
CS3492 DATABASE MANAGEMENT SYSTEMS L T P C

 3 0 0 3

OBJECTIVES:

 To learn the fundamentals of data models, relational algebra and SQL

 To represent a database system using ER diagrams and to learn normalization techniques

 To understand the fundamental concepts of transaction, concurrency and recovery

processing

 To understand the internal storage structures using different file and indexing techniques

which will help in physical DB design

 To have an introductory knowledge about the Distributed databases, NOSQL and

database security

UNIT I RELATIONAL DATABASES 10

Purpose of Database System – Views of data – Data Models – Database System Architecture –

Introduction to relational databases – Relational Model – Keys – Relational Algebra – SQL

fundamentals – Advanced SQL features – Embedded SQL– Dynamic SQL

UNIT II DATABASE DESIGN 8

Entity-Relationship model – E-R Diagrams – Enhanced-ER Model – ER-to-Relational Mapping

–Functional Dependencies – Non-loss Decomposition – First, Second, Third Normal Forms,

Dependency Preservation – Boyce/Codd Normal Form – Multi-valued Dependencies and Fourth

Normal Form – Join Dependencies and Fifth Normal Form

UNIT III TRANSACTIONS 9

Transaction Concepts – ACID Properties – Schedules – Serializability – Transaction support in

SQL– Need for Concurrency – Concurrency control –Two Phase Locking- Timestamp –

Multiversion –Validation and Snapshot isolation– Multiple Granularity locking – Deadlock

Handling – Recovery Concepts – Recovery based on deferred and immediate update – Shadow

paging – ARIES Algorithm

UNIT IV IMPLEMENTATION TECHNIQUES 9

RAID – File Organization – Organization of Records in Files – Data dictionary Storage –

Column Oriented Storage– Indexing and Hashing –Ordered Indices – B+ tree Index Files – B

tree Index Files – Static Hashing – Dynamic Hashing – Query Processing Overview –

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Algorithms for Selection, Sorting and join operations – Query optimization using Heuristics -

Cost Estimation.

UNIT V ADVANCED TOPICS 9

Distributed Databases: Architecture, Data Storage, Transaction Processing, Query processing

and optimization – NOSQL Databases: Introduction – CAP Theorem – Document Based systems

– Key value Stores – Column Based Systems – Graph Databases. Database Security: Security

issues – Access control based on privileges – Role Based access control – SQL Injection –

Statistical Database security – Flow control – Encryption and Public Key infrastructures –

Challenges

TEXT BOOKS:

1. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, “Database System Concepts”,

Seventh Edition, McGraw Hill, 2020.

2. Ramez Elmasri, Shamkant B. Navathe, “Fundamentals of Database Systems”, Seventh

Edition, Pearson Education, 2017

REFERENCES:

1. C.J.Date, A.Kannan, S.Swamynathan, “An Introduction to Database Systems”, Eighth Edition,

Pearson Education, 2006.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

PANIMALAR INSTITUTE OF TECHNOLOGY
DEPARTMENT OF INFORMATION TECHNOLOGY

CS3492 DATABASE MANAGEMENT SYSTEMS

UNIT-1 NOTES

RELATIONAL DATABASES

Purpose of Database System – Views of data – Data Models – Database System Architecture –

Introduction to relational databases – Relational Model – Keys- Relational Algebra – SQL

fundamentals – Advanced SQL features – Embedded SQL– Dynamic SQL

INTRODUCTION

“A database-management system (DBMS) is a collection of interrelated data and a set of

programs to access those data. The collection of data, usually referred to as the database,

contains information relevant to an enterprise. The primary goal of a DBMS is to provide a

way to store and retrieve database information that is both convenient and efficient.”

Database-System Applications

Databases are widely used. Here are some applications:

▪ Sales: For customer, product, and purchase information.

▪ Accounting: For payments, receipts, account balances, assets and other accounting

information.

▪ Human resources: For information about employees, salaries, payroll taxes, and

benefits, and for generation of paychecks.

▪ Manufacturing: For management of the supply chain and for tracking production of

items in factories, inventories of items in warehouses and stores, and orders for items.

▪ Online retailers: For sales data noted above plus online order tracking, generation of

recommendation lists, and maintenance of online product evaluations.

▪ Banking and Finance

o Banking: For customer information, accounts, loans, and banking transactions.

o Credit card transactions: For purchases on credit cards and generation of
monthly statements.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

o Finance: For storing information about holdings, sales, and purchases of

financial instruments such as stocks and bonds; also for storing real-time market

data to enable online trading by customers and automated trading by the firm.

▪ Universities: For student information, course registrations, and grades.

▪ Airlines: For reservations and schedule information. Airlines were among the first to

use databases in a geographically distributed manner.

▪ Telecommunication: For keeping records of calls made, generating monthly bills,

maintaining balances on prepaid calling cards, and storing information about the

communication networks.

PURPOSE OF DATABASE SYSTEMS/ CHARACTERISTICS OF DBMS
✔ The typical file processing system is supported by a conventional operating system.

✔ The system stores permanent records in various files, and it needs different application programs to

extract records from, and add records to, the appropriate files.

✔ A file processing system has a number of major disadvantages.

 Data redundancy and inconsistency.
In file processing, every user group maintains its own files for handling its data processing

applications.

Example:

Consider the UNIVERSITY database. Here, two groups of users might be the course

registration personnel and the accounting office. The accounting office also keeps data on

registration and related billing information, whereas the registration office keeps track of

student courses and grades. Storing the same data multiple times is called data redundancy.

This redundancy leads to several problems.

•Need to perform a single logical update multiple times.

•Storage space is wasted.

•Files that represent the same data may become inconsistent.

Data inconsistency is the various copies of the same data may no larger Agree. Example:

One user group may enter a student's birth date erroneously as JAN-19-1984, whereas the

other user groups may enter the correct value of JAN-29-1984. may be reflected in the

Music department records but not elsewhere in the system.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

 Difficulty in accessing data.

Suppose that one of the university clerks needs to find out the names of all students who

live within a particular postal-code area. The clerk asks the data-processing department to

generate such a list. Because the designers of the original system did not anticipate this

request, there is no application program on hand to meet it. There is, however, an

application program to generate the list of all students.

The university clerk has now two choices: either obtain the list of all students and extract

the needed information manually or ask a programmer to write the necessary application

program. Both alternatives are obviously unsatisfactory.

Suppose that such a program is written, and that, several days later, the same clerk needs to

trim that list to include only those students who have taken at least 60 credit hours. As

expected, a program to generate such a list does not exist. Again, the clerk has the

preceding two options, neither of which is satisfactory. The point here is that conventional

file-processing environments do not allow needed data to be retrieved in a convenient and

efficient manner.

 Data isolation. Because data are scattered in various files, and files may be in different

formats, writing new application programs to retrieve the appropriate data is difficult.

 Integrity problems. The data values stored in the database must satisfy certain types of

consistency constraints. Suppose the university maintains an account for each department,

and records the balance amount in each account. Suppose also that the university requires

that the account balance of a department may never fall below zero. Developers enforce

these constraints in the system by adding appropriate code in the various application

programs.

 Atomicity problems. A computer system, like any other device, is subject to failure. In

many applications, it is crucial that, if a failure occurs, the data be restored to the

consistent state that existed prior to the failure. Consider a program to transfer $500 from

the account balance of department A to the account balance of department B. If a system

failure occurs during the execution of the program, it is possible that the $500 was

removed from the balance of department A but was not credited to the balance of

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

department B, resulting in an inconsistent database state.

 Concurrent-access anomalies. For the sake of overall performance of the system and

faster response, many systems allow multiple users to update the data simultaneously. In

such an environment, interaction of concurrent updates is possible and may result in

inconsistent data. To guard against this possibility, the system must maintain some form of

supervision. But supervision is difficult to provide because data may be accessed by many

different application programs that have not been coordinated previously.

 Example: When several reservation clerks try to assign a seat on an airline flight, the

system should ensure that each seat can be accessed by only one clerk at a time for

assignment to a passenger.

● Security problems.

Enforcing security constraints to the file processing system is difficult

VIEWS OF DATA

A database system is a collection of interrelated data and a set of programs that allow users to

access and modify these data. A major purpose of a database system is to provide users with an

abstract view of the data. That is, the system hides certain details of how the data are stored

and maintained.

Data Abstraction

Since many database-system users are not computer trained, developers hide the complexity

from users through several levels of abstraction, to simplify users’ interactions with the system:

● Physical level. The lowest level of abstraction describes how the data are actually

stored. The physical level describes complex low-level data structures in detail.

● Logical level. The next-higher level of abstraction describes what data are stored in the

database, and what relationships exist among those data. The logical level thus

describes the entire database in terms of a small number of relatively simple structures.

This is referred to as physical data independence.

● View level. The highest level of abstraction describes only part of the entire database.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Fig: Views of Data

Instances and Schemas

Databases change over time as information is inserted and deleted. The collection of

information stored in the database at a particular moment is called an instance of the database.

The overall design of the database is called the database schema.

Database systems have several schemas, partitioned according to the levels of abstraction. The

physical schema describes the database design at the physical level, while the logical schema

describes the database design at the logical level.

A database may also have several schemas at the view level, sometimes called subschemas

that describe different views of the database. Application programs are said to exhibit physical

data independence if they do not depend on the physical schema, and thus need not be

rewritten if the physical schema changes.

DATABASE MODELS

A Database model defines the logical design and structure of a database and defines how

data will be stored, accessed and updated in a database management system.

Types of data models

a. Hierarchical Model

b. Network Model

c. Entity-relationship Model

d. Relational Model

a. Hierarchical Model

This database model organizes data into a tree-like-structure, with a single root, to which all

the other data is linked. The hierarchy starts from the Root data, and expands like a tree,

adding child nodes to the parent nodes. In this model, a child node will only have a single

parent node.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Fig: Hierarchical Model

b. Network Model

This is an extension of the Hierarchical model. In this model data is organized more like a

graph, and are allowed to have more than one parent node. This database model was used to

map many-to-many data relationships.

Fig: Network Model

c. Entity-relationship Model

In this database model, relationships are created by dividing object into entity and its

characteristics into attributes. Different entities are related using relationships.

Let's take an example, If we have to design a School Database, then Student will be

an entity with attributes name, age, address etc. As Address is generally complex, it can

be another entity with attributes street name, pincode, city etc, and there will be a relationship

between them.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Fig: Entity-relationship Model

d. Relational Model

In this model, data is organized in two-dimensional tables and the relationship is

maintained by storing a common field. The basic structure of data in the relational

model is tables. All the information related to a particular type is stored in rows of that

table. Hence, tables are also known as relations in relational model.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Fig: Relational Model

Object oriented model:

In the object-oriented data model (OODM) both data and their relationships are contained in a single

structure known as an object. An object is described by its factual content. An object includes

information about relationships between the facts within the object, as well as information about its

relationships with other objects. Therefore, the facts within the object are given greater meaning. The

OODM is said to be a semantic data model because semantic indicates meaning. The OO data model is

based on the following components:

An object is an abstraction of a real-world entity.

Attributes describe the properties of an object.

