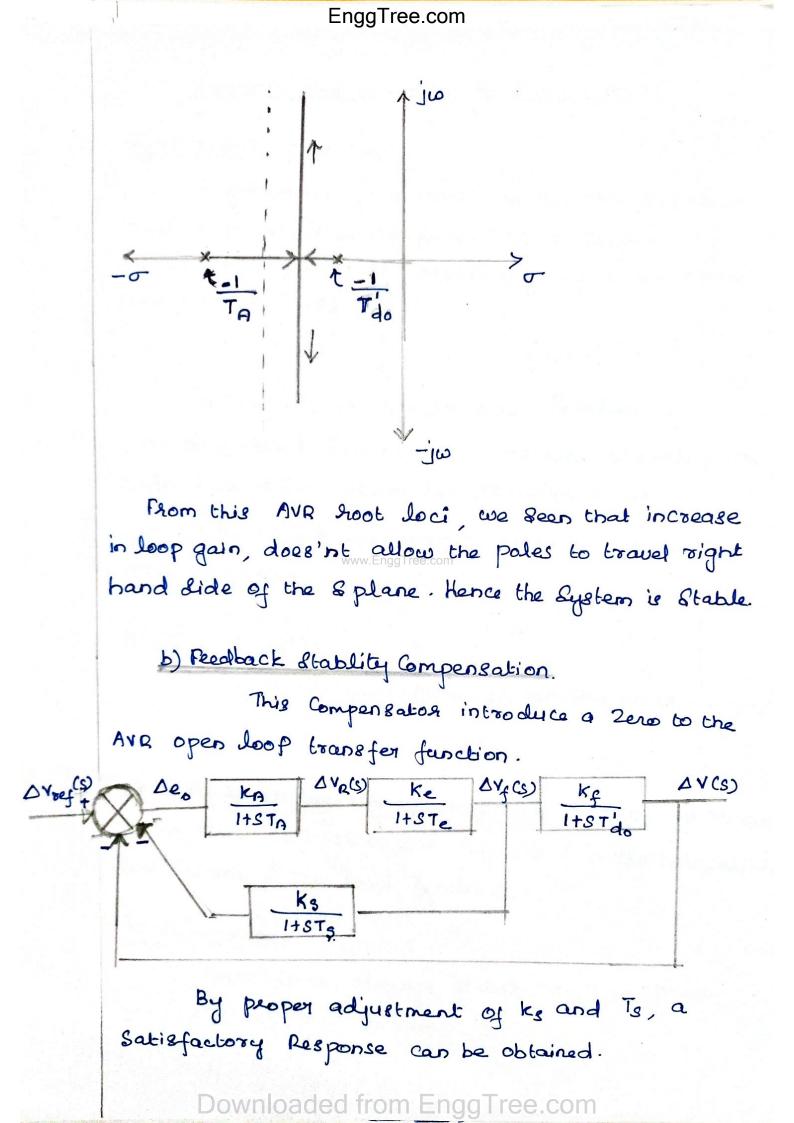
Therefore to improves the dynamic response characteristics without affecting the Static loop gain, we go for stability compensation methods. 9) Series compensation

b) Feedback Stablity Compensation.

9) Series compensation

In this method, the Stablity is improved by adding a Series phase lead compensation. Transfer function of Series compensator is $CT_{g} = 1 + ST_{c}$

Deo ItST_c K_B DV_R(s) K_e DV_f(s) K_f DV(s) ItST_c ItST_B ItST_e ItST_d


The open loop transfert function for above Series Stablity Compensation AVR loop is given by KAKEKS (1+STC) (1+STA)(1+STC)(1+STC)

$$G(s) = \frac{k_{B}k_{e}k_{f}}{C_{1+S}T_{B}C_{1+S}T_{do}}$$

Number of Zeros = 0 Number of poles = 2, They are $-\frac{1}{T_{A}}$, $-\frac{1}{T'_{AO}}$ $-\frac{1}{T'_{AO}} > -\frac{1}{T'_{AO}}$

Number of Poot Locus $\pm N$ = 2. Angle of Asybaptode $Q = \frac{(2q+1)\overline{n}}{P-2}$, where $q = 0, 1, 2 \dots (P-Z-1)$. $q = 0, \dots (2-0-1)$ q = 0, 1

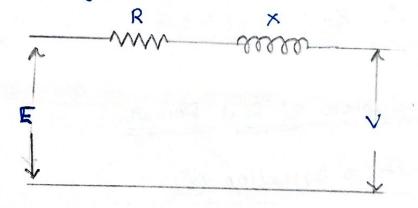
when
$$q=0$$
, $a = (2x0+1)\overline{\Lambda} = \overline{\Lambda}/2$
 $q=1$, $a = (2x1+1)\overline{\Lambda} = \frac{3\overline{\Lambda}}{2}$

Relation between Voltage, Power and Reactive Power at a

Node

The phase voltage 'v' at a node is a function of real and Reactive power at a node is given by

V = f(P, Q)


Differentiating

dv=	DV di	b +	VG	da.
	DP		Da	

dr= dp + da -> 1)

The change in Voltage at a node is defined by <u>JP</u> and Darlor

Considera Short transmission line with series impedance R+jx

E=V+IZ

E = V + I(R+jx) $\vec{I} = \vec{s} = P - j Q$

EnggTree.com $E = V + \left(\frac{P - jQ_0}{V}\right)R + jX$ The change in voltage is DV $\Delta V = \mathbf{E} - \mathbf{V}$ $\mathbf{E} - \mathbf{V} = \mathbf{V} + (\mathbf{P} - \mathbf{j} \mathbf{\omega}) \mathbf{R} + \mathbf{j} \mathbf{x} - \mathbf{V}$ E-V = (P+ja)(R+jx) $E-V = \frac{PR+jPX-jQR+QX}{V}$ E-V = PR+Qx + j(PX-QR) www.EnggTree.cov (<u>Pr-Qx</u>) is very small, so it may be neglected) · E-V= PR+QX \rightarrow 2 Calculation of Real Power From Equation 2 PR+QX = (E-V)V $PR = (E - v)v - Q_{iX}$ $P = (E - v)v - Q_{IX}$ Downloaded from EnggTree.com

of 10-15 MVBR/KV.

The quantity de can be determined by using a network analyzer by the injection of a known quantity of VAR (leactive power) at the node and measuring the difference in Voltage produced at that node.

If the three phases at the receiving end are Short circuited, E=V

From Equation (2)

 $\frac{\partial Q}{\partial V} = \frac{E - 2\sqrt{E_{W.EnggTree.}}}{X} = Short Ciscuit Current$

and Sign decides the nature of the reactive power (absorbed or generated)

Substitute the equations (3) and (4) in Equation (1)

$$dv = \frac{dp}{(E-2v)/R} + \frac{da}{(E-2v)/a}$$

dv = Rdp + Qida, E-av + E-2v

Rdp+Qrdq = 0

EnggTree.com

$$P = \frac{EV - W}{R} - \frac{Q}{R} = \frac{EV}{R} - \frac{V}{R} - \frac{Q}{R}$$
Pratially differentiating P with respect to V

$$\frac{\partial P}{\partial U} = \frac{E}{R} - \frac{RV}{R} - 0$$

$$\frac{\partial P}{\partial V} = \frac{G-2V}{R} \longrightarrow 3$$
Calculation of Reactive Power
From Equation (2)

$$\frac{WWE}{R} \longrightarrow 3$$

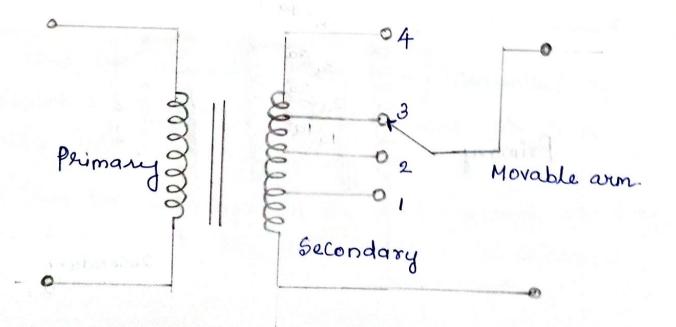
$$\frac{Q}{R} = (E-V)V - PR$$

$$Q_{X} = \frac{EV}{X} - \frac{V^{2}}{X} - \frac{PR}{X}$$
Partially differentiating Q with respect to V

$$\frac{\partial Q_{Y}}{\partial V} = \frac{E}{X} - \frac{2V}{X} - 0$$

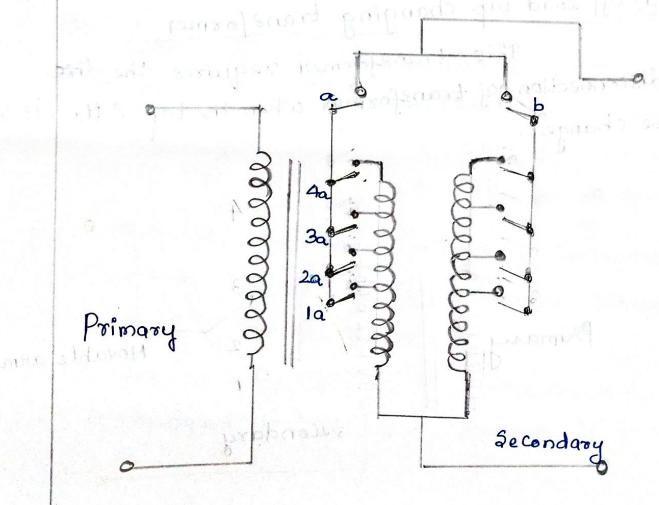
$$\frac{\partial Q_{Y}}{\partial V} = \frac{E}{X} - \frac{2V}{X} - 0$$

$$\frac{\partial Q_{Y}}{\partial V} = \frac{E}{X} - \frac{2V}{X} - 0$$


$$\frac{\partial Q_{Y}}{\partial V} = \frac{E}{X} - \frac{2V}{X} - 0$$

$$\frac{\partial Q_{Y}}{\partial V} = \frac{E}{X} - \frac{2V}{X} - 0$$

Pap Changing Transformer,


The voltage drop in the transmission line is Supplied by changing the secondary emp of the Tap changing Transformer. In this transformer, a number of tappings are provided on the Secondary Side. Dased on the position of the tap, the effective number of decondary turns are varied and hence the autput voltage of the secondary can be changed. There are two types of tap changing transformer a) off load tap changing transformer b) on load tap changing transformer (OLTC) a) off load tap changing transformer This transformer requires the diff.

disconnection of transformer when the tap setting is to be changed.

when the movable arm makes contact with Studi, the Secondary Voltage is minimum and when with Stud 5, the Secondary Voltage is maximum. During the period of light load, the Voltage across the primary is not much below the alternator Voltage and the movable arm is placed on Studi when the load increases, the Voltage across the primary drops, but the Secondary Voltage can be kept at previous value by placing the moreble arm to a higher stud.

This transformer doesn't requires the d disconnection of transformer, when tap setting is to changed.

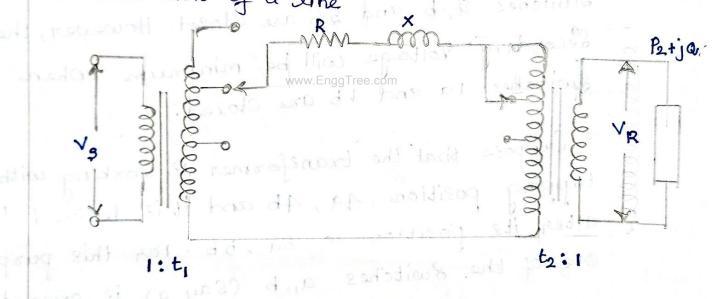
In this method, the decondary consists of two equal parallel Voltage windings which have similiar tappings 1a...5a and 1b...5b

In normal working Conditions, Switches a, b and tappings with the same number remain Closed and each Secondary winding Carries one half of the total Current.

The Secondary Voltage Will be maximum, when Switches 5 a and 56 are Closed. However, the Secondary Voltage Will be minimum when Switches 1a and 15 are closed.

Suppose that the transformer is working with tapping position 49,46 and it is desired to alter its position to 59,56. For this purpose one of the Switches a, b (Say a) is openedd.

Now the Secondary winding controlled by Switch & carries the total current which is twice its rated capacity


Then the tappings on the disconnected winding is changed to 5a and switch a' is closed.