Concepts of Database Architecture (Tier Architecture)

Database architecture uses programming languages to design a particular type of software for

businesses or organizations. Database architecture focuses on the design, development,

implementation and maintenance of computer programs that store and organize information for

businesses, agencies and institutions. A database architect develops and implements software

to meet the needs of users.

The design of a DBMS depends on its architecture. It can be centralized or decentralized or

hierarchical. The architecture of a DBMS can be seen as either single tier or multi-tier.

The tiers are classified as follows:

a) 1-tier architecture

b) 2-tier architecture

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

c) 3-tier architecture

d) 4- n-tier architecture

a) 1-tier architecture

One-tier architecture involves putting all of the required components for a software application

or technology on a single server or platform.

Fig: 1-tier architecture

Basically, a one-tier architecture keeps all of the elements of an application, including the

interface, Middleware and back-end data, in one place.

b) 2-tier architecture

The two-tier is based on Client Server architecture. The two-tier architecture is like client

server application. The direct communication takes place between client and server. There is

no intermediate between client and server.

Advantages

1. Easy to maintain and modification is bit easy.

2. Communication is faster.

Disadvantages

1. In two tier architecture application performance will be degrade upon increasing the users.

2. Cost-ineffective.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Fig: 2-tier architecture

c) 3-tier architecture

A 3-tier architecture separates its tiers from each other based on the complexity of the users

and how they use the data present in the database. It is the most widely used architecture to

design a DBMS.

It can be used in web applications and distributed applications.

Fig: 3-tier architecture
d) N-tier architecture
N-tier architecture would involve dividing an application into three different tiers. These would

be the

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

1. logic tier,

2. the presentation tier, and

3. The data tier.

Fig: N-tier architecture

Database System Architecture

DBMS (Database Management System) acts as an interface between the user and the

database. The user requests the DBMS to perform various operations such as insert, delete,

update and retrieval on the database.

The components of DBMS perform these requested operations on the database and provide

necessary data to the users.

Transaction Management

A transaction is a collection of operations that performs a single logical function in a database application.

Transaction-management component ensures that the database remains in a consistent (correct) state despite

system failures (e.g. power failures and operating system crashes) and transaction failures.

Concurrency-control manager controls the interaction among the concurrent transactions, to ensure the

consistency of the database.

Storage Management

• A storage manager is a program module that provides the interface between the low-level data stored

in the database and the application programs and queries submitted to the system.

• The storage manager is responsible for the following tasks:

• Interaction with the file manager

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

• Efficient storing, retrieving, and Storage Management

Database Administrator

• Coordinates all the activities of the database system; the database administrator has a good

understanding of the enterprise’s information resources and needs:

• Schema definition

• Storage structure and access method definition

• Schema and physical organization modification

• Granting user authority to access the database

• Specifying integrity constraints

• Monitoring performance and responding to changes in requirements

Database Users

Users are differentiated by the way they expect to interact with the system.

• Application programmers: interact with system through DML calls.

• Sophisticated users – form requests in a database query language

• Specialized users – write specialized database applications that do not fit into the traditional data

processing framework

• Naive users – invoke one of the permanent application programs that have been written previously

File manager

manages allocation of disk space and data structures used to represent information on disk.

Database manager

The interface between low level data and application programs and queries.

Query processor

translates statements in a query language into low-level instructions the database manager understands.

The various components of DBMS are described below:

1. DDL Compiler:

o Data Description Language compiler processes schema definitions specified in

the DDL.

o It includes metadata information such as the name of the files, data items,

storage details of each file, mapping information and constraints etc.

2. DML Compiler and Query optimizer:
o The DML commands such as insert, update, delete, retrieve from the application

program are sent to the DML compiler for compilation into object code for

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

database access.

o The object code is then optimized in the best way to execute a query by the

query optimizer and then send to the data manager.

Fig: Component modules of a DBMS and their interactions.

3. Data Manager:

o The Data Manager is the central software component of the DBMS also knows

as Database Control System.

o The Main Functions Of Data Manager Are:

1. Convert operations in user's Queries coming from the application programs

or combination of DML Compiler and Query optimizer which is known as

Query Processor from user's logical view to physical file system.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

2. Controls DBMS information access that is stored on disk.

3. It also enforces constraints to maintain consistency and integrity of the data.

4. It also synchronizes the simultaneous operations performed by the

concurrent users.

5. It also controls the backup and recovery operations.

4. Data Dictionary:

o Data Dictionary, stores metadata about the database.

o Data dictionary is used to actually control the data integrity, database operation

and accuracy. It may be used as a important part of the DBMS

5. Data Files:

o Which store the database itself.

6. Compiled DML:

o The DML complier converts the high level Queries into low level file access

commands known as compiled DML.

7. End Users:

o The second class of users is end user, who interacts with system from online

workstation or terminals.

3. Query Processor Units:

a) Machine only understand low level language, so it is the task of query

processor to convert user’s queries in the series of low level instruction. Then after,

it sends these instructions to database manager for execution. There are various

component of query processor.

b) DDL Complier: it records the DDL statements into set of tables containing

data dictionary. It coverts DDL statement into object form from source form.

c) DML Complier: It converts DML statements into low level instructions that

are more easy to understand by query evaluation engine.

d) Query Evaluation Engine: Queries generated by DML compiler are executed

in Query evaluation Engine. DDL Interpreter

4. Storage Manager Units

a) Checks the authority of users to access data.

b) Checks for the satisfaction of the integrity constraints.

c) Preserves atomicity and controls concurrency.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

d) Manages allocation of space on disk.

INTRODUCTION TO RELATIONAL DATABASES
A relational database is based on the relational model and uses a collection of tables to

represent both data and the relationships among those data. It also includes a DML and DDL.

The relational model is an example of a record-based model. Record-based models are so

named because the database is structured in fixed-format records of several types.

A relational database consists of a collection of tables, each of which is assigned a unique

name. A row in a table represents a relationship among a set of values.

RELATIONAL MODEL EXAMPLE

RELATIONAL DATA MODEL IN DBMS: CONCEPTS, CONSTRAINTS, EXAMPLE

The relational model represents the database as a collection of relations. A relation is nothing

but a table of values. Every row in the table represents a collection of related data values.

These rows in the table denote a real-world entity or relationship.

Some popular Relational Database management systems are:

● DB2 and Informix Dynamic Server - IBM

● Oracle and RDB – Oracle

● SQL Server and Access - Microsoft

Relational Model Concepts

1. Attribute: Each column in a Table. Attributes are the properties which define a

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

relation. e.g., Student_Rollno, NAME,etc.

2. Tables – In the Relational model the, relations are saved in the table format. It is stored

along with its entities. A table has two properties

rows and columns. Rows represent records and columns represent attributes.

3. Tuple – It is nothing but a single row of a table, which contains a single record.

4. Relation Schema: A relation schema represents the name of the relation with its attributes.

5. Degree: The total number of attributes which in the relation is called the degree of the

relation.

6. Cardinality: Total number of rows present in the Table.

7. Column: The column represents the set of values for a specific attribute.

8. Relation instance – Relation instance is a finite set of tuples in the RDBMS system.

Relation instances never have duplicate tuples.

9. Relation key - Every row has one, two or multiple attributes, which is called relation key.

10. Attribute domain – Every attribute has some pre-defined value and scope which is

known as attribute domain

Fig: Relational Model Concepts

Relational Integrity constraints

Relational Integrity constraints is referred to conditions which must be present for a valid

relation. These integrity constraints are derived from the rules in the mini-world that the

database represents.

Constraints on the Relational database management system are mostly divided into three main

categories are:

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

a) Domain constraints

b) Key constraints

c) Referential integrity constraints

a) Domain Constraints

Domain constraints can be violated if an attribute value is not appearing in the corresponding

domain or it is not of the appropriate data type.

Domain constraints specify that within each tuple, and the value of each attribute must be

unique. This is specified as data types which include standard data types integers, real

numbers, characters, Booleans, variable length strings, etc.

Example:

Create DOMAIN CustomerName CHECK (value not NULL)

The example shown demonstrates creating a domain constraint such that CustomerName is not

NULL.

Key constraints

An attribute that can uniquely identify a tuple in a relation is called the key of the table. The

value of the attribute for different tuples in the relation has to be unique.

Example:

In the given table, CustomerID is a key attribute of Customer Table. It is most likely to have a

single key for one customer, CustomerID =1 is only for the CustomerName =" Google".

Fig: Relational Integrity constraints

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

b) Referential integrity constraints

Referential integrity constraints is based on the concept of Foreign Keys. A foreign key is an

important attribute of a relation which should be referred to in other relationships. Referential

integrity constraint state happens where relation refers to a key attribute of a different or same

relation. However, that key element must exist in the table.

Example:

In the below example, we have 2 relations, Customer and Billing.

Tuple for CustomerID =1 is referenced twice in the relation Billing. So we know

CustomerName=Google has billing amount $300

Operations in Relational Model

Insert, update, delete and

select.

● Insert is used to insert data into the relation

● Delete is used to delete tuples from the table.

● Modify allows you to change the values of some attributes in existing tuples.

● Select allows you to choose a specific range of data.

Whenever one of these operations are applied, integrity constraints specified on the relational

database schema must never be violated.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

a) Insert Operation

The insert operation gives values of the attribute for a new tuple which should be inserted into

a relation.

b) Update Operation

You can see that in the below-given relation table CustomerName= 'Apple' is updated from

Inactive to Active.

c) Delete Operation

To specify deletion, a condition on the attributes of the relation selects the tuple to be deleted.

In the above-given example, CustomerName= "Apple" is deleted from the table.

The Delete operation could violate referential integrity if the tuple which is deleted is

referenced by foreign keys from other tuples in the same database.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

d) Select Operation

In the above-given example, CustomerName="Amazon" is selected

Best Practices for creating a Relational Model

● Data need to be represented as a collection of relations

● Each relation should be depicted clearly in the table

● Rows should contain data about instances of an entity

● Columns must contain data about attributes of the entity

● Cells of the table should hold a single value

● Each column should be given a unique name

● No two rows can be identical

● The values of an attribute should be from the same domain

Advantages of using Relational model

● Simplicity: A relational data model is simpler than the hierarchical and network model.

● Structural Independence: The relational database is only concerned with data and not

with a structure. This can improve the performance of the model.

● Easy to use: The relational model is easy as tables consisting of rows and columns is

quite natural and simple to understand

● Query capability: It makes possible for a high-level query language like SQL to avoid

complex database navigation.

● Data independence: The structure of a database can be changed without having to

change any application.

● Scalable: Regarding a number of records, or rows, and the number of fields, a database

should be enlarged to enhance its usability.

Disadvantages of using Relational model

● Few relational databases have limits on field lengths which can't be exceeded.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

● Relational databases can sometimes become complex as the amount of data grows, and

the relations between pieces of data become more complicated.

● Complex relational database systems may lead to isolated databases where the

information cannot be shared from one system to another.

Keys in Database Management System (DBMS)

Database table consists of rows and columns, which are technically called 'record or

tuple' and 'attributes or fields' respectively. A database table is generally called a 'relation'.

The keys are used to uniquely identify a record (row) in the table. Which key should be used

depends on requirement.