After this, Switch b' is opened to disconnect the winding, tapping position on this winding is Changed to 5b and then Switch b' is closed.

In this way, tapping position is changed without interrupting the supply.

System Level Control Using Generator Voltage Magnitude Setting

Let us consider the tap changing transformer at both ends of a line

Let t, , t2 be the fraction of nominal transformation Platio ie) <u>tap Platio</u> Nominal Value

The actual voltages will be t, V, and t2 V3

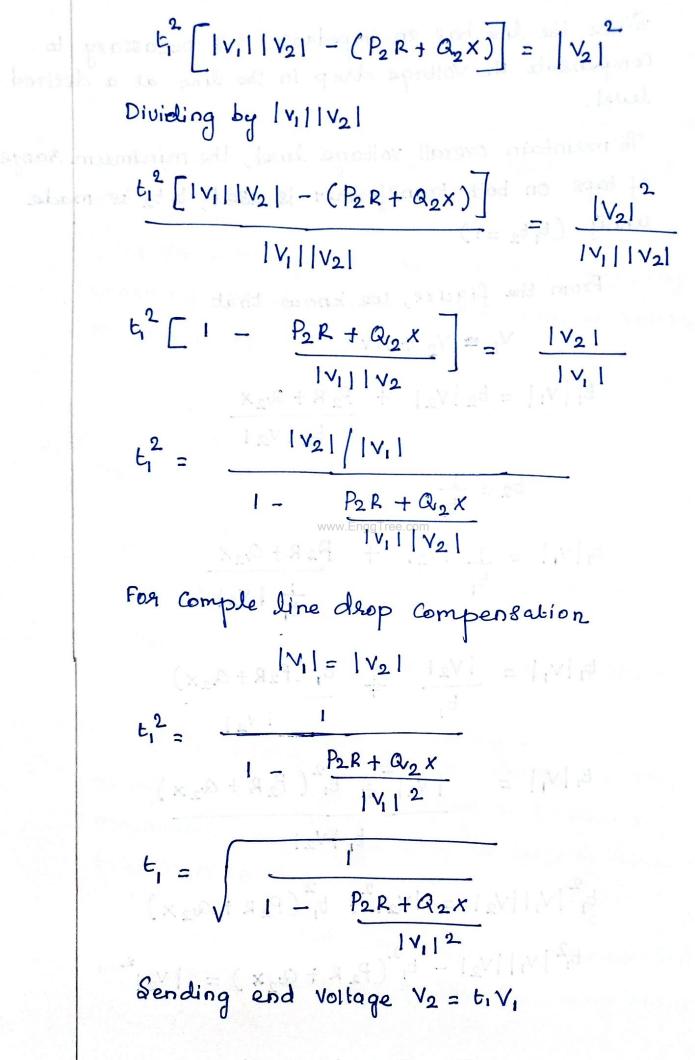
2

0

Since the line has an impedance. It is necassary to compensate the Voltage drop in the line at a desired level.

To maintain overall voltage level, the minimum range of taps on both transformer is used, $t_1 t_2$ is made unity $(t_1 t_2 = 1)$

From the figure, we know that $V_1 \neq V_2 + \Delta V$ $t_1 |V_1| = t_2 |V_2| + \frac{P_2 R + Q_{V_2} X}{t_2 |V_2|}$ $t_2 = \frac{1}{t_1}$ www.EnggTree.com


 $t_1 |v_1| = \frac{1}{t_1} |v_2| + \frac{P_2 R + Q_2 x}{\frac{1}{t_1} |v_2|}$

 $t_1 |v_1| = \frac{|v_2|}{t_1} + \frac{t_1(P_2R + Q_2x)}{|v_2|}$

 $t_{1}|V_{1}| = \frac{|V_{2}|^{2} + t_{1}^{2}(P_{2}R + Q_{2}x)}{t_{1}|V_{2}|}$

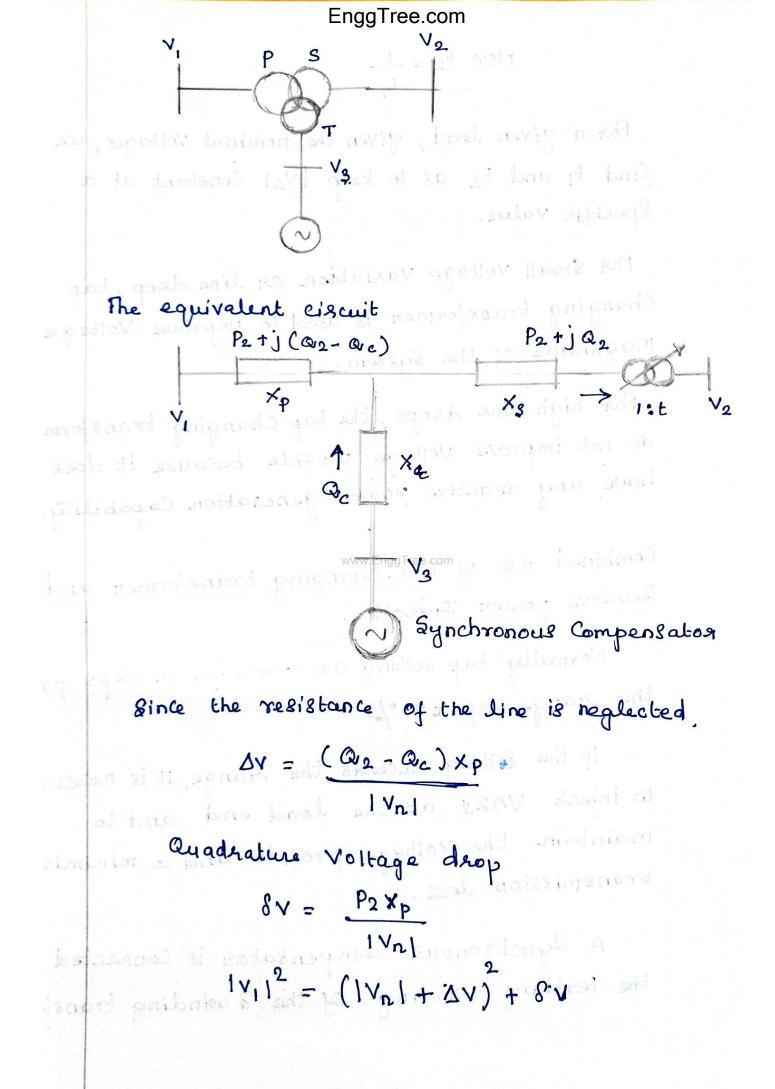
 $t_1^2 |V_1| |V_2| = |V_2|^2 + t_1^2 (P_2 R + Q_2 X)$

$$t_1^2 |V_1| |V_2| - t_1^2 (P_2 R + Q_2 x) = |V_2|^2$$

Now $t_2 = \frac{1}{t_1}$

For a given load, given the nominal voltages, we can find to and to as to keep 121 Constant at a Specific value.

FOA Small Voltage Variation ON line deup, tap Changing transformer is used to improve Voltage Magnitude of the System.


For high line drops, the tap changing transformer do not improve Voltage profile because it does not have any reactive power generation capability.

Combined use of Tap-Changing transformer and Reactive power Injection.

Normally tap setting are provided in steps for the range of ± 20%

If the Setting exceeds the trange, It is necessary to inject VARS at the load end and to maintain the voltage profile and to minimize transmission loss.

A Synchronous compensator is connected to the tertiary winding of the 2 winding transformer Downloaded from EnggTree.com

EnggTree.com $|v_1|^2 = \left[|v_n| + \left(\frac{Q_2 - Q_{1c}}{V_n}\right) \times P \right] + \left[\frac{P_2 \times P}{|v_n|} \right]$ $|v_{1}|^{2} = \left[\frac{|v_{n}|^{2} + (a_{2} - a_{c})x_{p}}{|v_{n}|} + \left[\frac{P_{2}x_{p}}{|v_{n}|}\right]^{2}\right]$ $|v_{1}|^{2} = (|v_{1}|^{2} + (Q_{2} - Q_{c})x_{p})^{2} + (P_{2}x_{p})^{2}$ $|v_{1}|^{2}$ $|v_1|^2 |v_n|^2 = |v_n|^4 + ((a_2 - a_c)x_p)^2 + 2|v_n|^2 (a_2 - a_c)x_p$ $+(P_2 x_p)^2$ Solving the above equation, we get | Vn | We can find out off nominal tap setting t, $t = \frac{|V_2|}{|V_n|}$

STATCOM - Secondary Voltage Control (Static compensator)

The STATCOM is a Shunt connected reactive-power compensation device that is capable of generating and absorbing Reactive power and in which the output can be varied to control the specific parameters of an electric power system.

The STATCON has the following components.

1) Voltage Lource Convertige (VSC)

an Ac output Voltage. The following two types of VST are

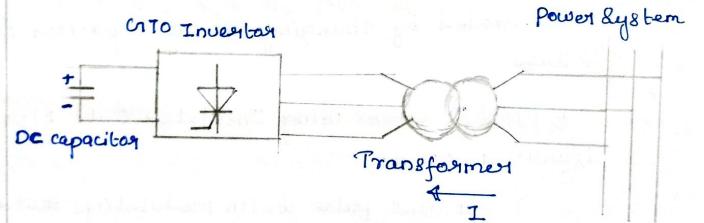
a) Square wave Invegtors Using Gate Turn off Thy sistors (GITO)

In this type of vsc, output AC voltage is controlled by changing the DC Capaciton input Voltage.

b) PWM Inverters Using Insulated Crate Bipolar Transistors (ICIBT)

It uses pulse width modulation technique to create a AC voltage from a DC voltage Source. In this method, Variable AC output Voltage is obtained by Changing the modulation index of the PWM modulator.

2) DC capacitog


De capacitor is used to Supply Constant De Voltage to the Voltage Source Converter (VSC).

3) Inductive Reactance

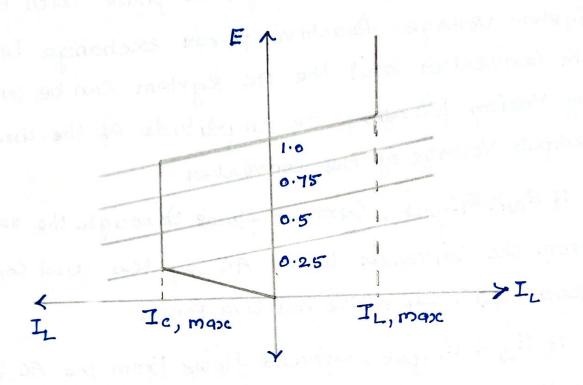
A transfoormer is connected blue the cutput of VSC and Power System. Transformer basically act as a coupling medium. Transformer neutralise hormonics contained in the Square waves produced by VSC

4) Haymonic filter

Hagmonic filter attenuates the harmonics and other high frequency components due to the VSC

The operating is like a synchronous Condensor. It is a 30 Invertor that is driven from the Voltage across the capacitor. VSC is coupled to

Cigauit through a transformer which provides the Safe operating Voltage and Small Reactance. An inverter generates three phase Voltages in phase with the Ac System Voltage. Reactive power exchange between the converter and the Ac System can be controlled by Varing Varying the emplitude of the three phase output Voltage of the Converter


If Ear Einput, Current flows through the reactance from the Converter to the AC System and Converter generates capacitive Reactive Power

If Eq. < Einput, Current flows from the AC System to the converter and the converter absorbs Induction reactive power

If Ea = Einput, the reactive power exchange become zero and the STATCOM is in floating state.

The current logs of the inverter voltage is less than the System Voltage and leads if the System Voltage is greater than the System Voltage. Therefore the STATCOM provides Continously Controlled reactive power generation and absorption by means of electronic processing of Voltage and Current waveform in Voltage Source Converter (VSC).

The typical V-I characteristics of a STATCOM is

From the Curre www.EnggTree.com

* The Statcom Can Supply both Capacitive and inductive Compensation.

* It controls the output Current (Icimax and IL, max)

* It gives full output of Capacitive generation independently of Lystem Voltage.