1. Table = Relation

2. Row = Record/Tuple

3. Column = Attribute/Field

Example:

List of keys in DBMS

1. Super key

2. Candidate key

3. Primary key

4. Composite key

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

5. Compound key

6. Secondary or Alternative key

7. Non- key attribute

8. Non- prime attribute
9. Foreign key

10. Simple key

11. Artificial key

1) Super keys

Super key is a set of one or more than one columns (attributes) which uniquely identifies

each record in a table. Super key is a super set of candidate key.

For example: Roll No. is unique in relation. This can be selected as a super key. Also we

can select more than one column as a super key to uniquely identify a row, like roll no., First

name.

2) Candidate keys

Candidate key is a set of one or more than one columns (attributes) which uniquely

identifies each record in a table, but there must not be redundant values (repetition of cells)

in selected attribute. Candidate key is a sub set of Super key.

For example: Roll No. is unique in relation. This can be selected as a candidate key. Also

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

we can select more than one column as a candidate key to uniquely identify a record. Unlike

the super key in above example we can select only those attributes which don’t have repeating

cells like course code.

3) Primary keys

Primary key is used to uniquely identify a record in relation. The primary keys are

compulsory in every table. The primary keys are having model stability, occurrence of

minimum fields, being definitive and feature of accessibility.

Only Roll No. is unique in the above table, so it is selected as primary key. Course code can

also be selected as a primary key.

4) Composite keys

Composite Key has at-least two or more than two attributes which specially identifies the

occurrence of an entity.

In the above example the Roll No. and Course Code is combined to uniquely identify the

record in relation.

5) Compound key

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Like other keys Compound key is also used to uniquely recognize a record in relation.

This can be an attribute or a set of attributes, but the attributes in relation cannot be use

as independent keys. If we use them individually, we will not get any unique record.

6) Secondary or Alternative key

The key other than primary keys are called as secondary or alternative keys. Example: If

we consider Roll No. and Course code as primary key then First Name of Student and First

Name of Student will be Secondary/alternate keys.

7) Non-key Attribute

The attributes excluding the candidate keys are called as non-key attributes.

Example: If we consider Roll No. and Course code as candidate key then First Name of

Student and First Name of Student will be Non Key attribute.

8) Non-prime Attribute

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Excluding primary attributes in a table are non-prime attributes.

Example: It is considered as only Roll No. is primary key, so all the remaining attributes will

be non-prime attributes, but if we considering course code also a primary key than it will not

non-prime attribute.

9) Foreign keys

Foreign key is a key of one table, which points to the primary key in second table. It has a

relationship with primary key in another table.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

The "BusinessEntityID" attribute in the "Person" relation is the PRIMARY

KEY. The "BusinessEntityID" attribute in the "PersonPhone"relation is a FOREIGN

KEY.

10) Simple key

Simple key is a single cell to specially identify a record. The single cell cannot be divided

into more cells. Primary key is a super set of simple key.

Example: In the below example student id is a single field because no other student will have

same Id. Therefore, it is a simple key.

11) Artificial key

When primary key is very large and complex, then ‘Artificial keys’ are used.

RELATIONAL ALGEBRA

Relational algebra is a procedural query language that works on relational model. The purpose

of a query language is to retrieve data from database or perform various operations such as

insert, update, delete on the data.

On the other hand relational calculus is a non-procedural query language, which means it tells

what data to be retrieved but doesn’t tell how to retrieve it.

Types of operations in relational algebra

1. Basic Operations

2. Derived Operations

Basic/Fundamental Operations:
1. Select (σ)

2. Project (∏)

3. Union (𝖴)

4. Set Difference (-)

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

5. Cartesian product (X)

6. Rename (ρ)

Derived Operations:

1. Natural Join (⋈)

2. Left, Right, Full outer join (⟕,⟖,⟗)

3. Intersection (∩)

4. Division (÷)

1. Select Operator (σ)

Select Operator is denoted by sigma (σ) and it is used to find the tuples (or rows) in a relation

(or table) which satisfy the given condition.

Syntax of Select Operator (σ)

σ Condition/Predicate(Relation/Table name)

Select Operator (σ) Example

Table: CUSTOMER

Customer_Id Customer_Name Customer_City

C10100 Steve Agra

C10111 Raghu Agra

C10115 Chaitanya Noida

C10117 Ajeet Delhi

C10118 Carl Delhi

Query:
σ Customer_City="Agra" (CUSTOMER)

Output:

Customer_Id Customer_Name Customer_City

C10100 Steve Agra

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

C10111 Raghu Agra

2. Project Operator (∏)

Project operator is denoted by ∏ symbol and it is used to select desired columns (or attributes)

from a table (or relation).

Project operator in relational algebra is similar to the Select statement in SQL.

Syntax of Project Operator (∏)

∏ column_name1, column_name2, , column_nameN(table_name)

Project Operator (∏) Example

In this example, we have a table CUSTOMER with three columns, we want to fetch only two

columns of the table, which we can do with the help of Project Operator ∏.

Table: CUSTOMER

Customer_Id Customer_Name Customer_City

C10100 Steve Agra

C10111 Raghu Agra

C10115 Chaitanya Noida

C10117 Ajeet Delhi

C10118 Carl Delhi

Query:

∏ Customer_Name, Customer_City (CUSTOMER)

Output:
Customer_Name Customer_City

Steve Agra

Raghu Agra

Chaitanya Noida

Ajeet Delhi

Carl Delhi

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

https://beginnersbook.com/2018/11/sql-select/

3. Union Operator (𝖴)

Union operator is denoted by 𝖴 symbol and it is used to select all the rows (tuples) from two

tables (relations).

Let’s say we have two relations R1 and R2 both have same columns and we want to select all

the tuples(rows) from these relations then we can apply the union operator on these relations.

Note: The rows (tuples) that are present in both the tables will only appear once in the union

set. In short you can say that there are no duplicates present after the union operation.

Syntax of Union Operator (𝖴)

table_name1 𝖴 table_name2

Union Operator (𝖴) Example

Course_Id Student_Name Student_Id

C101 Aditya S901

C104 Aditya S901

C106 Steve S911

C109 Paul S921

C115 Lucy S931

Table 1: COURSE

Student_Id Student_Name Student_Age

S901 Aditya 19

S911 Steve 18

S921 Paul 19

S931 Lucy 17

S941 Carl 16

S951 Rick 18

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Table 2: STUDENT

Query:

∏ Student_Name (COURSE) 𝖴∏ Student_Name (STUDENT)

Output:

Student_Name

Aditya

Carl

Paul

Lucy

Rick

Steve

4. Intersection Operator (∩)

Intersection operator is denoted by ∩ symbol and it is used to select common rows (tuples)

from two tables (relations).

Syntax of Intersection Operator (∩)

table_name1 ∩ table_name2

Intersection Operator (∩) Example

Course_Id Student_Name Student_Id

C101 Aditya S901

C104 Aditya S901

C106 Steve S911

C109 Paul S921

C115 Lucy S931

Table 1: COURSE

Student_Id Student_Name Student_Age

S901 Aditya 19

S911 Steve 18

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

S921 Paul 19

S931 Lucy 17

S941 Carl 16

S951 Rick 18

Table 2: STUDENT

Query:

∏ Student_Name (COURSE) ∩ ∏ Student_Name (STUDENT)

Output:

Student_Name

Aditya

Steve

Paul

Lucy

5. Set Difference (-)

Set Difference is denoted by – symbol. Let’s say we have two relations R1 and R2 and we want

to select all those tuples(rows) that are present in Relation R1 but not present in Relation R2,

this can be done using Set difference R1 – R2.

Syntax of Set Difference (-)

table_name1 - table_name2

Query:

Let’s write a query to select those student names that are present in STUDENT table but not

present in COURSE table.

∏ Student_Name (STUDENT) - ∏ Student_Name (COURSE)

Output:

Student_Name

Carl

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Rick

6. Cartesian product (X)

Cartesian product is denoted by X symbol. Let’s say we have two relations R1 and R2 then the

Cartesian product of these two relations (R1 X R2) would combine each tuple of first relation

R1 with the each tuple of second relation R2. I know it sounds confusing but once we take an

example of this, you will be able to understand this.

Syntax of Cartesian product (X)

R1 X R2

Cartesian product (X) Example

Col_A Col_B

AA 100

BB 200

CC 300

Table 1: R

Col_X Col_Y

XX 99

YY 11

ZZ 101

Table 2: S

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Query:

Let’s find the Cartesian product of table R and S.

R X S

Output:

Col_A Col_B Col_X Col_Y

AA 100 XX 99

AA 100 YY 11

AA 100 ZZ 101

BB 200 XX 99

BB 200 YY 11

BB 200 ZZ 101

CC 300 XX 99

CC 300 YY 11

CC 300 ZZ 101

Note: The number of rows in the output will always be the cross product of number of rows in

each table. In our example table 1 has 3 rows and table 2 has 3 rows so the output has 3×3 = 9

rows.

7. Rename (ρ)

Rename (ρ) operation can be used to rename a relation or an attribute of a relation.

Syntax:

ρ(new_relation_name, old_relation_name)

Rename (ρ) Example

Let’s say we have a table customer, we are fetching customer names and we are renaming the

resulted relation to CUST_NAMES.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Table: CUSTOMER

Customer_Id Customer_Name Customer_City

C10100 Steve Agra

C10111 Raghu Agra

C10115 Chaitanya Noida

C10117 Ajeet Delhi

C10118 Carl Delhi

Query:

ρ(CUST_NAMES, ∏(Customer_Name)(CUSTOMER))

Output:

CUST_NAMES

Steve

Raghu

Chaitanya

Ajeet

Carl

8. Joins

Join is a combination of a Cartesian product followed by a selection process. A Join operation

pairs two tuples from different relations, if and only if a given join condition is satisfied.

Types of join

✔ Theta (θ) Join

Theta join combines tuples from different relations provided they satisfy the theta condition.

The join condition is denoted by the symbol θ.

Notation

R1 ⋈θ R2

R1 and R2 are relations having attributes (A1, A2, .., An) and (B1, B2,.. ,Bn) such that the

attributes don’t have anything in common, that is R1 ∩ R2 = Φ.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Theta join can use all kinds of comparison operators.

Student

SID Name Std

101 Alex 10

102 Maria 11

Subjects

Class Subject

10 Math

10 English

11 Music

11 Sports

Student_Detail −

STUDENT ⋈Student.Std = Subject.Class SUBJECT

Student_detail

SID Name Std Class Subject

101 Alex 10 10 Math

101 Alex 10 10 English

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

102 Maria 11 11 Music

102 Maria 11 11 Sports

Equijoin

✔ When Theta join uses only equality comparison operator, it is said to be equijoin. The

above example corresponds to equijoin.

Natural Join (⋈)

✔ Natural join does not use any comparison operator. It does not concatenate the way a

Cartesian product does. We can perform a Natural Join only if there is at least one

common attribute that exists between two relations. In addition, the attributes must

have the same name and domain.

✔ Natural join acts on those matching attributes where the values of attributes in both the

relations are same.

Courses

CID Course Dept

CS01 Database CS

ME01 Mechanics ME

EE01 Electronics EE

HoD

Dept Head

CS Alex

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

ME Maya

EE Mira

Courses ⋈ HoD

Dept CID Course Head

CS CS01 Database Alex

ME ME01 Mechanics Maya

EE EE01 Electronics Mira

✔ Outer Joins

Theta Join, Equijoin, and Natural Join are called inner joins. An inner join includes only those

tuples with matching attributes and the rest are discarded in the resulting relation.

There are three kinds of outer joins − left outer join, right outer join, and full outer join.

✔ Left Outer Join(R S)

All the tuples from the Left relation, R, are included in the resulting relation. If there are

tuples in R without any matching tuple in the Right relation S, then the S-attributes of the

resulting relation are made NULL.

Left

A B

100 Database

101 Mechanics

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

102 Electronics

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Right

A B

100 Alex

102 Maya

104 Mira

Courses HoD

A B C D

100 Database 100 Alex

101 Mechanics --- ---

102 Electronics 102 Maya

✔ Right Outer Join: (R S)

All the tuples from the Right relation, S, are included in the resulting relation. If there are

tuples in S without any matching tuple in R, then the R-attributes of resulting relation are

made NULL.

Courses HoD

A B C D

100 Database 100 Alex

102 Electronics 102 Maya

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

--- --- 104 Mira

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

✔ Full Outer Join: (R S)

All the tuples from both participating relations are included in the resulting relation. If there

are no matching tuples for both relations, their respective unmatched attributes are made

NULL.

Courses HoD

A B C D

100 Database 100 Alex

101 Mechanics --- ---

102 Electronics 102 Maya

--- --- 104 Mira

SQL FUNDAMENTALS

SQL | DDL, DQL, DML, DCL and TCL Commands

Structured Query Language(SQL) is the database language which can perform certain

operations on the existing database and also we can use this language to create a database.

SQL uses certain commands like Create, Drop, Insert etc. to carry out the required tasks.

These SQL commands are mainly categorized into four categories as:

1. DDL – Data Definition Language

2. DQl – Data Query Language

3. DML – Data Manipulation Language

4. DCL – Data Control Language

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

1. DDL(Data Definition Language) : DDL or Data Definition Language actually

consists of the SQL commands that can be used to define the database schema. It simply

deals with descriptions of the database schema and is used to create and modify the

structure of database objects in the database.

Examples of DDL commands:

● CREATE – is used to create the database or its objects (like table, index, function,

views, store procedure and triggers).

● DROP – is used to delete objects from the database.

● ALTER-is used to alter the structure of the database.

● TRUNCATE–is used to remove all records from a table, including all spaces

allocated for the records are removed.

● COMMENT –is used to add comments to the data dictionary.

● RENAME –is used to rename an object existing in the database.

2. DQL (Data Query Language) :

DML statements are used for performing queries on the data within schema objects.

The purpose of DQL Command is to get some schema relation based on the query

passed to it.

Example of DQL:

● SELECT – is used to retrieve data from the a database.

3. DML(Data Manipulation Language) : The SQL commands that deals with the

manipulation of data present in the database belong to DML or Data Manipulation

Language and this includes most of the SQL statements.

Examples of DML:

● INSERT – is used to insert data into a table.

● UPDATE – is used to update existing data within a table.

● DELETE – is used to delete records from a database table.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

4. DCL(Data Control Language) : DCL includes commands such as GRANT and

REVOKE which mainly deals with the rights, permissions and other controls of the

database system.

Examples of DCL commands:

● GRANT-gives user’s access privileges to database.

● REVOKE-withdraw user’s access privileges given by using the GRANT

command.

5. TCL(transaction Control Language) : TCL commands deals with the transaction

within the database.

Examples of TCL commands:

● COMMIT– commits a Transaction.

● ROLLBACK– rollbacks a transaction in case of any error occurs.

● SAVEPOINT–sets a savepoint within a transaction.

● SET TRANSACTION–specify characteristics for the transaction.
1. DDL
commands SQL:
create command

Create is a DDL SQL command used to create a table or a database in relational database

management system.

Creating a Database

To create a database in RDBMS, create command is used. Following is the syntax,

create database <db_name>

Example for creating

Database create database test;

The above command will create a database named test, which will be an empty schema

without any table.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

To create tables in this newly created database, we can again use the create command.

Creating a Table

Create command can also be used to create tables. Now when we create a table, we have to

specify the details of the columns of the tables too. We can specify the names and data types

of various columns in the create command itself.

Following is the syntax,

create table <table_name> (

column_name1 datatype1, column_name2 datatype2, column_name3 datatype3,

column_name4 datatype4

);

create table command will tell the database system to create a new table with the given table

name and column information.

Most commonly used data types for Table columns

Datatype Use

INT used for columns which will store integer values.

FLOAT used for columns which will store float values.

DOUBLE used for columns which will store float values.

VARCHAR used for columns which will be used to store characters and integers, basically a string.

CHAR used for columns which will store char values(single character).

DATE used for columns which will store date values.

TEXT

used for columns which will store text which is generally long in length. For example, if

you create a table for storing profile information of a social networking website, then for

about me section you can have a column of type TEXT.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Example:

SQL> create table bankAccount(id number(3),custname varchar(15),branch varchar(10));

Table created.

SQL> desc bankAccount;

Name Null? Type

ID NUMBER(3)

CUSTNAME VARCHAR2(15)

BRANCH VARCHAR2(10)

SQL: ALTER command

alter command is used for altering the table structure, such as,

● to add a column to existing table

● to rename any existing column

● to change datatype of any column or to modify its size.

● to drop a column from the table.

ALTER Command: Add a new Column

Using ALTER command we can add a column to any existing table. Following is the syntax,

ALTER TABLE table_name ADD(column_name datatype);

ALTER TABLE table_name ADD(column_name datatype);

SQL> alter table bankAccount add city varchar(10);

Table altered.

ALTER Command: Add multiple new Columns

Using ALTER command we can even add multiple new columns to any existing table.

Following is the syntax,

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

ALTER TABLE table_name ADD(column_name1 datatype1, column-name2 datatype2,);

ALTER Command: Add Column with default value

ALTER command can add a new column to an existing table with a default value too. The

default value is used when no value is inserted in the column. Following is the syntax,

ALTER TABLE table_name ADD(column-name1 datatype1 DEFAULT some_value);

ALTER Command: Modify an existing Column

ALTERcommand can also be used to modify data type of any existing column. Following is

the syntax,

ALTER TABLE table_name modify(column_name

datatype); SQL> alter table bankAccount modify id number(4);

Table altered.

SQL> desc bankAccount;

Name Null? Type

ID NUMBER(4)

CUSTNAME VARCHAR2(15)

BRANCH VARCHAR2(10)

ALTER Command: Rename a Column

Using ALTERcommand you can rename an existing column. Following is the syntax,

ALTER TABLE table_name RENAME old_column_name TO new_column_name;

SQL> alter table bankAccount drop column branch;

Table altered.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

SQL> desc bankAccount;

Name Null? Type

ID NUMBER(4)

CUSTNAME VARCHAR2(15)

CITY VARCHAR2(10)

SQL> alter table bankAccount rename to

acct; Table altered.

SQL> desc acct;

Name Null? Type

ID NUMBER(4)

CUSTNAME VARCHAR2(15)

CITY VARCHAR2(10)

ALTER Command: Drop a Column

ALTERcommand can also be used to drop or remove columns. Following is the syntax,

ALTER TABLE table_name DROP(column_name);

TRUNCATE command

TRUNCATE command removes all the records from a table. But this command will not

destroy the table's structure. When we use TRUNCATE command on a table its (auto-

increment) primary key is also initialized. Following is its syntax,

TRUNCATE TABLE table_name

SQL> truncate table bankAccount;

Table truncated.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

SQL> desc bankAccount;

Name Null? Type

ID NUMBER(4)

CUSTNAME VARCHAR2(15)

CITY VARCHAR2(10)

DROP command

DROP command completely removes a table from the database. This command will also

destroy the table structure and the data stored in it. Following is its syntax,

DROP TABLE table_name

SQL> drop table bankAccount ;

Table dropped.

RENAME query

RENAMEcommand is used to set a new name for any existing table. Following is the syntax,

RENAME TABLE old_table_name to new_table_name

2. DML Command

Using INSERT SQL command

Data Manipulation Language (DML) statements are used for managing data in database. DML

commands are not auto-committed. It means changes made by DML command are not

permanent to database, it can be rolled back.

INSERT command

Insert command is used to insert data into a table. Following is its general

syntax, INSERT INTO table_name VALUES(data1, data2, ...)

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Insert value into only specific columns

We can use the INSERT command to insert values for only some specific columns of a row.

We can specify the column names along with the values to be inserted like this,

INSERT INTO student(id, name) values(value, value);

The above SQL query will only insert id and name values in the newly inserted record.

Insert NULL value to a column

Both the statements below will insert NULL value into age column of the student table.

SQL> desc acct;

Name Null? Type

ID NUMBER(4)

CUSTNAME VARCHAR2(15)

CITY VARCHAR2(10)

INSERT – is used to insert data into a table.

SQL> insert into acct

values(101,'santhosh','mumbai'); 1 row created.

SQL> select * from acct;

ID CUSTNAME CITY

101 santhosh Mumbai

SQL> insert into acct

values(&id,'&custname','&city'); Enter value for id:

102

Enter value for custname:

sreeram Enter value for city:

bangalore

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

https://www.geeksforgeeks.org/sql-insert-statement/

old 2: values(&id,'&custname','&city')

new 2: values(102,'sreeram','bangalore')

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

1 row created.

SQL> /

Enter value for id: 103

Enter value for custname:

mohan Enter value for city:

kerala

old 2: values(&id,'&custname','&city')

new 2: values(103,'mohan','kerala')

1 row
created.

SQL> /

Enter value for id: 104

Enter value for custname: setti

Enter value for city: bengal

old 2: values(&id,'&custname','&city')

new 2: values(104,'setti','bengal')

1 row
created.

SQL> /

Enter value for id: 105

Enter value for custname:

balaji Enter value for city:

delhi

old 2: values(&id,'&custname','&city')

new 2: values(105,'balaji','delhi')

1 row created.

SQL> select * from acct;

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

ID CUSTNAME CITY

101 santhosh mumbai

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

102 sreeram bangalore

103 mohan kerala

104 setti bengal

105 balaji delhi

Using UPDATE SQL command

UPDATE command

UPDATE command is used to update any record of data in a table. Following is its general

syntax,

UPDATE table_name SET column_name = new_value WHERE some_condition;

WHERE is used to add a condition to any SQL query, we will soon study about it in detail.

Updating Multiple Columns

We can also update values of multiple columns using a single UPDATE statement.

UPDATE student SET name='Abhi', age=17 where s_id=103;

The above command will update two columns of the record which has s_id 103.

S_ID NAME AGE

101 Adam 15

102 Alex 18

103 Abhi 17

UPDATE Command: Incrementing Integer Value

UPDATE student SET age = age+1;

As you can see, we have used age = age + 1 to increment the value of age by 1.

NOTE: This style only works for integer values.

UPDATE – is used to update existing data within a table.