Advantages of STATCOM

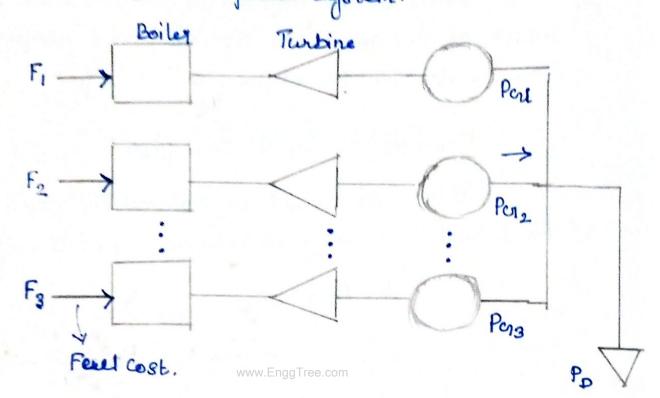
i) Compact design ii) Low harmonic noise

iii) Low Magnetic Impacts.

EE3602 - POWER SYSTEM OPERATION AND

CONTROL UNIT IV

ECONOMIC OPERATION OF POWER SYSTEM


Statement of economic dispatch problem - input and output characteristics of thermal plant - incremental cost curve - optimal operation of thermal units without and with transmission losses (no derivation of transmission loss coefficients) - base point and participation factors method - statement of unit commitment (UC) problem - constraints on UC problem – solution of UC problem using priority list – special aspects of short term and long term hydrothermal problems.

www.EnggTree.com

Prepared by Dr.T.Dharma Raj, Associate Professor / EEE V V College of Engineering

Economic Load Dispatch.

The purpose of Economic dispatch is to reduce the fuel costs for the power System.

Consider a System Consisting of N' Thermal generating units are connected to a single bus bar Supplying a load PD

Input to each unit is expressed in terms of Cost sate F. (Pori). Therefore total cost state is the Sum of the cost state of individual units.

$$F_T = \sum_{i=1}^{N} F_i(P_{ni})$$

Neglecting transmission lasses, total generating power should meet the total load. Hence the

equality Constraint is

$$\sum_{i=1}^{N} P_{O_{i}i} = P_{O}$$

Based on the maximum and minimum power limits of the generator, the following inequality Constraints Can be expressed as

This constrained optimization problem can be solved by using Lagrange multiplier method. $H = F_T + \lambda \phi$

where
$$\phi = P_D - \Xi P_{Ci}$$

www.EnggTree.com
 $H = \sum_{l=1}^{N} F_i(P_{Ci}) + \lambda \left[P_D - \Xi P_{Ci} \right]$

To find the necessary condition for fuel 686 (FT) is to be minimum, "take the derivative of Lagrangian multiplier and Equate it to Zero

$$\frac{\partial H}{\partial P_{CN}} = \frac{\partial \left[F_{i}(P_{CN}) + \lambda \left[P_{D} - \frac{\delta}{\xi} + P_{CN}\right]\right]}{\partial P_{CN}} = 0$$

$$\frac{\partial H}{\partial P_{\text{crit}}} = \frac{\partial F_{i}}{\partial P_{\text{crit}}} + 0 - \lambda = 0$$

 $\frac{\partial F_i}{\partial P_{Crit}} = \lambda , \quad i = 1, 2, 3, \dots N$

 $\frac{\partial F_1}{\partial P_{01}} = \frac{\partial F_2}{\partial P_{02}} = \frac{\partial F_n}{\partial P_{01}} = \lambda$

This equation is Called as Coordination Equation without loss.

To minimise the fuel cost, the increases ary. Condition is to have all the incremental fuel cost are same.

Analytical Solution of Aree.com

The fuel cost characteristics of all generators are expressed as

 $F_i = a_i^2 P_{cri}^2 + b_i^2 P_{cri} + c_i$

G= 1, 2, ... N

$$\frac{\partial F_i}{\partial P_{\text{cri}}} = \lambda = 2 q_i P_{\text{cri}} + b_i$$

$$P_{\alpha i} = \frac{\lambda - bi}{2 a_i}$$

From power balance Equation N E Peri = Pp

EnggTree.com $\sum_{i=1}^{N} \frac{\lambda - b_i}{2a_i} = P_p$ N $\sum_{i=1}^{N} \frac{N}{2ai} - \sum_{i=1}^{N} \frac{bi}{2ai} = P_{D}$ $\sum_{i=1}^{N} \frac{\lambda}{2\alpha i} = P_{p} + \sum_{i=1}^{N} \frac{b_{i}}{2\alpha_{i}}$ $\lambda \stackrel{N}{\leq} \frac{1}{2ai} = P_{D} + \stackrel{N}{\leq} \frac{bi}{2ai}$ i=1 $aai = P_{D} + \frac{bi}{l=1} = 2ai$ $\lambda = \frac{P_{D} + \frac{S}{i=1} \frac{b_{i}}{2a_{i}}}{\frac{N}{2a_{i}}}$

The fuel cost of two units are given by

$$F_{1} = 1.6 + 25 P_{01} + 0.1 P_{01}^{2} R_{8} | m_{7}.$$

$$F_{2} = 2.1 + 32 P_{02} + 0.1 P_{02}^{2} R_{8} | m_{7}.$$

If the total demand on the generations is 250 MND. Find the economic load Scheduling of the two units. Solution

The condition for economic operating Schedule is $\frac{\partial F_{i}}{\partial P_{Cri}} = \lambda \quad (\text{withouloss})$

Here there are two top conits, therefore above equation is modified. EggTree.com

$$\frac{\partial F_1}{\partial P_{C_{12}}} = \frac{\partial F_2}{\partial P_{C_{12}}} = \lambda \quad \rightarrow (1)$$

 $\frac{\partial F_{1}}{\partial P_{C_{1}}} = 0 + 25 + 2 \times 0.1 P_{C_{1}} = 25 + 0.2 P_{C_{1}}$

 $\frac{\partial F_2}{\partial P_{012}} = 0 + 32 + 2 \times 0.1 P_{012} = 32 + 0.2 P_{012}$

From Equation (1)

25+0.2 Pa, = 32 +0.2 Paz

 $0.2P_{G_1} - 0.2P_{G_2} = 32 - 25$ Downloaded from EnggTree.com

Given, those 2 units will going to share the load 250 MW. Therefore we can write the equation $P_{G_1} + P_{G_2} = 250 \rightarrow \textcircled{3}$ Solving Equations (2) and (3) $P_{G_1} = 142.5 \text{ MW}$ $P_{G_2} = 107.5 \text{ MW}$

www.EnggTree.com

The fuel inputs per house of plants 1 and 2 are given as

F1 = 0.2 Pai + 40 Pai + 120 Rs/ha

F2=0.25 Pm2 + 30 Pu2 + 150 Rs/ha

Calculate the economic operating Schedule and the Corresponding Cost of generation. The maximum and the minimum loading on each onit are 100 mw and 25 MW. Assume the transmission losses are ignored and the total demand is 180 mw. Also determine the Sawing obtained if the load is equally shared by both the Units?

Solution

For economic operating dehedelle, the necessary Condition exists is

$$\frac{\partial F_i}{\partial P_{C_i}} = \lambda$$

For a units, $\frac{\partial F_1}{\partial P_{cn_1}} = \frac{\partial F_2}{\partial P_{on_R}} = \lambda \rightarrow 1$

 $\frac{\partial F_i}{\partial P_{c_i}} = 2 \times 0.2 P_{c_i} + 40 = 0.4 P_{c_i} + 40$

 $\frac{\partial F_2}{\partial P_{0_2}} = 2x0.25 P_{0_2} + 30 = 0.5 P_{0_2} + 30$

From Equation

 $0.4 P_{01} + 40 = 0.5 P_{02} + 30 = \lambda$ Downloaded from EnggTree.com

0.4 Pm, +40 = 0.5 Puz + 30

$$0.4P_{01} - 0.5P_{02} = 30 - 40$$

$$0.4 Po_1 - 0.5 Po_2 = -10 \rightarrow 2$$

Given, the Unite will share a load of 180 MW, Therefore we can write the equation

$$P_{c_1} + P_{c_2} = 180 \rightarrow 3$$

Solving Equations (1) and (3), we get Pay and Paz Feom Equation 3 Poy = 180 - Poy > A

From Equation (2)

$$0 \cdot 4 (180 - 9 \cdot n_2) = 0 \cdot 5 P \cdot n_2 = -10$$

$$78 - 0 \cdot 4 P \cdot n_2 - 0 \cdot 5 P \cdot n_2 = -10$$

$$-0 \cdot 9 P \cdot n_2 = -10 - 72$$

$$-0 \cdot 9 P \cdot n_2 = -82$$

$$P \cdot n_2 = -82$$

From Equation (2)

Pay = 88.889 MW

The total fiel cost of the 2 units are $F_T = F_1 + F_2 \rightarrow (5)$ F (PC1 = 88.889 mw) = 0.2 × 88.889 + 40×88.889 + 120 F1 = 5255.811 R8 ha F3 (PC12 = 91.11 MN) = 0.25×91.1112+30×91.111+150 F2 = 4958.634 Rs hay From Equation (5) The total fuel cost when (Pay = 88.889 mw and Paz = 91.11mw) is equal to \$\$ 10,214.445 Rs ha is when load is shared equally by both units $P_{C_1} = P_{C_12} = \frac{180}{2} = 90 \text{ MW}$ F, (Pan = 90 MW) = 0.2 x 902 + 40 x 90 + 120 = 5340 kg/hs. $F_2(P_{42}=90\,m\omega)=0.25\times90^2+30\times90+150$ = 4875 RS Ng From Equation 5 The total fevel cost when (Pay=gomes and Phz = 90 MW) is equal to 10215 Rg/hg Therefore net lawing = !0215 - 10214.445 Net Saving = 0.555 kg/mg

Solution by A iteration method without loss (computer

Approach)

Case i : Operating limits for power generation are not Specified Step 1 : Calculate & by Using

1: Calculate
$$\lambda$$
 by using
 $P_{D} + \frac{N}{2a_{i}} + \frac{N}{2a_{i}}$
 $\lambda = \frac{N}{\frac{1}{2a_{i}}} + \frac{1}{2a_{i}}$

Step 2 : Compute Pori

$$P_{cri} = \frac{\lambda - b_i}{2a_i}$$

Step 3 : Check the "Power balance Equation N

$$\sum_{i=1}^{\infty} P_{cri} = P_{D}$$

The power balance Equation is statisfied, then optimum Solution is obtained, Otherwise go to next step.

2

A= A - A , and go to dtep 2

Case it : Operating limits for power generation are given

Step 1: Compute λ using the equation $P_0 + \frac{b}{2a_1}$ $n = \frac{N}{\sum_{i=1}^{N} \frac{b}{2a_i}}$ $E = \frac{1}{\sum_{i=1}^{N} 2a_i}$

Step 2 : Compute Pcri

$$P_{cri} = \frac{\lambda - bi}{2ai}$$

Step 3 : Check if Computed Poi Batisfying the Operating limits

www.EnggTree.com

$$P_{cri}, \min \leq P_{cri} \leq P_{cri}, \max$$
 $i = 1, 2, \dots$ N

Step4: If Pay Violates the operating limits. Then fix

Steps: compute Anew and and Pai for remaining units. Drew = Pocnew) + & bi 2ai ≥ <u>1</u> 2ai Peri = new - bi 2ai Step7: Check whether the optimality Condition is Statisfied d Fi (Peri) = >new for Peri, min ≤ Peri ≤ Peri, max d Fi (Pui) < Now EnggTree.com d Pai < new for Pai = Pai, max dri(Pari) > Anew for Pari = Pari, min

If the Condition is Statisfied, then Stop. Otherwoise release the generation Schedule of those units not statisfying optimality Condition.

The fuel coet functions for three thermal plants in \$ /h are given by

 $F_{1} = 0.004 P_{cy}^{2} + 5.3 P_{cy} + 500$ $F_{2} = 0.006 P_{02}^{2} + 5.5 P_{02} + 400$ $F_{3} = 0.009 P_{03}^{2} + 5.8 P_{03} + 200, \text{ where}$ $P_{01}, P_{02} \text{ and } P_{013} \text{ are in MN}.$

Find the optimal dispatch and the total Cost when the total load is 925 MW with the following generator limits.

> 100 MW $\leq P_{CM} \leq 450$ MW 100 MW $\leq P_{CM2} \leq 350$ MW 100 MW $\leq P_{CM2} \leq 222$ MW.