SQL> update acct set custname='raju',city='trichy' where id=104;

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

https://www.geeksforgeeks.org/sql-update-statement/

1 row updated.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

SQL> select * from acct;

ID CUSTNAME CITY

101 santhosh mumbai

102 sreeram bangalore

103 mohan kerala

104 raju trichy

105 balaji delhi

Using DELETE SQL command

DELETE command

DELETE command is used to delete data from a

table. Following is its general syntax,

DELETE FROM table_name;

Let's take a sample table student:

S_ID NAME AGE

101 Adam 15

102 Alex 18

103 Abhi 17

Delete all Records from a Table

DELETE FROM student;

The above command will delete all the records from the table student.

Delete a particular Record from a Table

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

In our student table if we want to delete a single record, we can use the WHERE clause to

provide a condition in our DELETE statement.

DELETE FROM student WHERE s_id=103;

The above command will delete the record where s_id is 103 from the table student.

S_ID S_NAME AGE

101 Adam 15

102 Alex 18

Isn't DELETE same as TRUNCATE

TRUNCATE command is different from DELETE command. The delete command will delete

all the rows from a table whereas truncate command not only deletes all the records stored in

the table, but it also re-initializes the table(like a newly created table).

DELETE – is used to delete records from a database

table. SQL> delete acct where id=103;

1 row deleted.

SQL> select * from acct;

ID CUSTNAME CITY

101 santhosh mumbai

102 sreeram bangalore

104 raju trichy

105 balaji delhi

3. TCL (Transaction Control Language) COMMANDS

COMMIT, ROLLBACK AND SAVEPOINT SQL COMMANDS

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

https://www.geeksforgeeks.org/sql-delete-statement/

Transaction Control Language (TCL) commands is used to manage transactions in the

database. These are used to manage the changes made to the data in a table by DML

statements. It also allows statements to be grouped together into logical transactions.

COMMIT command

COMMIT command is used to permanently save any transaction into the database.

To avoid that, we use the COMMIT command to mark the changes as permanent.

Following is commit command's syntax,

COMMIT;

COMMIT– commits a Transaction.

SQL> commit;

Commit complete.

SQL> select * from

acct;

ID CUSTNAME CITY

101 santhosh mumbai

102 sreeram bangalore

104 raju trichy

105 balaji delhi

ROLLBACK command

This command restores the database to last commited state. It is also used with SAVEPOINT

command to jump to a savepoint in an ongoing transaction.

Following is rollback command's syntax,

ROLLBACK TO savepoint_name;

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

SAVEPOINT command

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

SAVEPOINT command is used to temporarily save a transaction so that you can rollback to

that point whenever required.

Following is savepoint command's syntax,

SAVEPOINT savepoint_name;

SAVEPOINT– sets a savepoint within a transaction.

SQL>savepoint s1;

Savepoint created.

Using Savepoint and Rollback

Following is the table class,

ID NAME

1 Abhi

2 Adam

4 Alex

Let’s use some SQL queries on the above table and see the results.

INSERT INTO class VALUES(5, 'Rahul');

COMMIT;

UPDATE class SET name = 'Abhijit' WHERE id = '5';

SAVEPOINT A;

INSERT INTO class VALUES(6, 'Chris');

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

SAVEPOINT B;

INSERT INTO class VALUES(7, 'Bravo');

SAVEPOINT C;

SELECT * FROM class;

NOTE: SELECT statement is used to show the data stored in the table.

The resultant table will look like,

ID NAME

1 Abhi

2 Adam

4 Alex

5 Abhijit

6 Chris

7 Bravo

Now let's use the ROLLBACK command to roll back the state of data to the savepoint B.

ROLLBACK TO B;

ROLLBACK– rollbacks a transaction in case of any error

occurs. SQL> rollback to s1;

Rollback complete.
SELECT * FROM class;
SQL> select * from
acct;

Now our class table will look like,

ID NAME

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

https://www.geeksforgeeks.org/sql-transactions/

1 Abhi

2 Adam

4 Alex

5 Abhijit

6 Chris

Now let's again use the ROLLBACK command to roll back the state of data to the savepoint A

ROLLBACK TO A;

SELECT * FROM class;

Now the table will look

like,

ID NAME

1 Abhi

2 Adam

4 Alex

5 Abhijit

So now you know how the commands COMMIT, ROLLBACK and SAVEPOINT works.

ADVANCED SQL FEATURES

Database Querying – Simple Queries, Nested Queries, Sub Queries and Joins

SQL - SELECT Query

The SQL SELECT statement is used to fetch the data from a database table which returns this

data in the form of a result table. These result tables are called result-sets.

Syntax

SELECT column1, column2, columnN FROM table_name;

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Here, column1, column2... are the fields of a table whose values you want to fetch. If you want

to fetch all the fields available in the field, then you can use the following syntax.

SELECT * FROM table_name; Example

Consider the CUSTOMERS table having the following records –

ID NAME AGE ADDRESS SALARY

1. Ramesh 32 Ahmedabad 2000.00

2. Khilan 25 | Delhi 1500.00

3. kaushik 23 Kota 2000.00

4. Chaitali 25 Mumbai 6500.00

5. Hardik 27 Bhopal 8500.00

6. Komal 22 MP 4500.00

7. Muffy 24 Indore 10000.00

The following code is an example, which would fetch the ID, Name and Salary fields of the

customers available in CUSTOMERS table.

sql> select id, name, salary from customers;

This would produce the following result –

ID NAME SALARY

1 Ramesh 2000.00

2 Khilan 1500.00

3 kaushik 2000.00

4 Chaitali 6500.00

5 Hardik 8500.00

6 Komal 4500.00

7 Muffy 10000.00

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

If you want to fetch all the fields of the CUSTOMERS table, then you should use the following

query.

sql> select * from customers;

This would produce the result as shown below.

ID NAME AGE ADDRESS SALARY

1. Ramesh 32 Ahmedabad 2000.00

2. Khilan 25 | Delhi 1500.00

3. kaushik 23 Kota 2000.00

4. Chaitali 25 Mumbai 6500.00

5. Hardik 27 Bhopal 8500.00

6. Komal 22 MP 4500.00

7. Muffy 24 Indore 10000.00

SUB QUERY IN ORACLE QUERY

While creating a database if we want to extract some information regarding the data in the

database then we use a Query.

Example: If we write a simple Query to create a table:

CREATE TABLE Product (Prod_Id Number Not Null, Prod_Name Varchar2(50,

Quantity Varchar2(15), Price Number);

Then, the result will be as in the following.

Product Table

Prod_id Prod_Name Quantity Price

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Sub Query

If a Query that contains another Query, then the Query inside the main Query is called a Sub

Query and the main Query is known as the parent Query. In Oracle the Sub Query will

executed on the prior basis and the result will be available to the parent Query and then the

execution of the parent/main Query takes place. Sub Queries are very useful for selecting rows

from a table having a condition that depends on the data of the table itself. A Sub Query can

also be called a Nested/Inner Query.

These Sub Queries can be used with:

● WHERE Clause

● SELECT Clause

● FROM Clause

Syntax

SELECT <column, ...> FROM <table> WHERE expression operator (

SELECT<column,...> FROM<table>WHERE <condition>);

Or

SELECT Col_name [, Col_name] FROM table1 [,table2] WHERE Col_name OPERATOR (

SELECT Col_name [,Col_name] FROM table1 [,table2] [WHERE]);

STUDENT TABLE

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

SUBJECT TABLE

1. Sub Query using WHERE
Clause SELECT * FROM student
WHERE course_id in (SELECT course_id

FROM subject

WHERE course_name = 'Oracle')

2. Sub Query using FROM Clause

SELECT a.course_name, b.Avg_Age

FROM subject a, (SELECT course_id, Avg(Age) as Avg_Age

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

FROM student GROUP BY course_id) b

WHERE b.course_id = a.course_id

3. Sub Query using SELECT Clause SELECT course_id, course_name, (

SELECT count (course_id) as num_of_student

FROM student a

WHERE a.course_id = b.course_id

GROUP BY course_id

) No_of_Students

FROM subject b

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Types of Sub Queries

EMPLOYEE TABLE with Column Name

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

EMPLOYEE TABLE with Data

DEPARTMENT TABLE with Column name

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

DEPARTMENT TABLE with Data

1. Single Row Sub Query

In a Single Row Sub Query the queries return a single/one row of results to the parent/main

Query. It can include any of the following operators:

∙ = Equals to

● Greater than

● < Less than

● >= Greater than Equals to

● <= Less than Equals to

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

● Not Equals to

Example

SELECT * FROM employees WHERE salary = (SELECT MIN(salary) FROM employees);

Single Row Sub Query using HAVING Clause

SELECT department_id,

MIN(salary) FROM employees

GROUP BY department_id

HAVING MIN(salary) > (SELECT MIN(salary)

FROM employees

WHERE department_id = 50);

Execute the Query, the result will be as in the following:

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Multiple Row Sub Query

A Multiple Row Sub Query returns a result of multiple rows to the outer/main/parent query. It

includes the following operators:

1. IN

2. ANY

3. ALL or EXISTS

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Example

SELECT e.first_name, e.salary

FROM employees e

WHERE salary IN (SELECT

MIN(e.salary) FROM employees e

GROUP BY e.department_id);

Execute the Query, then the result will be as in the following:

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Multiple Column Sub Query

Multiple Column Sub Queries are queries that return multiple columns to the outer SQL query. It

uses the IN operator for the WHERE and HAVING clause.

SELECT e.department_id, e.job_id,e.salary

FROM employees e

WHERE (e.job_id, e.salary) IN (SELECT e.job_id, e.salary

FROM employees e

WHERE e.department_id = 50) ;

Execute the Query, then the result will be as in the following:

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Note: We can use a Sub Query using a FROM clause in the main query.

SELECT e.first_name, e.salary, e.department_id, b.salary_avg

FROM employees e,

(SELECT e1.department_id, AVg(e1.salary) salary_avg

FROM employees e1

GROUP BY e1.department_id) b

WHERE e.department_id = b.department_id AND e.salary > b.salary_avg; Execute the Query,

then the result will be as in the following:

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Nested Sub Query

When we write a Sub Query in a WHERE and HAVING clause of another Sub Query then it is

called a nested Sub Query.

SELECT e.first_name,e.salary

FROM employees e WHERE e.manager_id in (SELECT e.manager_id FROM employees e

WHERE department_id in (select d.department_id

FROM departments d

WHERE d.department_name='Purchasing'));

Execute the Query, then the result will be as in the following:

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Correlated Sub Query

A Correlated Sub Query contains a reference to a table that appears in the outer query. It is

used for row by row processing, in other words the Sub Query will execute row by row for the

parent query.