Solution

The necessary condition to find optimal dispatch is

$$\frac{\partial F_{i}}{\partial P_{OU}} = \lambda$$

Here i varies from 1 to 3. Therefore the above equation is rewritten as

$$\frac{\partial F_1}{\partial P_{G_1}} = \frac{\partial F_2}{\partial P_{G_2}} = \frac{\partial F_3}{\partial P_{G_3}} = \lambda \longrightarrow (1)$$

Eng Tree.com

$$\frac{\partial F_{1}}{\partial P_{01}} = \&x \ 0.004 \ P_{01} + 5 \ 3 = 0.008 \ P_{01} + 5 \ 3.$$

$$\frac{\partial F_{2}}{\partial P_{012}} = 2x \ 0.006 \ P_{012} + 5 \ 5 = 0.012 \ P_{012} + 5 \ 5$$

$$\frac{\partial F_{3}}{\partial P_{013}} = \&x \ 0.009 \ P_{013} + 5 \ 8 = 0.018 \ P_{013} + 5 \ 8$$

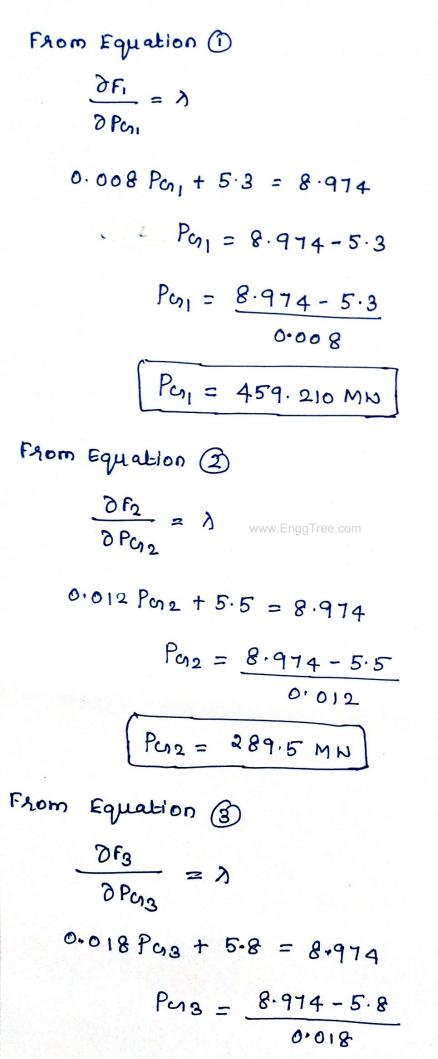
$$\frac{\partial F_{3}}{\partial P_{013}} = \&x \ 0.009 \ P_{013} + 5 \ 8 = 0.018 \ P_{013} + 5 \ 8$$

$$\frac{\partial F_{3}}{\partial P_{013}} = \&x \ 0.009 \ P_{013} + 5 \ 8 = 0.018 \ P_{013} + 5 \ 8$$

$$\frac{\partial F_{3}}{\partial P_{013}} = \&x \ 0.009 \ P_{013} + 5 \ 8 = 0.018 \ P_{013} + 5 \ 8$$

$$\frac{\partial F_{3}}{\partial P_{013}} = \&x \ 0.009 \ P_{013} + 5 \ 8 = 0.018 \ P_{013} + 5 \ 8$$

$$\frac{\partial F_{3}}{\partial P_{013}} = \&x \ 0.009 \ P_{013} + 5 \ 8 = 0.018 \ P_{013} + 5 \ 8$$


$$\frac{\partial F_{3}}{\partial P_{013}} = \&x \ 0.009 \ P_{013} + 5 \ 8 = 0.018 \ P_{013} + 5 \ 8$$

$$\frac{\partial F_{3}}{\partial P_{013}} = \&x \ 0.009 \ P_{013} + 5 \ 8 = 0.018 \ P_{013} + 5 \ 8$$

$$\frac{\partial F_{3}}{\partial P_{013}} = \&x \ 0.009 \ P_{013} + 5 \ 8 = 0.018 \ P_{013} + 5 \ P_{013} +$$

Downloaded from EnggTree.com

•••

PG3 = 176.333 MN

Check for limits

Here Pay dies outside the limit, but Pass and Pass lies with in the limit.

So we fix $P_{01} = 450 \text{ min}$ instead of 459.210 minTherefore the load shared by P_{012} , P_{013} increases. $P_{012} + P_{013} = P_D - P_{011}$ $P_{012} + P_{013} = 925 - 450$ $P_{012} + P_{013} = 475 \longrightarrow (2)$

From Equation (1)

$$\frac{\partial F_2}{\partial P_{012}} = \frac{\partial F_3}{\partial P_{013}}$$

 $\begin{array}{c} 0.012 \ P_{012} + 5.5 = 0.018 \ P_{013} + 5.8 \\ 0.012 \ P_{012} - 0.018 \ P_{013} = 5.8 - 5.5 \\ 0.012 \ P_{012} - 0.018 \ P_{013} = 0.3 \longrightarrow \end{array}$ $\begin{array}{c} 0.012 \ P_{012} - 0.018 \ P_{013} = 0.3 \longrightarrow \end{array}$

Therefore the optimal dispatch from three units are

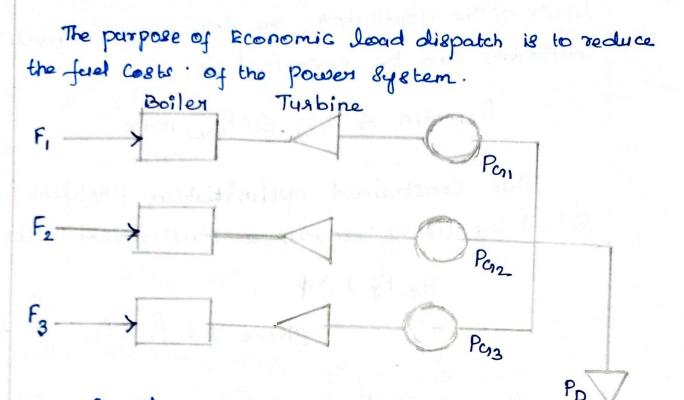
 $P_{G1} = 450 \text{ MW}$ $P_{G2} = 295 \text{ MW}$ $P_{G3} = 180 \text{ MW}$

ii) Total Cost

Total Cost $F_7 = F_1 + F_2 + F_3 \rightarrow 4$

Fi (when $Pcy = 450 \text{ Mw} = (0.004 \times 450^2) + (5.3 \times 450) + 500$ Fi = <u>3695</u> Rs/hg

 $F_{2} (when Pa_{2} = 295 \text{ Mw}) = (0.006 \times 295) + (5.5 \times 295) + 400$ $F_{2} = 2544.65 \text{ Rs} | h.4$


F3 (when $P_{C13} = 180 \text{ MW}$) = $(0.009 \times 180^2) + (5.8 \times 180) + 200$ F3 = 1535.6 Rs/hm

From Equation (4)

Total Cost €FT) = 3695 + 2544.65 + 1535.6

Economic Load Dispatch (with loss)

Consider a System Consisting of 'N' Thermal generating onite are connected to a single bus bar Supplying a load PD

Input to each unit is expressed interms of cost rate Fi(Pcri). Therefore total cost rate is the sum of the Cost rate of individual units $f_T = \sum_{i=1}^{N} F_i(Pcri)$

By considering the transmission loss, the equality Constraint is expressed as

based on the maximum and minimum power limite of the generator, the following inequality Constraints can be expressed as

This constrained optimization problem can be Solved by using Lagrange multiplies method.

$$H = F_T + \lambda \phi$$

where $\varphi = P_D + P_L - \leq P_{Cri}$

$$H = \mathcal{Z} F_i(P_{Cri}) + \lambda \left[P_D + P_L - \mathcal{Z} P_{Cri} \right]$$

To find the necessary Condition for fuel cast (FT) is to be minimum, take the derivative of Lagrangian multiplier and Equate it to zero

 $\frac{\partial H}{\partial P_{\text{CN}i}} = \frac{\partial}{\partial P_{\text{CN}i}} \left[\sum_{i=1}^{N} F_i(P_{\text{CN}i}) + \partial \left(\frac{P_D}{D} + \frac{P_L}{2} - \frac{z}{z} P_{\text{CN}i} \right) \right] = 0$

 $\frac{\partial H}{\partial P_{\text{CN}i}} = \frac{\partial}{\partial P_{\text{CN}i}} \frac{z}{i=1} F_i (P_{\text{CN}i}) + \frac{\partial}{\partial z} \left[\frac{P_0 + P_L - z}{i=1} \frac{P_{\text{CN}i}}{i=1} \right] = 0$

 $\frac{\partial F_{i}}{\partial P_{c_{i}}} + \frac{\partial P_{D}}{\partial P_{c_{i}}} + \frac{\partial P_{D}}{\partial P_{c_{i}}} + \frac{\partial P_{D}}{\partial P_{c_{i}}} - \frac{\partial P_{D}}{\partial P_{c_{i}}} = 0$ $\frac{\partial P_{c_{i}}}{\partial P_{c_{i}}} + \frac{\partial P_{D}}{\partial P_{c_{i}}} + \frac{\partial P_{D}}{\partial P_{c_{i}}} + \frac{\partial P_{D}}{\partial P_{c_{i}}} + \frac{\partial P_{D}}{\partial P_{c_{i}}} = 0$ $\frac{\partial P_{c_{i}}}{\partial P_{c_{i}}} + \frac{\partial P_{D}}{\partial P_{c_{i}}} + \frac{\partial P_{D}}{\partial P_{c_{i}}} + \frac{\partial P_{D}}{\partial P_{c_{i}}} + \frac{\partial P_{D}}{\partial P_{c_{i}}} = 0$ $\frac{\partial P_{C}}{\partial P_{c_{i}}} + \frac{\partial P_{D}}{\partial P_{c_{i}}$

$$\frac{\partial F_i}{\partial P_{C_i}} + 0 + \lambda \frac{\partial P_L}{\partial P_{C_i}} - \lambda = 0$$

$$\frac{\partial F_{i}}{\partial P_{cri}} = \lambda - \lambda \frac{\partial P_{L}}{\partial P_{cri}}$$

$$\frac{\partial F_{i}}{\partial P_{C_{i}}} = \partial \left(1 - \frac{\partial P_{L}}{\partial P_{C_{i}}} \right)$$

We know that $IF_i = \frac{\partial F_i}{\partial P_{cri}}$ www.Engg_Iet $T_{L_i} = \frac{\partial P_{L_i}}{\partial P_{cri}}$

 $IF_{i} = \partial (I - IT_{Li})$

$$\partial = IF_{i}$$

$$I - IT_{i}$$

This equation is Called Exact Coordination Equation. $\lambda = Li IEi$

Li is Called Penalty factor and is equal to $Li = \frac{1}{1 - IT_{Li}}$

Analytical Salution to find Transmission loss (PL)

$$\begin{aligned} & \text{Transmission Loss is given by} \\ & P_{L} = \sum_{i=1}^{N} \sum_{j=1}^{N} Poi B_{ij} Po_{ij} \\ & \text{For 2 bus System , N = 2} \\ & P_{L} = \sum_{i=1}^{N} \sum_{j=1}^{N} Poi B_{ij} Po_{ij} \\ & P_{L} = P_{C1} B_{ij} Po_{i}^{T} \\ & = \left[Po_{1} Po_{1}^{T} \right] \left[B_{11} B_{12} \\ B_{21} B_{22} \right] \left[Po_{1}^{T} \\ Po_{1}^{T} \right] \\ & \text{www.Engitive.com} \end{aligned}$$

$$\begin{aligned} & P_{L} = \left[Po_{1} B_{1j} + Po_{1} B_{21} - Po_{1} B_{12} + Po_{2} B_{22} \right] \left[Po_{1}^{T} \\ Po_{1}^{T} \right] \\ & \text{www.Engitive.com} \end{aligned}$$

$$\begin{aligned} & P_{L} = \left[Po_{1} B_{11} + Po_{1} B_{21} - Po_{1} B_{12} + Po_{2} B_{22} \right] \left[Po_{1}^{T} \\ Po_{1}^{T} \right] \\ & P_{L} = \left[Po_{1} B_{11} + Po_{2} B_{21} \right] Po_{1} + \left(Po_{1} B_{12} + Po_{1} B_{23} \right) Po_{12} \\ & P_{L} = Po_{1}^{T} B_{11} + Po_{2} B_{21} Po_{1} + Po_{1} B_{12} Po_{2} + Po_{2} B_{22} \\ & B_{21} = B_{12} \\ \hline & P_{L} = Po_{1}^{T} B_{11} + 2Po_{2} B_{12} + Po_{1} B_{12} Po_{2} + Po_{2}^{T} B_{22} \\ & B_{21} = B_{12} \\ \hline & TI_{L_{1}} = \frac{\partial P_{L}}{\partial Po_{1}} = 2Po_{1} B_{11} + 2Po_{2} B_{12} = 2 \left[Po_{1} B_{11} + Po_{2} B_{12} \right] \\ & ITL_{2} = \frac{\partial P_{L}}{\partial Po_{1}} = 2Po_{1} B_{12} + 2Po_{2} B_{22} = 2 \left[Po_{1} B_{11} + Po_{2} B_{12} \right] \\ & Downloaded from Engitree.com \end{aligned}$$

The incremental costs of two generating plants are

$$\frac{dF_1}{dP_{01}} = 20 + 0.1 P_{01} R_8 | Muha}$$

$$\frac{dF_2}{dP_{02}} = 22.8 + 0.15 P_{02} R_8 | Muchan$$

The System is operating on economic dispatch with $P_{C_{1}} = P_{C_{1}2} = 100 \text{ MN} \text{ and } \frac{\partial P_{L}}{\partial P_{L}} = 0.2 \cdot \text{Find the peratternet}$ penalty factor of plant 1.

Solution

The coordination Equation with Loss is

$$\frac{\partial F_i}{\partial P_{\text{cri}}} = \mathcal{D} \left(1 - \frac{\partial P_{\text{L}}}{\partial P_{\text{cri}}} \right)$$

$$\lambda = \frac{\frac{\partial F_i}{\partial P_{cri}}}{1 - \frac{\partial P_L}{\partial P_{cri}}}$$

$$\lambda = \frac{\mathrm{IF}_{i}}{1 - \mathrm{IT}_{i}}$$

Fog 2 Units

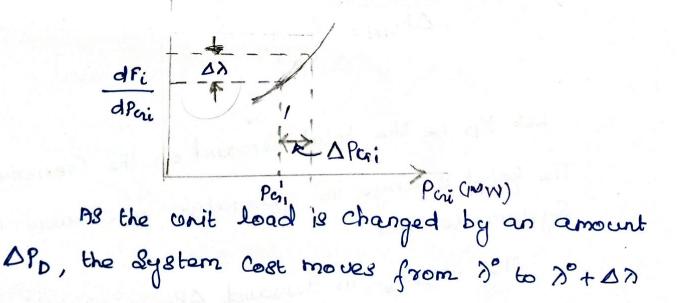
$$\lambda = \frac{IF_1}{I - ITL_1} = \frac{IF_2}{I - ITL_2} \rightarrow 0$$

$$\lambda = H IF_1 = L_2 IF_2 \longrightarrow (2)$$

where $L_1 \rightarrow penalty$ factor of first onit, $L_1 = \frac{1}{1 - ITL_1}$ $L_2 \rightarrow Penalty$ factor of Second unit, $L_2 = \frac{1}{1 - ITL_2}$

From Equation ()

 $\frac{20 + 0.1 P_{04}}{1 - ITL_{1}} = \frac{22.8 + 0.15 P_{02}}{1 - ITL_{2}}$ Chiven $P_{c_1} = P_{c_12} = 100 \text{ MW}$, $\frac{\partial P_L}{\partial P_{c_{12}}} = ITL_2 = 0.2$ $\frac{20 + (0.1 \times 100)}{1 - ITL_{1}} = \frac{22.8 + (0.15 \times 100)}{1 - 0.0}$ www.EnggTree.com From Equation (2) $H = \frac{1}{1 - ITL}$ $L_{1}(20 + (0.1 \times 100)) = \frac{22.8 + 15}{0.8}$ $L_{1} = \frac{37.8}{0.8(20+10)}$ $h = \frac{37.8}{24} = 1.57$


Penalty factor of Unit 1 is 1.57

Base point and participation factor

If the economic dispatch problem has to be solved repeatly by moving the generator from one economically optimum. Schedule to another as the load changes by a reasonably Small amount

The initial optimal Schedule inwhich the generator operates is called Base point

The factor indicating how much the generating units needs to participate the in the load changes So as to serve the new load at the most economi operating point is called <u>Participation factor</u>

Fog a Small Change in power output on the Single unit

 $F_i = a_i P_{c_i} + b_i P_{c_i} + c_i$ wnloaded from EnggTree.com

$$F_i = \frac{\partial F_i}{\partial P_{C_i}} = 2a_i P_{C_i} + b_i = \lambda_i$$

$$f_{i} = \Delta h = 2a_{i}$$

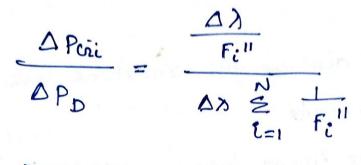
$$AP_{cr_{i}}$$

 $\Delta \mathcal{P}_{i} = F_{i}^{"} \Delta P_{ci}$ $F_{0\mathcal{P}} \mathcal{N} \text{ units on the System } F_{i}^{"} \rightarrow \mathbb{O}$

www.EnggTree.com

$$\Delta P_{G_1} = \frac{\Delta \lambda_2}{F_1''}$$

$$\Delta P_{C_{12}} = \frac{\Delta \lambda}{F_2^{"}}$$


$$\Delta P_{GN} = \frac{\Delta \lambda_i}{F_N^{"}}$$

Let Po be the total demand on the Generation, The botal change in generation = Change in total System demand The Change in 1

EnggTree.com

$$\begin{bmatrix}
\Delta P_D = \Delta \lambda \leq \frac{1}{l_{=1}} \\
\frac{1}{r_c}
\end{bmatrix} \rightarrow \textcircled{2}$$

Dividing the equation @ by (), we get the participation participation factors

[DPcni	<u> </u>	1
\$PD	N L	
	E=1 Fi	

Suppose P_D increases to $P_D + \Delta P_D$. The new value of generation is calculated using P_{new} , $i = P_{\text{base}}$, $i + \left(\frac{\Delta P_{\text{cri}}}{\Delta P_D}\right) \Delta P_D$, i = 1, 2, ... N

> $\Delta P_D = change in load demand$ Pbase; = Old value of CrenerationPress, i = New Value of Creneration.

Advantages of using participation factor

i) Computer implementation of economic dispatch is straight forward

ii) Reduces the execution time for the economic dispatch

iii) It will always give consistent answers when

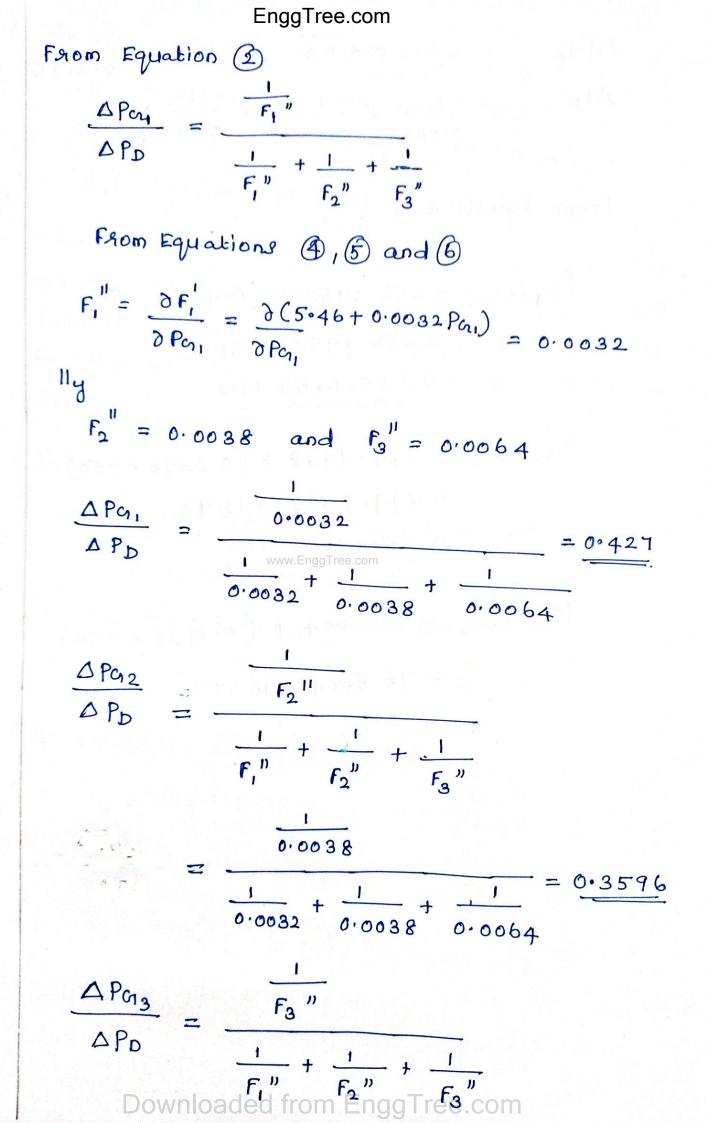
Iv) It gives linear incremental Cost functions (00) have non-convex Cost Curves.

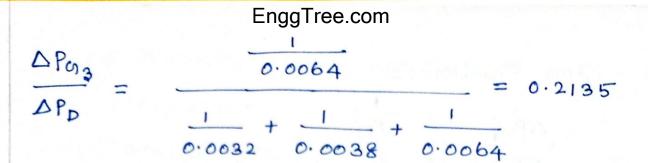
www.EnggTree.com

The input - Output Curve Characteristics of three Units are $F_1 = 940 + 5.46 P_{01} + 0.0016 P_{01}^{2}$ $F_2 = 820 + 5.35 P_{012} + 0.0019 P_{012}^{2}$ $F_3 = 99 + 5.65 P_{013} + 0.0032 P_{013}^{2}$

Total load is 600 MW. Use the participation factor method to Calculate the dispatch for a load reduced to 550 MW?

Solution


By using the pasticipation factor, the new load shared by the units are expressed as $Pc_{1i}(New) = Pc_{1i}(cold) + \left(\frac{\Delta P_{col}}{\Delta P_{D}}\right) \Delta P_{D} \rightarrow 0$ $\frac{\Delta P_{col}}{\Delta P_{D}} \rightarrow participation factors = \frac{\frac{1}{F_{L}^{"}}}{\frac{N}{i=1} - \frac{1}{F_{L}^{"}}} \rightarrow (2)$ $\Delta P_{D} \rightarrow Change in load demand = 550-600 = -50 MW.$ $Po find Pc_{1i}(cold), use the Co-condination Equation$ $\frac{\partial F_{1}}{\partial Pc_{1}} = \frac{\partial F_{2}}{\partial Pc_{2}} = \frac{\partial F_{3}}{\partial Pc_{3}} = \lambda \rightarrow (3)$


 $\frac{\partial F_1}{\partial P_{c_1}} = F_1' = 5.46, + (2 \times 0.0016 P_{c_1}) = 5.46 + 0.0032 P_{c_1} \rightarrow 4$

$$\frac{\partial F_{2}}{\partial R_{n_{2}}} = F_{2}^{1} = 5.35 + (2x0.0019 R_{n_{2}}) = 5.35 + 0.0038 R_{n_{2}} \rightarrow 6$$

$$\frac{\partial F_{2}}{\partial R_{n_{3}}} = F_{3}^{1} = 5.65 + (2x0.0032 R_{n_{3}}) = 5.65 + 0.0064 R_{n_{3}} \rightarrow 6$$
Equating (A) and (B).
5.46 + 0.0032 R_{n_{1}} = 5.35 + 0.0038 R_{n_{2}}
$$0.0032 R_{n_{1}} - 0.0038 R_{n_{2}} = -0.11 \rightarrow 7$$
Equating (G) and (G)
5.35 + 0.0038 R_{n_{2}} = 5.65 + 0.0064 R_{n_{3}}
$$0.0038 R_{n_{2}} = 5.65 + 0.0064 R_{n_{3}}$$
And also we know that this 3 onits are going to share the lood 600 MN. Therefore we form the third Equation as
R_{n_{1}} + R_{n_{2}} + R_{n_{3}} = 600 \rightarrow 9
Solving Equations (T), (B) and (D), we get
$$\frac{R_{n_{1}}(014) = 256.4958 M_{N}}{R_{n_{2}}(01d) = 244.9438 M_{N}}$$

$$R_{n_{3}}(01d) = 98.5604 M_{N}$$

From Equation ()