SELECT a.first_name||' '||a.last_name, a.department_id, (SELECT b.first_name||'

'||b.last_name

FROM employees b WHERE b.employee_id in (SELECT d.manager_id FROM

departments d

WHERE d.department_name='IT')) as MANAGER

FROM employees a ;

Execute the Query, then the result will be as in the following:

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

DBMS | Nested Queries in SQL

In nested queries, a query is written inside a query. The result of inner query is used in

execution of outer query. We will use STUDENT, COURSE, STUDENT_COURSE tables

for understanding nested queries.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

STUDENT

S_ID S_NAME S_ADDRESS S_PHONE S_AGE
S1 RAM DELHI 9455123451 18
S2 RAMESH GURGAON 9652431543 18
S3 SUJIT ROHTAK 9156253131 20
S4 SURESH DELHI 9156768971 18

COURSE

C_ID C_NAME
C1 DSA
C2 Programming
C3 DBMS

STUDENT_COURSE

S_ID C_ID
S1 C1
S1 C3
S2 C1

S3 C2
S4 C2
S4 C3

There are mainly two types of nested queries:

Independent Nested Queries: In independent nested queries, query execution starts from

innermost query to outermost queries. The execution of inner query is independent of outer

query, but the result of inner query is used in execution of outer query. Various operators like

IN, NOT IN, ANY, ALL etc. are used in writing independent nested queries.

IN: If we want to find out S_ID who are enrolled in C_NAME ‘DSA’ or ‘DBMS’, we can

write it with the help of independent nested query and IN operator. From COURSE table, we

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

can find out C_ID for C_NAME ‘DSA’ or DBMS’ and we can use these C_IDs for finding

S_IDs from STUDENT_COURSE TABLE.

STEP 1: Finding C_ID for C_NAME =’DSA’ or ‘DBMS’

Select C_ID from COURSE where C_NAME = ‘DSA’ or C_NAME = ‘DBMS’

STEP 2: Using C_ID of step 1 for finding S_ID

Select S_ID from STUDENT_COURSE where C_ID IN

(SELECT C_ID from COURSE where C_NAME = ‘DSA’ or C_NAME=’DBMS’);

The inner query will return a set with members C1 and C3 and outer query will return those

S_IDs for which C_ID is equal to any member of set (C1 and C3 in this case). So, it will return

S1, S2 and S4.

Note: If we want to find out names of STUDENTs who have either enrolled in ‘DSA’ or

‘DBMS’, it can be done as:

Select S_NAME from STUDENT where S_ID IN

(Select S_ID from STUDENT_COURSE where C_ID IN

(SELECT C_ID from COURSE where C_NAME=’DSA’ or C_NAME=’DBMS’));

NOT IN: If we want to find out S_IDs of STUDENTs who have neither enrolled in ‘DSA’ nor

in ‘DBMS’, it can be done as:

Select S_ID from STUDENT where S_ID NOT IN

(Select S_ID from STUDENT_COURSE where C_ID

IN

(SELECT C_ID from COURSE where C_NAME=’DSA’ or C_NAME=’DBMS’));

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

The innermost query will return a set with members C1 and C3. Second inner query will return

those S_IDs for which C_ID is equal to any member of set (C1 and C3 in this case) which are

S1, S2 and S4. The outermost query will return those S_IDs where S_ID is not a member of

set

(S1, S2 and S4). So it will return S3.

Co-related Nested Queries: In co-related nested queries, the output of inner query depends on

the row which is being currently executed in outer query. e.g.; If we want to find out S_NAME

of STUDENTs who are enrolled in C_ID ‘C1’, it can be done with the help of co- related

nested query as:

Select S_NAME from STUDENT S where EXISTS (select * from STUDENT_COURSE

SC

where S.S_ID=SC.S_ID and SC.C_ID=’C1’);

For each row of STUDENT S, it will find the rows from STUDENT_COURSE where

S.S_ID

= SC.S_ID and SC.C_ID=’C1’. If for a S_ID from STUDENT S, atleast a row exists in

STUDENT_COURSE SC with C_ID=’C1’, then inner query will return true and

corresponding S_ID will be returned as output.

JOINS IN ORACLE

In Oracle, a join is the most powerful operation for merging information from multiple tables

based on a common field. There are various types of joins but an INNER JOIN is the common

of them.

Syntax

SELECT col1, col2, col3...

FROM table_name1,

table_name2

WHERE table_name1.col2 = table_name2.col1;

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Types Of Joins

To understand each of the preceding joins clearly we are assuming the following

"CUSTOMER" and "ORDERS" tables: CREATE TABLE Customer

(

Cust_id Number(10) NOT NULL, Cust_name

varchar2(20), Country varchar2(20), Receipt_no

Number(10),

Order_id Number(10) NOT NULL,

);

CREATE TABLE Orders

(

Order_id Number(10), Item_ordered varchar2(20), Order_date date

);

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Table: CUSTOMER

Table: ORDERS

First of all we will explain the "USING" clause and the "ON" clause.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

1. Using Clause

To join a table using the USING Clause we write the following command.

Query

SELECT Cust_id, Cust_name, Country, item_Ordered, Order_date

FROM Customer C JOIN Orders O USING (Order_id);

Execution of the query with result

2. On Clause

To join a table using an ON Clause we write the following command:

Query

SELECT Cust_id, Cust_name, Country, item_Ordered, Order_date

FROM Customer C JOIN Orders O USING (C.Order_id =

O.Order_id);

Execution of the query with result

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Equi Join

An Equi join is used to get the data from multiple tables where the names are common and the

columns are specified. It includes the equal ("=") operator.

Example

SELECT Cust_id, Cust_name, item_Ordered, Order_date

FROM Customer C, Orders O WHERE C.Order_id = O.Order_id;

Execution of the query with result

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

1. Inner Join

An Inner Join retrieves the matching records, in other words it retrieves all the rows where

there is at least one match in the tables.

Example

SELECT Cust_id, Cust_name, Country, item_ordered, Order_date

FROM Customer INNER JOIN Orders USING (Order_id);

Execution of the query with result

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

2. Outer Join

The records that don't match will be retrieved by the Outer join. It is of the following three

types:

1. Left Outer Join

2. Right Outer Join

3. Full Outer Join

1. Left Outer Join

A Left outer join retrieves all records from the left hand side of the table with all the matched

records. This query can be written in one of the following two ways.

Example

Method

1

SELECT Cust_id, Cust_name, Country, item_ordered, Order_date

FROM customer C, LEFT OUTER JOIN Orders O ON (C. Order_id = O.Order_id)

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Execution of the query with result

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Or: Method 2

SELECT Cust_id, Cust_name, Country, item_ordered, Order_date

FROM customer C, Orders O

WHERE C.Order_id = O.Order_id(+);

Execution of the query with result

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

2. Right Outer Join

A Right Outer Join retrieves the records from the right hand side columns.

Example

Method

1

SELECT Cust_id, Cust_name, Country, item_ordered, Order_date

FROM customer C, RIGHT OUTER JOIN Orders O ON (C. Order_id = O.Order_id)

Execution of the query with result

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Or: Method 2

SELECT Cust_id, Cust_name, Country, item_ordered, Order_date

FROM customer C, Orders O WHERE C.Order_id(+)=

O.Order_id;

Execution of the query with result

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

3. Full Outer Join

To retrieve all the records, both matching and unmatched from all the tables then use the FULL

OUTER JOIN.

Example

SELECT Cust_id, Cust_name, Country, item_ordered, Order_date

FROM customer C, FULL OUTER JOIN Orders OON (C. Order_id = O.Order_id)

Execution of the query with result

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

2. Non-Equi Join

A Non-Equi join is based on a condition using an operator other than equal to "=".

Example

SELECT Cust_id, Cust_name, Country, Item_ordered, Order_date

FROM Customer C, Oredrs O WHERE C. Order_id >

O.Order_id;

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Execution of the query with result:

3. Self-join

When a table is joined to itself only then that condition is called a self-join.

Example

SELECT C1.Cust_id, C2.Cust_name, C1.Country,

C2.Order_id FROM Customer C1, Customer C2

WHERE C. Cust_id > O.Order_id; Execution of the query with result:

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

4. Natural Join

A natural join is just like an equi-join since it compares the common columns of both tables.

Example

SELECT Cust_id, Cust_name, Country, Item_ordered,

Order_date FROM Customer, NATURAL JOIN Orders;

Execution of the query with result:

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

5. Cross Join

This join is a little bit different from the other joins since it generates the Cartesian product of two

tables as in the following:

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Syntax

SELECT * FROM table_name1 CROSS JOIN table_name2;

Example

SELECT Cust_id, Cust_name, Country, Item_ordered, Order_date FROM Customer,

CROSS JOIN Orders;

SQL - Using Joins

The SQL Joins clause is used to combine records from two or more tables in a database. A JOIN

is a means for combining fields from two tables by using values common to each. Consider the following

two tables −

Table 1 − CUSTOMERS Table

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 kaushik 23 Kota 2000.00|

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00|

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Table 2 − ORDERS Table

OID DATE CUSTOMER_ID AMOUNT

102 2009-10-08 00:00:00 3 3000

100 2009-10-08 00:00:00 3 1500

101 2009-11-20 00:00:00 2 1560

103 2008-05-20 00:00:00 4 2060

Now, let us join these two tables in our SELECT statement as shown below.

SQL> SELECT ID, NAME, AGE, AMOUNT FROM CUSTOMERS, ORDERS WHERE

CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

This would produce the following result.

ID NAME AGE AMOUNT

3 kaushik 23 3000

3 kaushik 23 1500

2 Khilan 25 1560

4 Chaitali 25 2060

Here, it is noticeable that the join is performed in the WHERE clause. Several operators can be

used to join tables, such as =, <, >, <>, <=, >=, !=, BETWEEN, LIKE, and NOT; they can all be

used to join tables. However, the most common operator is the equal to symbol.

There are different types of joins available in SQL −

● INNER JOIN − returns rows when there is a match in both tables.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

● LEFT JOIN − returns all rows from the left table, even if there are no matches in the right

table.

● RIGHT JOIN − returns all rows from the right table, even if there are no matches in the left

table.

● FULL JOIN − returns rows when there is a match in one of the tables.

● SELF JOIN − is used to join a table to itself as if the table were two tables, temporarily

renaming at least one table in the SQL statement.

● CARTESIAN JOIN − returns the Cartesian product of the sets of records from the two or

more joined tables.

SQL - INNER JOINS

The most important and frequently used of the joins is the INNER JOIN. They are also referred to

as an EQUIJOIN.

The INNER JOIN creates a new result table by combining column values of two tables (table1 and

table2) based upon the join-predicate. The query compares each row of table1 with each row of

table2 to find all pairs of rows which satisfy the join-predicate. When the join-predicate is satisfied,

column values for each matched pair of rows of A and B are combined into a result row.

Syntax

SELECT table1.column1, table2.column2... FROM

table1 INNER JOIN table2

ON table1.common_field = table2.common_field;

Example Consider the following two tables.

Table 1 − CUSTOMERS Table is as follows.

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 hmedabad 2000.00

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

2 Khilan 25 Delhi 500.00

3 kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

Table 2 − ORDERS Table is as follows.

OID DATE CUSTOMER_ID AMOUNT

102 2009-10-08 00:00:00 3 3000

100 2009-10-08 00:00:00 3 1500

101 2009-11-20 00:00:00 2 1560

103 2008-05-20 00:00:00 4 2060

Now, let us join these two tables using the INNER JOIN as follows −

Sql> select id, name, amount, date from customers inner join orders on customers.id =

orders.customer_id;

This would produce the following result.