 $P_{CY}(new) = 256.4958 + (0.427 \times -50)$ = 256.4958 - 21.35= 235.1458 MW

$$Po_{2}(new) = 244 \cdot 9438 + (0 \cdot 3596 \times -50)$$

= 244 \cdot 9438 - 17 \cdot 98
= 226 \cdot 9638 - MN

 $Pon_{3}Cnew) = 98.5604 + (0.2135 \times -50)$ = 98.5604 - 10.675= 87.8854 MW

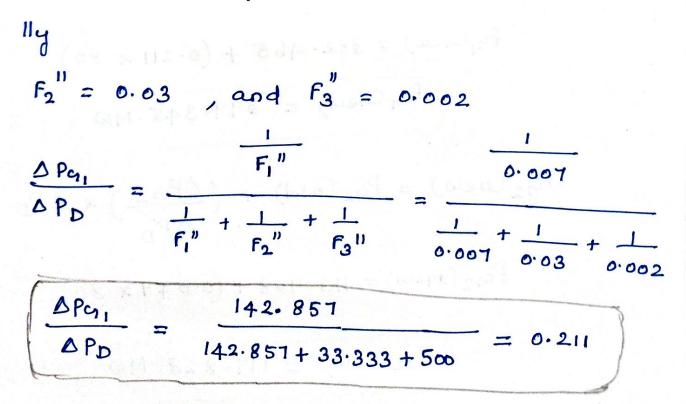
The input - Output Curve Characteristics of three units are H, (Metu/ha) = 750 + 6.49PG1 + 0.0035 PG1 H2 (Metu/ha) = 870 + 5.75 PG2 + 0.015 PG2 H3 (Metu/ha) = 620 + 8.56 PG3 + 0.001 PG3 The fuel Cost of Unit 1 is 1.0 Rs/Metu, 1.0 Rs/Metu for Unit 2 and 1.0 Rs/Metu for unit 3. Total load is 800 MN. Use the participation factor method to Calculate the dispatch for a load increased to 880 MN?

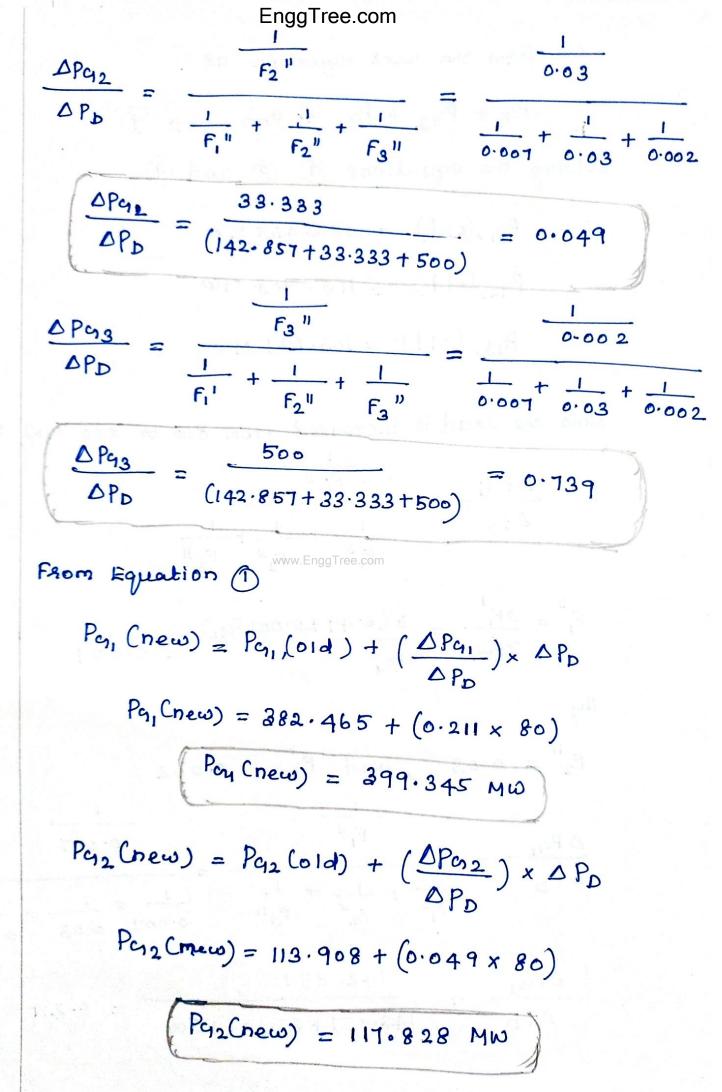
Solution

Convert the Heat State function to Cost Junction www.EnggTree.com Fi= k × Hi

 $F_{1} = 1 \times (750 + 6.49 P_{01} + 0.0035 P_{01}^{2})$ $F_{1} = 750 + 6.49 P_{01} + 0.0035 P_{01}^{2}$ $F_{2} = 1 \times (870 + 5.75 P_{02} + 0.015 P_{02}^{2})$ $F_{2} = 870 + 5.75 P_{02} + 0.015 P_{02}^{2}$

 $F_3 = 1 \times (620 + 8.56 P_{43} + 0.001 P_{43})$ $F_3 = 620 + 8.56 P_{43} + 0.001 P_{43}^2$


By using the participation factor, the new load Shared by the units are expressed as


EnggTree.com $P_{\text{ori}}(\text{new}) = P_{\text{ori}}(\text{old}) + \left(\frac{\Delta P_{\text{ori}}}{\Delta P_{\text{o}}}\right) \Delta P_{\text{o}} \rightarrow (1)$ $\frac{\Delta P_{C_{1}}}{\Delta P_{D}} \rightarrow participation factor = \frac{N}{\frac{1}{\frac{1}{F_{i}}}} = \frac{1}{F_{i}}$ F; " △PD = Change in load demand = 880-800 = 80 MW To find Pgi Cold), use the Coordination Equation $\frac{\partial f_1}{\partial P_{G_1}} = \frac{\partial f_2}{\partial P_{G_2}} = \frac{\partial f_3}{\partial P_{G_3}} \longrightarrow (3)$ $\frac{\partial F_1}{\partial P_{G_1}} = F_1 = 6.49 + 0.007 P_{G_1} \rightarrow 4$ $\frac{\partial F_2}{\partial r_2} = F_2 = 5 \cdot 75 + 0 \cdot 03 Pq_2 \rightarrow 5$ $\frac{\partial F_3}{\partial p_1} = F_3 = 8.56 \pm 0.002 Pa_3 \rightarrow 6$ Equating (4) and (5) 6-49 + 0.007 Pg, = 5.75 + 0.03 Pg2 0.007 PG1 - 0.03 PG2 = -0.74 -> (7) Equating (5) and (6) 5.75 + 0.08 Paz = 8.56 + 0.002 Paz 0.03 Pa2 - 0.002 Pa3 = 2.81 \rightarrow (8) Downloaded from EnggTree.com

EnggTree.com we form the next equation as $P_{G_1} + P_{G_3} + P_{G_3} = 800 \rightarrow \textcircled{P}$ Solving the equations P, B and P P_{G_1} , (old) = 382.465 MW P_{G_2} , (old) = 113.908 MW P_{G_3} , (old) = 303.627 MW

Now the load is increased from 800 to 880 MW, then $\frac{\Delta P_{cri}}{\Delta P_{D}} = \frac{\frac{1}{F_{i}}}{\frac{1}{F_{f}} + \frac{1}{F_{g}}} + \frac{1}{F_{g}}$

$$F_{i}^{"} = \frac{\partial F_{i}}{\partial P_{G_{i}}} = \frac{\partial (6.49 + 0.007 P_{G_{i}})}{\partial P_{G_{i}}} = 0.007$$

Statement of Unit Commitment Problem.

 $P_{\alpha_{g}}(n\omega) = P_{\alpha_{g}}(old) + \left(\frac{\Delta P_{\alpha_{g}}}{\Delta P_{D}}\right) \times \Delta P_{D}$

= 303.627 + (0.739) × 80

Pag (new) = 262.747 MN

www.EnggTree.com

Statement of Unit Commitment problem.

To select the generating units that will Supply the forecasted load of the System over a required period of time at minimum cost as well as provide a specified Margin of the operating Reserve. This proceedures is called Unit commitment

Pommorrow's Unit commitment problem may be Stated as follows

<u>Given</u>: The expected System demand levels for the 24 hours of tomorrow and the operating cost. Star up cost and Shut down cost of the available Nanits.

To determine : If "N' generating Units, (2ⁿ-1) number of Combinations will be obtained. From many feasible Eubsets, determine the Subset of Units that would Statisfy the expected demand at minimum operating Cost.

Need for unit commitment

* Enough units will be committed to Supply the System load

* To reduce the loss (02) fuel cost

* By running the most economic unit, the load can be supplied by that unit operating Closer to its best efficiency.

Constraints in Unit Commitment

Each power system may impose different rules on the scheduling of units depends on generation. make-up and load arrue characteristics etc. The Constraints to be considered for unit Commitment

- a) Spinning Reserve
- > minimum optime b) Thermal Constraints > minimum douontime -> crew constraint

c) Other Constraints

Mostrus Constraint

-> Start-up-cost

Hydro Constraint

Fuel constraint

a) spinning Reserve

spinning Reserve is the total amount of generation available from all units Synchronized on the System minus the present load and losses being Supplied.

Spinning Reserve = [Total amount of generation] - [Present load

+ Losses

If one unit is lost, the spinning Reserve onit has to make up for the loss in a specified time period.

Spinning Reserve is the reserve generating Capacity running at no load. Spinning Reserve includes quick start dieset or gas turbine unit, or hydro onits and pumped storage hydro units that Can be brought on line, by nchronized and brought up to full load Capacity

Typical Rules for Spinning Reserve Bet by Regional Reliability Council

* Reserve must be given percentage of forecasted Peak demand www.EnggTree.com

* Reserve merst be capable of making up the loss of the most heavily loaded unit in a given period of time

* Calculate Reserve Requirements as a function of the probability of not having dufficient generation to meet the load.

6) Theamal Constraints.

A thermal unit Can withstand only gradual temperature Changes and is required to take Some hours to bring the unit on-line.

The thermal Unit Constraints are minimum Optime, minimum down time; Crew Constraints and start up

i) minimum op time

Once the unit is running, it should not be turned off immediately

i) Minimum down time

once the onit is decommitted, there is a minimum time before it can be recommitted.

iii) Crew constrainte.

If a plant consists of two (or) more units, they cannot be turned on at the same time.

in) Start up Cost

It depends on the time interval between Shut down and restart.

Start up cost=0, if unit is stopped and started immediately.

a) Startup Cost when cooling

During shut blown period, the unit's boiler to cool down and then heat back up to operating temperature in time for a scheduled turn on.

Start up Cost & Cooling of the unit

b) Start- up cost when banking (Shut down Cost)

During the shul-down period, the boiler may be allowed to cool down and thus no shut down cost will be incurred.

Banking Requires that Sufficient energy be input to the boiler to just maintain operating temperature and pressure.

Start up 4 Cooling P Cost Banking Time

Upto point P, Cost of banking & Cost of Cooling When the Shut down Cost is incurred, the unit may be said to be in hot Reserve.

Finally, the Capacity limits of thermal onits may Change frequently, so mue must consider the thermal Constraints for solving unit commitment,

c) Other Constraints

i) Hydro Constraints.

In hydro - thermal Echeduling, Hydro Units are allocated to maximum during rainy Downloaded from EnggTree.com

Season and thermal conits are allocated for the remaining period.

In hydro units, the Start up and shut down time, operating Cost are neglible; hence we could n't get the optimal colution. Therefore the hydro unit are hot considered for unit commitment.

ii) Most Run constraints

Some units like nuclear units are given a must run status during Certain times of a year to maintain the Voltage in the transmission System. iii) Fuel constraints.

If thermal and hydro Sources are avaible, a combined operation is economic and advantageous to reduce the fuel cost of thermal Onit over a commitment period.

Unit commitment Solution methode.

The following three methods are widely used 1) Brute Force technique

2) Priority List-method (Using full load average Production Cost FLAPC)

3) Dynamic programming Method.

Brute Force Pechnique (Simple priority List Scheme)

In brute force technique, we are trying all combinations of the units at each house ie) 2ⁿ-1 combinations.

Priority List method

priority list method is the Simplest Unit Commitment Solution method which consists of Creating a priority list of units.

The priority list can be obtained by noting the full load average production Cost of each eurit.

Fullload average production Cost is given by

Net heat rate, at full load

x fuelcost

FLAPC =	Fi (Peri)	**	ki. Hi (Pni)
		e.com	Pay

Assumptions

FLAPC =

* No load Costs are zero

" Unit input - Output characteristics are linear between zero output and full load.

- r Start up cost are a fixed amount
- * Ignore minimum uptime and minimum down

time

Procedure

Step 1: Determine the FLAPC for each unit $FLAPC = \frac{F_i(Poii)}{Poi} = \frac{k_i \times 1t_i(Poii)}{Poi}$

Step.2: Form priority ander based on FLAPC. Steps: commit number of units corresponding to the priority order. Step4: Calculate Pur, Puz ... Pur from economic dispatch Problem for the feasible combination only. Step 5 : At each hows when load is decreasing, determine whether dropping the next unit will Supply generation and Spinning Reserve. If Not, continue as it is. 4 yes, Go to next step. Stepb: Determine the number of hours "H, before the unit will be needed again. Stept: Check H < minimum Shut down time. If yes, go the last step If Not, go the Next Step. Step8 : Calculate 2 Costs. * Sum of hourly production costs for the next H hours with the unit start up. * Recalculate the same for the Unit Shull down plus startup lost for either cooling on banking. Downloaded from EnggTree.com

If there is Sufficient Savinge from Shutting down the unit, it should be shut down. Otherwise keep it ON.

Step 9 : Repeat this procedure, until the priority list is prepared

Merile

- * No need to go for N. Combinations.
- * Take only one constraint.

« I grore minimern up time and minimum down time.

* Complication reduced.

Demenits

- * Start up cost are fixed
- * No load costs are not considered.

Obtain the priority list of unit commitment using Full load average production Cost for the given data. $H_1 = 510 + 7 \cdot 2 P_{cn_1} + 0.00142 P_{cn_2}^2$ $H_2 = 310 + 7 \cdot 85 P_{cn_2} + 0.00194 P_{cn_2}^2$ $H_3 = 48 + 7.97 P_{cn_3} + 0.00482 P_{cn_3}^2$

Unit	Minimum (MW)	Maximum (MW)	Fuel cost CR)
	150	600	1.1
2	100	400	1.0
3	50	200	1.2

and the load Demand is 550 MW.

Solution

In priority list method, the priority of a unit is assigned based on the Fall load Average production Cost (FLAPC)

www.EnggTree.com

FLAPC =
$$\frac{F_i(P_{cui})}{P_{cui}(max)} = \frac{K H_i(P_{cui})}{P_{cui}(max)}$$

As per the given data, select FLAPC = $\frac{k \text{ Hi}(Pwi)}{Pci(maxc)}$ Steps: Find FLAPC for each onit FLAPC for first unit = $\frac{1 \cdot 1 \times (510 + (7 \cdot 2 \times 600) + (0 \cdot 00142 \times 600))}{600}$ = $9 \cdot 79$ Rs much 2 Downloaded from Englinee.com

EnggTree.com FLAPC for Second onit = $\frac{1.0 \times (310 + (7.85 \times 400) + (0.00194 \times 400))}{400}$ = 9.4 Rs | Mubha.FLAPC for third onit = $\frac{1.2 \times (78 + (7.97 \times 200) + (0.00482 \times 200))}{200}$ = $\frac{11.188}{8} \text{ Rs} | Mubha$

onit	FLAPC	Min (Muo)	Max (MUS)
2	9.4	100	400
1	9.79	150	600
3	11-188	50	200

Steps: priority order

www.EnggTree.com

Step3: Onit commitment

Combination	Minimum MN) from Combination	Maximum NW from Combination
2+1+3	300	1200
2+1	250	1000
2	100	400

All the three units would be held on until load reached to 1000 MW.

Units 2 and 1 would be held on Until the load reached 400 mw, then Unit 1 would be dropped.

For demand of 550 MW, Unit 1 and 2 would be operated.

Dynamic Programming method

In dynamic programming method, the Unit Commitment table is to be arrived at fog the Complete logd cycle. Advantages.

* Reduction in the dimensionality of the phoblem

" If a strict priority ander is imposed, the number of combinations for a unit case

Priority I unit Priority I unit + priority 2 unit priority I unit + priority 2 unit + priority 3 unit priority I unit + priority 2 unit + priority 3 unit www.EnggTree.com + priority 4 unit.

Assumptions

* Total number of units available, their individual Cost Characteristics and the load cycle on the Station are assumed prior.

* A state Consists of an array of units with Specified Units operating and the rest-off-line * The Start up cost of a unit is independent of the time it has been off-line (ie, fixed Amount).

* There are no costs for shutting down a unit. * There is a strict priority order and in each interval a specified minimum amount of capacity must be operating unloaded from EnggTree.com EnggTree.com Forward - Algorithm may run forward from initial hours to final hour Backward - Algorithm may run backward from final hour to initial hour

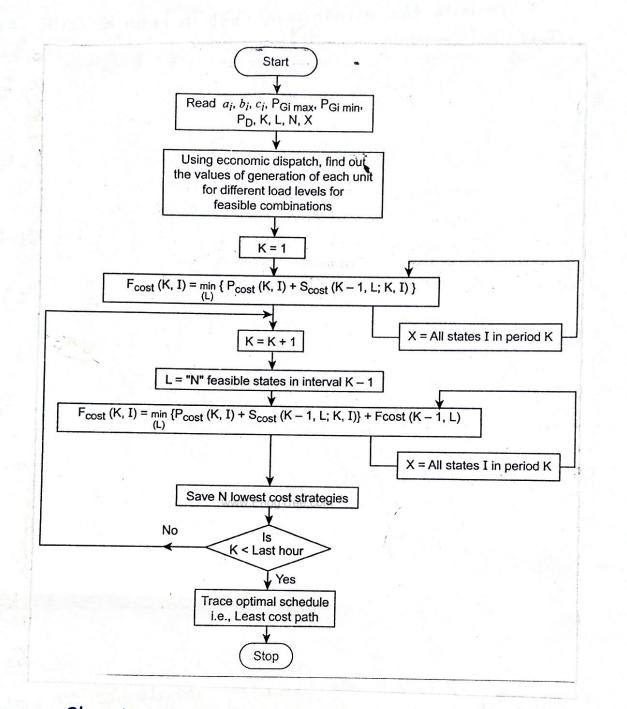
Forward Dynamic programming method.

Advantages

* Algorithm to run forward in time from the initial hours

* Forward dynamic programming is suitable if the Stort-up cost of a unit is a function of the time, it has been off line

* Previous history of the unit can be computed at www.EnggTree.com


* Initial conditions are easily specified.

Algorithm

For a load cycle, at each load level, the algorithm Is to run either of the Onits Or both Onits with a Certain load Sharing. Determine the most economical Cost curve of a Single equivalent Unit. Then add the third Unit and repeat the Steps. The process is repeated Untill all the Units are added.

* Determine the possible number of Combinations and determine the economic dispatch and Tobal Cost.

* Compute the minimum Cost in hour K with Combination I is Foost (k, I) = min { Poost (k, I) + Scost (k-1, L', k, I) + Fcos (K-I, L) Where Fcost(K,I) = least total cost to arrive at State (K, I) PCOSE (K, I) = Production Cost for State (K, I) Score (K-1, L; K, I) = Transition Cost from State (K-1, L) to State (K, I) Prancition from one state at a given hour to a State at the next hour igneed State (K, I) = I the combination in hour k. L= "N" feasible State in interval K-I Let X be number of States to Search each period. het N be the number of Strategies or paths, to Save at each Step. Dynamic programming Algorithm with N=2 and x = 3 \mathbf{C} Interval Interval 0 k-1 k Interval K+1 Downloaded from EngqTree.com

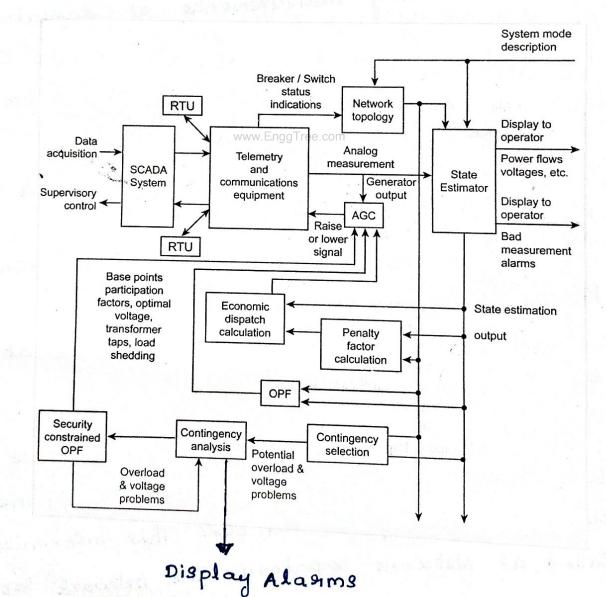
Flowchart of forward Dynamic programming method.

EE3602 - POWER SYSTEM OPERATION AND

CONTROL UNIT V

COMPUTER CONTROL OF POWER SYSTEMS

Need of computer control of power systems-concept of energy control centers and functions – PMU - system monitoring, data acquisition and controls - System hardware configurations - SCADA and EMS functions - state estimation problem – measurements and errors - weighted least square estimation - various operating states - state transition diagram.


www.EnggTree.com

Prepared by Dr.T.Dharma Raj, Associate Professor / EEE V V College of Engineering

EnggTree.com Energy Control Contre

When the power system increases in Size (the number of Substations, transformers, Switchgaar and So on), their operation and interaction become more Complex. So it becomes essential to monitor this information Simultaneously for the total System which is Called as energy Control Centre.

The Energy Management performed at this Control Centre is Called System control Centre.

100

Figure Shows the information flow between various functions to be performed in an operations Control Centre. The centre gets information about the pases System from remote terminal Units (RTU). Based on the RTU, the Control Centre Can transmit Control information Such as raise / lower Commands to the Speed changes and in turn to the generators outputs.and open / close Commands to ciscuit breakers (CBs)

The analog measurements of Generator Outputs must be used directly by the Automatic Generation Control (AGC), whereas other data will be processed by State Estimator. The objectives of AGC are

i) To hold frequency at (or) very close to a specified nominal value

ii) To maintain the correct value of inter Change power between control values.

iii) To maintain each onit's generation at the most economic value.

In order to run the State estimator, we must know how the transmission lines are connected to the load and generator bus. This information is called as Network topology. The network topology programs must have a complete description of each

Substation and how the transmission lines are attached to the Substation equipment.

The electrical model of the transmission system is sent to the State estimation program together with the analog measurements. The output of the State estimator Consists of all Voltage magnitudes, and phase angles, transmission line MW and MVAR flows and busloads and generations calculated from the line flows.

These quanties together with the electrical model provide the basis for the economic dispatch program, Contingency analysis program and generator corrective action program.

Real time operation are in two aspects.

a) Three level Control

i) Turbine-governor to adjust generation to balance changing load. Instantaneous Control ii) Automatic Generation Control.

iii) Economic Load dispatch.

b) Primary Voltage Control

i) Excitation Control regulate generator bus voltage

ii) Transmission Voltage Control devices include Static VAR Controllers, Shunt Capacitons, transformer taps, etc. Downloaded from EnggTree.com

Energy control centre can perform the following functions.

i) Load forecasting - Estimating the future load in Advance

ii) power System planning 7 for generation Sfor Transmission and Distribution.