ID NAME AMOUNT DATE

3 kaushik 3000 2009-10-08 00:00:00

3 kaushik 1500 2009-10-08 00:00:00

2 Khilan 1560 2009-11-20 00:00:00

4 Chaitali 2060 2008-05-20 00:00:00

SQL - LEFT JOINS

The SQL LEFT JOIN returns all rows from the left table, even if there are no matches in the right

table. This means that if the ON clause matches 0 (zero) records in the right table; the join will still

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

return a row in the result, but with NULL in each column from the right table.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

This means that a left join returns all the values from the left table, plus matched values from the right

table or NULL in case of no matching join predicate.

Syntax

The basic syntax of a LEFT JOIN is as follows.

SELECT table1.column1, table2.column2... FROM

table1 LEFT JOIN table2

ON table1.common_field = table2.common_field;

Here, the given condition could be any given expression based on your requirement.

Example

Consider the following two tables,

Table 1 −

CUSTOMERS

Table is as

follows.ID

NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

Table 2 − Orders Table is as follows.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

OID DATE CUSTOMER_ID AMOUNT

102 2009-10-08 00:00:00 3 3000

100 2009-10-08 00:00:00 3 1500

101 2009-11-20 00:00:00 2 1560

103 2008-05-20 00:00:00 4 2060

Now, let us join these two tables using the LEFT JOIN as follows.

sql> select id, name, amount, date from customers left join orders on customers.id =

orders.customer_id;

This would produce the following result –

ID NAME AMOUNT DATE

1 Ramesh NULL NULL

2 Khilan 1560 2009-11-20 00:00:00

3 kaushik 3000 2009-10-08 00:00:00

3 kaushik 1500 2009-10-08 00:00:00

4 Chaitali 2060 2008-05-20 00:00:00

5 Hardik NULL NULL

6 Komal NULL NULL

7 Muffy NULL NULL

SQL - RIGHT JOINS

The SQL RIGHT JOIN returns all rows from the right table, even if there are no matches in the

left table. This means that if the ON clause matches 0 (zero) records in the left table; the join will

still return a row in the result, but with NULL in each column from the left table.

This means that a right join returns all the values from the right table, plus matched values from the

left table or NULL in case of no matching join predicate.

Syntax

SELECT table1.column1, table2.column2... FROM

table1 RIGHT JOIN table2

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

ON table1.common_field = table2.common_field;

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Example: Consider the following two tables,

Table 1 − CUSTOMERS Table is as follows.

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

Table 2 − ORDERS Table is as follows.

OID DATE CUSTOMER_ID AMOUNT

102
2009-10-08

00:00:00
3 3000

100
2009-10-08

00:00:00
3 1500

101
2009-11-20

00:00:00
2 1560

103
2008-05-20

00:00:00
4 2060

Now, let us join these two tables using the RIGHT JOIN as follows.

SQL> SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS

RIGHT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

This would produce the following result −

ID NAME AMOUNT DATE

3 kaushik 3000 2009-10-08 00:00:00

3 kaushik 1500 2009-10-08 00:00:00 |

2 Khilan 1560 2009-11-20 00:00:00 |

4 Chaitali 2060 2008-05-20 00:00:00 |

SQL - FULL JOINS

The SQL FULL JOIN combines the results of both left and right outer joins.

The joined table will contain all records from both the tables and fill in NULLs for missing

matches on either side.

Syntax

SELECT table1.column1, table2.column2... FROM

table1 FULL JOIN table2

ON table1.common_field = table2.common_field;

Here, the given condition could be any given expression based on your requirement.

Example

Consider the following two tables.

Table 1 − CUSTOMERS Table is as follows.

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

7 Muffy 24 Indore 10000.00

Table 2 − ORDERS Table is as follows.

OID DATE AMOUNT CUSTOMER_ID

102
2009-10-08

00:00:00
3 3000

100
2009-10-08

00:00:00
3 1500

101
2009-11-20

00:00:00
2 1560

103
2008-05-20

00:00:00
4 2060

Now, let us join these two tables using FULL JOIN as follows.

SQL> SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS

FULL JOIN ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

This would produce the following result −

ID NAME AMOUNT DATE

1 Ramesh NULL NULL

2 Khilan 1560 2009-11-20 00:00:00

3 kaushik 3000 2009-10-08 00:00:00

3 kaushik 1500 2009-10-08 00:00:00

4 Chaitali 2060 2008-05-20 00:00:00

5 Hardik NULL NULL

6 Komal NULL NULL

7 Muffy NULL NULL

3 kaushik 3000 2009-10-08 00:00:00

3 kaushik 1500 2009-10-08 00:00:00

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

2 Khilan 1560 2009-11-20 00:00:00

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

4 Chaitali 2060 2008-05-20 00:00:00

If your Database does not support FULL JOIN (MySQL does not support FULL JOIN), then you

can use UNION ALL clause to combine these two JOINS as shown below.

Sql> select id, name, amount, date from customers left join orders on customers.id

= orders.customer_id union all select id, name, amount, date from customers right join

orders on customers.id = orders.customer_id

SQL - SELF JOINS

The SQL SELF JOIN is used to join a table to itself as if the table were two tables; temporarily

renaming at least one table in the SQL statement.

Syntax

SELECT a.column_name, b.column_name... FROM table1 a, table1 b

WHERE a.common_field = b.common_field;

Here, the WHERE clause could be any given expression based on your requirement.

Example Consider the following table.

CUSTOMERS Table is as follows.

ID NAME AGE ADDRESS ALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Now, let us join this table using SELF JOIN as follows −

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

sql> select a.id, b.name, a.salary from customers a, customers b where a.salary <

b.salary;

This would produce the following result −

ID NAME SALARY

2 Ramesh 1500.00

2 kaushik 1500.00

1 Chaitali 2000.00

2 Chaitali 1500.00

3 Chaitali 2000.00

6 Chaitali 4500.00

1 Hardik 2000.00

2 Hardik 1500.00

3 Hardik 2000.00

4 Hardik 6500.00

6 Hardik 4500.00

1 Komal 2000.00

2 Komal 1500.00

3 Komal 2000.00

1 Muffy 2000.00

2 Muffy 1500.00

3 Muffy 2000.00

4 Muffy 6500.00

5 Muffy 8500.00

6 Muffy 4500.00

SQL - CARTESIAN or CROSS JOINS

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

The CARTESIAN JOIN or CROSS JOIN returns the Cartesian product of the sets of records from

two or more joined tables. Thus, it equates to an inner join where the join-condition always

evaluates to either True or where the join-condition is absent from the statement.

Syntax

The basic syntax of the CARTESIAN JOIN or the CROSS JOIN is as follows −

SELECT table1.column1, table2.column2...FROM table1, table2 [, table3]

Example

Consider the following two tables.

Table 1 − CUSTOMERS table is as follows.

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

Table 2: ORDERS Table is as follows –

OID DATE CUSTOMER_ID AMOUNT

102 2009-10-08 00:00:00 3 3000

100 2009-10-08 00:00:00 3 1500

101 2009-11-20 00:00:00 2 1560

103 2008-05-20 00:00:00 4 2060

Now, let us join these two tables using CARTESIAN JOIN as follows −

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

sql> select id, name, amount, date from customers, orders;

ID NAME AMOUNT DATE

1 Ramesh 3000 2009-10-08 00:00:00

1 Ramesh 1500 2009-10-08 00:00:00

1 Ramesh 1560 2009-11-20 00:00:00

1 Ramesh 2060 2008-05-20 00:00:00

2 Khilan 3000 2009-10-08 00:00:00

2 Khilan 1500 2009-10-08 00:00:00

2 Khilan 1560 2009-11-20 00:00:00

2 Khilan 2060 2008-05-20 00:00:00

3 kaushik 3000 2009-10-08 00:00:00

3 kaushik 1500 2009-10-08 00:00:00

3 kaushik 1560 2009-11-20 00:00:00

3 kaushik 2060 2008-05-20 00:00:00

4 Chaitali 3000 2009-10-08 00:00:00

4 Chaitali 1500 2009-10-08 00:00:00

4 Chaitali 1560 2009-11-20 00:00:00

4 Chaitali 2060 2008-05-20 00:00:00

5 Hardik 3000 2009-10-08 00:00:00

5 Hardik 1500 2009-10-08 00:00:00

5 Hardik 1560 2009-11-20 00:00:00

5 Hardik 2060 2008-05-20 00:00:00

6 Komal 3000 2009-10-0800:00:00

6 Komal 1500 2009-10-0800:00:00

6 Komal 1560 2009-11-2000:00:00

7 Muffy 2060 2008-05-2000:00:00

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

EMBEDDED SQL

The first technique for sending SQL statements to the DBMS is embedded SQL. The SQL standard

defines embeddings of SQL in a variety of programming languages such as C,Java, and Cobol.

A language to which SQL queries are embedded is referred to as a host language, and the SQL

structures permitted in the host language comprise embedded SQL.

The following techniques are used to embed SQL statements in a host language:

● Embedded SQL statements are processed by a special SQL precompiler. All SQL statements

begin with an introducer and end with a terminator, both of which flag the SQL statement for

the precompiler. For example, the introducer is "EXEC SQL" in C and "& and the terminator is

a semicolon (;) in C.

● Variables from the application program, called host variables, can be used in embedded SQL

statements wherever constants are allowed.

● Queries that return a single row of data are handled with a singleton SELECT statement; this

statement specifies both the query and the host variables in which to return data.

● Queries that return multiple rows of data are handled with cursors. A cursor keeps track of the

current row within a result set. The DECLARE CURSOR statement defines the query, the

OPEN statement begins the query processing, the FETCH statement retrieves successive rows

of data, and the CLOSE statement ends query processing.

● While a cursor is open, positioned update and positioned delete statements can be used to

update or delete the row currently selected by the cursor.

Embedded SQL Example
EXEC SQL statement is used to identify embedded SQL request to the preprocessor EXEC

SQL <embedded SQL statement > END_EXEC

Note: this varies by language (for example, the Java embedding uses # SQL

{ …. };)

From within a host language, find the names and cities of customers with more than the variable

amount dollars in some account.

Specify the query in SQL and declare a cursor for it EXEC

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

SQL

declare c cursor for select depositor.customer_name, customer_city from

depositor, customer, account where depositor.customer_name =

customer.customer_name and depositor account_number = account.account_number

and account.balance > :amount

END_EXEC

The open statement causes the query to be evaluated EXEC

SQL open c END_EXEC

The fetch statement causes the values of one tuple in the query result to be placed on host language

variables.

EXEC SQL fetch c into :cn, :cc END_EXEC Repeated calls to fetch get successive tuples in

the query result

A variable called SQLSTATE in the SQL communication area (SQLCA) gets set to ‘02000’ to indicate no

more data is available

The close statement causes the database system to delete the temporary relation that holds the result of the

query.

EXEC SQL close c END_EXEC

Compiling an Embedded SQL Program

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

http://www.learnengineering.in/
http://www.learnengineering.in/
http://www.learnengineering.in/
http://www.learnengineering.in/

DYNAMIC SQL

Dynamic SQL is the process that we follow for programming SQL queries in such a way that the

queries are built dynamically with the application operations.

It helps us to manage big industrial applications and manage the transactions without any added

overhead.

With dynamic SQL we are free to create flexible SQL queries and the names of the variables or

any other parameters are passed when the application runs. Allows programs to construct and

submit SQL queries at run time. We can use stored procedures to create dynamic queries which

can run when we desire.