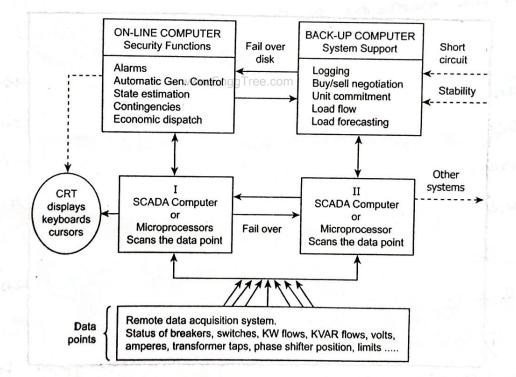
iii) unit commitment - Constraints are Spinning Reserve, minimum optime, minimum down time, hydro Constraints and fuel constraints.

iv) Maintenance Scheduling - The planned maintenance outages of the generation equipment over a given future period.

V) Securily Monitoring - Analyze the effects of outages contingencies on the Steady State performance of the System.

V) State Estimation - It produces best estimates of the power System State.

VII) Economic Dispatch - distribute the load among the generating onits.


Supervisory Control and Data AcQuisition (SCADA)

SCADA Consists of a Master Station and RTUS linked by Communication Channel. The hardware Components can be classified as

i) Process Computer and associated hardware at the Energy Control Centre.

in RTUS and the associated hardware at the remote Stations

iii) Communication equipment that links the RTUS and process Computers at the master station.

Fig, Digital Computer Control and monitoring for power System. All of the peripheral equipment is interfaced with the Computer through input-Output microprocessors that have been programmed to communicate, as well as preprocess the analog information Such as, Check Downloaded from EnggTree.com for limits, convert to another system of units and so on.

The Online computer is used to monitoring and controlling the power system. The back up computer may be executing off Line batch programs Such as load forecasting (or) hydro thermal allocation. The on line computer periodically updates a disk memory shared b/w two computers.

Upon a fail over (OM) Switch in Status Command, the Stored information of the Common disk is inserted in the memory of the on line Computer.

Software also allows for multilevel hardware failures and intialization of application programs. If failure occurs, Critical operations and functions are maintained during either preventive or corrective Maintenance.

The following critical functions are scanned every 2 Seconds.

i) All status points Such as dwitchgoar position, Substation loads and Voltages, transformer tap positions and Capacitor loads.

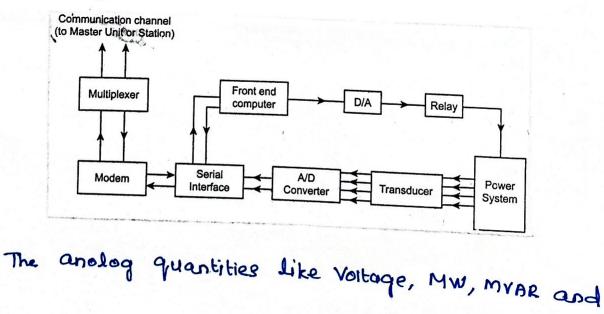
ii) Tie-line flows and interchanges selection.

iii) Generator loads, Voltage, operating limits and boiler capacity.

iv) Telemetry Verification to detect failures and Stores in the remote bilateral communication links between the digital computer and the remote oquipment.

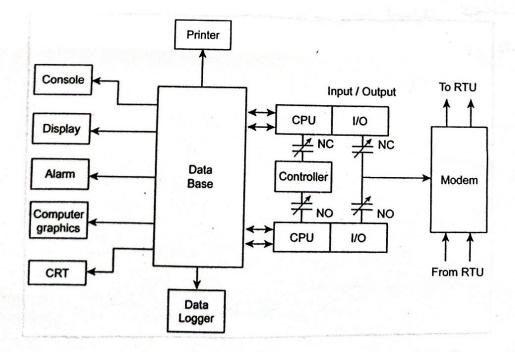
Components of SCADA

The components of SCHOA are Sensors, Relays Remote Terminal Units (RTU), Master Unit and Communication links.


i) Sensors

Analog and digital Sensors are used to interface the Systems.

in) Relays

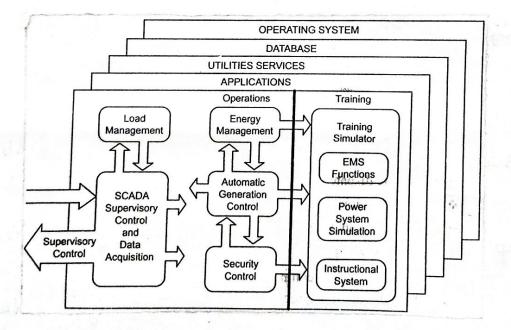

Pelays are used to sense the abnormal Conditions and protect the System ili) Remote Terminal Onite (RTU).

RTU's are microprocessors Controlled electronic devices used to collect various datas and trasmit to SCADA System.

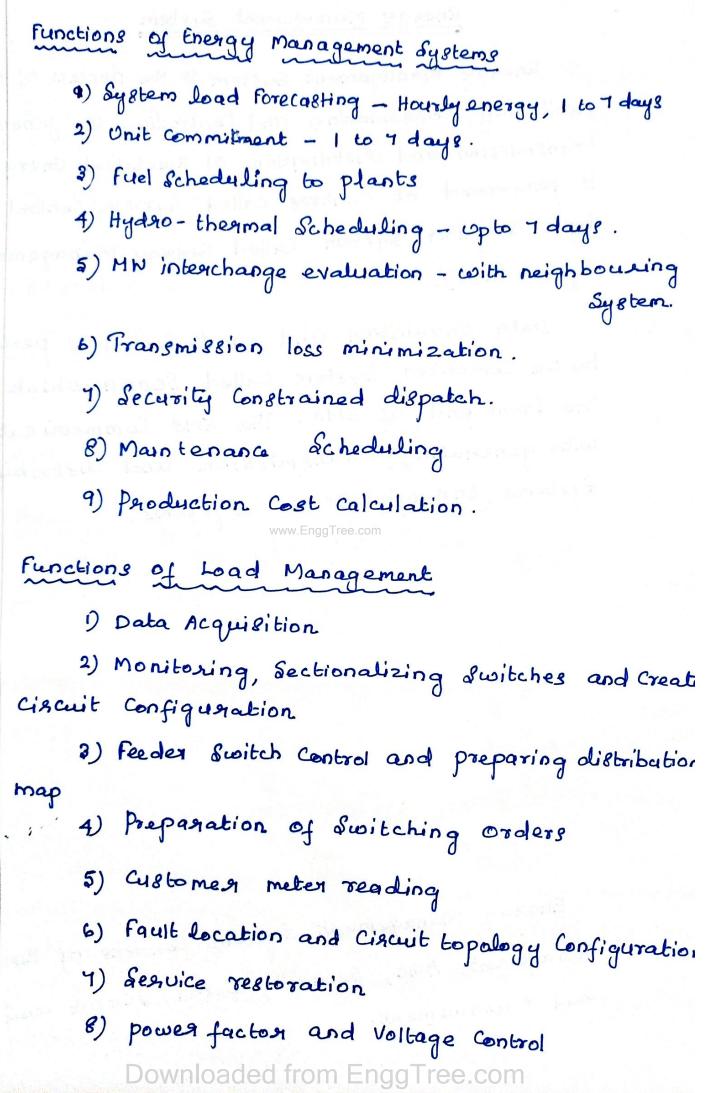
frequency measured at stations are converted into DC Voltage (or) Current Signals, through transduces and fed to the A/D Converters which convert the analog Signals into digital form for transmission. The digital Signal is fed to the front end computers and moderns through the Serial Interface. MODEN Sends the information to the Master Unit through Coultiplexer. MoDEM will also receive commands from master Units to Control the Station equipments through the Control Polays. iv Master Unit

Master unit is provided with a digital computer with associated interfacing devices and hard ware to receive information from RTO CREmote terminal Onit). Process data and display Salient information to the operator.

The master Station Scans the RTO Sequentially and gather information such as Voltage, Current, line flows, generation and equipment Status. This real time information is presented to the operator through CRT, Computer graphic terminals, alarm panels, printer etc, So that the operator Can Supervise minute by ninute and take Control action to prevent System disturbances.


Functions of SCADA

i) Protection of equipment in a Substation
ii) Fault Reporting
iii) Transformer Load balancing
iv) Voltage and Reactive Power Control
v) Equipment Condition Monitoring
vi) Data Acquisition
vii) Status Monitoring
viii) Data Logging.


Energy Management System

Energy Management System is the process of monito monitoring, Coordinating and Controlling the generation, transmission and distribution of Electrical Energy. It is performed at centres called System Control Centres by a Computer System Called Energy Management System (EMS).

Data acquisition and remote Centrol is performed by the Computer System Called SCADA which forms the front end of EMS. The EMS Communicates with generating, transmission and distribution Systems through SCADA Systems.

Energy Management System Consists of Energy Management, AGC, Security Control, SCHOR and Load Management.

9) Ciscuit Continuity Analysis

10) To Control Customer load through appliance Switching (Heater) and indirectly through Voltage Control.

Functions of Acac

i) hold frequency at (09) Very Close to a Specified nominal value

2) To maintain the Correct value of interchange power between Control greas.

3) To maintain each unit's generation at the most economic value.

Functions of Security Control

1) Network Topology processor - To determine me model of the network.

2) State Estimator - To determine best estimate of the state of the system using real time Status and measurements

3) Power flow - To calculate V, 8 power flows for the steady State Condition.

4) Contingency Analysis - To determine the events which are harmful to the System by determing the States.

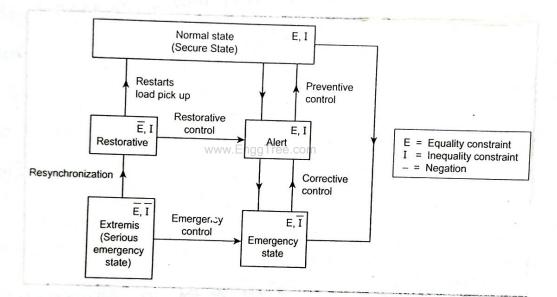
5) Optimal power flow - To optimize a specified objective function by using Controller action.

b) preventive action - Before the occurrence of
Contingency event, preventive action has to be taken.
T) Bus load forecasting - To forecast the load by
Using real time measurements.

Functions of SCADA

1) Data Acquisition - It provides telemetered measuremente and Status information to operator. 2) Supervisiony Control - on/off Ciscuit breakers, raise/Lower Command to Crenerators etc.

3) Load Shedding - provides both automatic and Operator - initiated tripping of load in response to System Emergencies.


4) control of position of devices

5) control and Monitoring functions.

State Transition Diagram and Control Strategies

A power System may be operated in several operating States. They are

- 1) Normal State
- ii) Alent State
- iii) Emergency State
- iv) Extremis State
- v) Restorative State.

Fig, System States and transition.

i) Normal State

A system is said to be in normal, if both load and operating constraints are satisfied. It is one in which the total demand on the system is met by satisfying all the operating constraints

if all the postulated Contingency States (frequency, bus voltage, current flows in all transmission

lines) are state. Satisfied, then normal state is said to be in secure state.

If one of the postulated Contingency States limits are violated, then normal State is moved to alert State

ii) Alert State

when the Security level falls below a Certain Level, the System may in Alert State.

The occurrence of disturbance increases, the System may not Satisfy all the Inequality Constraints, then the System will push into Emergency State.

If a proper preventive action is taken, the System is bring back to Secure State instead of Emergency State.

iii) Emergency State

The System is Said to be in Emergency State, 4 one (er) more operating Constraints are violated but the load constraint is Satisfied.

In this State, the equality Constraints are unchanged By means of Corrective Control actions, the System will return to the normal State (or) alert State. Otherwise it will move into the extremis State

iv) Extremis State

If there is no proper corrective action is taken

In time, then the System is in Emergency State goes to Extremis State.

In this State, both operating and load Constraints are not Satisfied. By means of any emergency Control action the System is bring back to the Emergency State. otherwise the System is pushed to Restorative State.

V) Restorative State

From this State, the System may be brought back either to alert State or Secure State. The Secure State is a Slow process. Hence in Certain Cases, first the System is brought back to alert State and then to the Secure State. This is done Hising restorative Control action.

Action by operator	Variables to be adjusted
Onit commitment	Generation ON/OFF Status
Ronomic Dispatch	Generation MN output Schedule
Generatos bus Voltage	Unit exciter Setting
Network Configuration	Substation CB open/ close
Load Ghedding	Distribution feeder CB
on-load tap changing transformer	Tap position
Phase Shifting Transformer	Tap position
Tieline System Intescher	je Interchange Schedule.