For Dynamic SQL, we use the exec keyword.

When we use static SQL it is not altered from one execution to others, but in the case of dynamic

SQL, we can alter the query in each execution.

Why do we need Dynamic SQL?

We need to use Dynamic SQL for the following use cases:

When we need to run dynamic queries on our database, mainly DML queries.

When we need to access an object which is not in existence during the compile time.

Whenever we need to optimize the run time of our queries.

When we need to instantiate the created logic blocks.

When we need to perform operations on application fed data using invoker rights.

Example of the use of dynamic SQL from within a C program.

char * sqlprog = “update account set balance = balance * 1.05 where account_number = ?”

EXEC

SQL prepare dynprog from :sqlprog;char account [10] = “A-101”;

EXEC SQL execute dynprog using :account;

The dynamic SQL program contains a ?, which is a place holder for a value that is provided

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

when the SQL program is executed.

Dynamic SQL statements can be built at run time and placed in a string host variable. They are

sent to the DBMS for processing. Because the DBMS must generate an access plan at run time

for dynamic SQL statements, dynamic SQL is generally slower than static SQL.

The simplest way to execute a dynamic SQL statement is with an EXECUTE IMMEDIATE

statement. This statement passes the SQL statement to the DBMS for compilation and execution.

One disadvantage of the EXECUTE IMMEDIATE statement is that the DBMS must go through

each of the five steps of processing an SQL statement each time the statement is executed.

To address this situation, dynamic SQL offers an optimized form of execution called prepared

execution, which uses the following steps:

● The program constructs an SQL statement in a buffer, just as it does for the EXECUTE

IMMEDIATE statement. Instead of host variables, a question mark (?) can be substituted for

a constant anywhere in the statement text to indicate that a value for the constant will be

supplied later. The question mark is called as a parameter marker.

● The program passes the SQL statement to the DBMS with a PREPARE statement, which

requests that the DBMS parse, validate, and optimize the statement and generate an execution

plan for it. The program then uses an EXECUTE statement (not an EXECUTE IMMEDIATE

statement) to execute the PREPARE statement at a later time. It passes parameter values for

the statement through a special data structure called the SQL Data Area or SQLDA.

● The program can use the EXECUTE statement repeatedly, supplying different parameter

values each time the dynamic statement is executed.

● Prepared execution is still not the same as static SQL. In static SQL, the first four steps of

processing an SQL statement take place at compile time. In prepared execution, these steps

still take place at run time, but they are performed only once; execution of the plan takes

place only when EXECUTE is called. This helps eliminate some of the performance

disadvantages inherent in the architecture of dynamic SQL.

Difference between Static SQL and Dynamic SQL

Sr. No. Key Static SQL Dynamic SQL

1
Database
Access

In Static SQL, database access
procedure is predetermined in the
statement.

In Dynamic SQL, how a database
will be accessed, can be determine
only at run time.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Sr. No. Key Static SQL Dynamic SQL

2 Efficiency Static SQL statements are more
faster and efficient.

Dynamic SQL statements are less
efficient.

3 Compilation Static SQL statements are compiled
at compile time.

Dynamic SQL statements are
compiled at run time.

4
Application
Plan

Application Plan parsing, validation,
optimization and generation are
compile time activities.

Application Plan parsing,
validation, optimization and
generation are run time activities.

5 Use Cases Static SQL is used in case of
uniformly distributed data.

Dynamic SQL is used in case of
non-uniformly distributed data.

6
Dynamic
Statements

Statements like EXECUTE
IMMEDIATE, EXECUTE,
PREPARE are not used.

Statements like EXECUTE
IMMEDIATE, EXECUTE,
PREPARE are used

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

PANIMALAR INSTITUTE OF TECHNOLOGY
DEPARTMENT OF INFORMATION TECHNOLOGY

CS3492 DATABASE MANAGEMENT SYSTEMS

LECTURE NOTES

UNIT II DATABASE DESIGN

Entity-Relationship model – E-R Diagrams – Enhanced-ER Model – ER-to-Relational Mapping –

Functional Dependencies – Non-loss Decomposition – First, Second, Third Normal Forms,

Dependency Preservation – Boyce/Codd Normal Form – Multi-valued Dependencies and Fourth

Normal Form – Join Dependencies and Fifth Normal Form

ENTITY-RELATIONSHIP MODEL

The ER model defines the conceptual view of a database. It works around real-world entities and

the associations among them.

Entity

An entity can be a real-world object that can be easily identifiable. For example, in a school

database, students, teachers, classes, and courses offered can be considered as entities. All these

entities have some attributes or properties that give them their identity.

Attributes

Entities are represented by means of their properties, called attributes. All attributes have values.

For example, a student entity may have name, class, and age as attributes.

Types of Attributes

 Simple attribute − Simple attributes are atomic values, which cannot be divided further.

For example, a student's phone number is an atomic value of 10 digits.

 Composite attribute − Composite attributes are made of more than one simple

attribute. For example, a student's complete name may have first_name and last_name.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

 Derived attribute − Derived attributes are the attributes that do not exist in the physical

database, but their values are derived from other attributes present in the database. For

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

example, average_salary in a department should not be saved directly in the database, instead it

can be derived. For another example, age can be derived from data_of_birth.

 Single-value attribute − Single-value attributes contain single value. For example −

Social_Security_Number.

 Multi-value attribute − Multi-value attributes may contain more than one values. For

example, a person can have more than one phone number, email_address, etc.

Entity-Set and Keys

Entity-Set :

An entity set is a collection of similar types of entities. An entity set may contain entities with

attribute sharing similar values. For example, a Students set may contain all the students of a

school; likewise a Teachers set may contain all the teachers of a school from all faculties. Entity

sets need not be disjoint.

Keys :

Key is an attribute or collection of attributes that uniquely identifies an entity among entity set. For

example, the roll_number of a student makes him/her identifiable among students.

 Super Key − A set of attributes (one or more) that collectively identifies an entity in an

entity set.

 Candidate Key − A minimal super key is called a candidate key. An entity set may

have more than one candidate key.

 Primary Key − A primary key is one of the candidate keys chosen by the database

designer to uniquely identify the entity set.

Relationship

The association among entities is called a relationship. For example, an employee works_at a

department, a student enrolls in a course. Here, Works_at and Enrolls are called relationships.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Relationship Set

A set of relationships of similar type is called a relationship set. Like entities, a relationship too can

have attributes. These attributes are called descriptive attributes.

Degree of Relationship
The number of participating entities in a relationship defines the degree of the relationship.

 Binary = degree 2

 Ternary = degree 3

 n-ary = degree

Mapping Cardinality (cardinality constraint)

 It represents the number of entities of another entity set which are connected to an entity

using a relationship set.

 For a binary relationship set the mapping cardinality must be one of the following

types:

1. One to one

2. One to many

3. Many to one

4. Many to many

1. One-to-one relationship

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

An entity in A is associated with at most (only) one entity in B and an entity in B is associated

with at most (only) one entity in A.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

A customer is connected with only one loan using the relationship borrower and a loan is

connected with only one customer using borrower.

2. One-to-many relationship

An entity in A is associated with any number (zero or more) of entities in Band an entity in Bis

associated with at most one (only) entity in A.

In the one-to-many relationship a loan is connected with only one customer using

borrower and a customer is connected with more than one loans using borrower.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

3. Many-to-one relationship

An entity in A is associated with at most (only) one entity in B and an entity in B is associated

with any number (zero or more) of entities in A.

In a many-to-one relationship a loan is connected with more than one customer using borrower

and a customer is connected with only one loan using borrower.

4. Many-to-many relationship

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

An entity in A is associated with any number (zero or more) of entities in Band an entity in Bis

associated with any number (zero or more) of entities in A.

A customer is connected with more than one loan using borrower and a loan is connected with

more than one customer using borrower.

E-R Diagrams

E-R diagram is the short form of “Entity-Relationship” diagram. An E-R diagram efficiently shows

the relationships between various entities stored in a database.

E-R diagrams are used to model real-world objects like a person, a car, a company etc. and the

relation between these real-world objects. An e-r diagram has following features:

 E-R diagrams are used to represent E-R model in a database, which makes them easy to be

converted into relations (tables).

 E-R diagrams provide the purpose of real-world modeling of objects which makes them

intently useful.

 E-R diagrams require no technical knowledge & no hardware support.

 These diagrams are very easy to understand and easy to create even by a naive user.

 It gives a standard solution of visualizing the data logically.

E R Diagrams Symbols, And Notations

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

E R Diagrams Example:

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

ENHANCED ENTITY RELATIONSHIP MODEL (EER MODEL)

EER is a high-level data model that incorporates the extensions to the original ER model.

It is a diagrammatic technique for displaying the following concepts

 Sub Class and Super Class

 Specialization and Generalization

 Union or Category

 Aggregation

These concepts are used when the comes in EER schema and the resulting schema diagrams called

as EER Diagrams.

Features of EER Model

 EER creates a design more accurate to database schemas.

 It reflects the data properties and constraints more precisely.

 It includes all modeling concepts of the ER model.

 Diagrammatic technique helps for displaying the EER schema.

 It includes the concept of specialization and generalization.

 It is used to represent a collection of objects that is union of objects of different of

different entity types.

A. Sub Class and Super Class

 Sub class and Super class relationship leads the concept of Inheritance.

 The relationship between sub class and super class is denoted with symbol.

1. Super Class

● Super class is an entity type that has a relationship with one or more subtypes.

● An entity cannot exist in database merely by being member of any super class.

For example: Shape super class is having sub groups as Square, Circle, and Triangle.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

2. Sub Class

● Sub class is a group of entities with unique attributes.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

● Sub class inherits properties and attributes from its super class.

For example: Square, Circle, Triangle are the sub class of Shape super class.

B. Specialization and Generalization

1. Generalization

● Generalization is the process of generalizing the entities which contain the properties of

all

the generalized entities.

● It is a bottom approach, in which two lower level entities combine to form a higher level

entity.

● Generalization is the reverse process of Specialization.

● It defines a general entity type from a set of specialized entity type.

● It minimizes the difference between the entities by identifying the common features.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

For example:

In the above example, Tiger, Lion, Elephant can all be generalized as Animals.

2. Specialization

 Specialization is a process that defines a group entities which is divided into sub groups

based on their characteristic.

 It is a top down approach, in which one higher entity can be broken down into two lower

 level entity.

 It maximizes the difference between the members of an entity by identifying the unique

characteristic or attributes of each member.

 It defines one or more sub class for the super class and also forms the

superclass/subclass relationship.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

For example

In the above example, Employee can be specialized as Developer or Tester, based on what role

they play in an Organization.

C. Category or Union

 Category represents a single super class or sub class relationship with more than one

super class.

 It can be a total or partial participation.

 For example Car booking, Car owner can be a person, a bank (holds a possession on a

Car) or a company. Category (sub class) → Owner is a subset of the union of the three

super classes → Company, Bank, and Person. A Category member must exist in at least

one of its super classes.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

D. Aggregation

 Aggregation is a process that represent a relationship between a whole object and its

component parts.

 It abstracts a relationship between objects and viewing the relationship as an object.

 It is a process when two entity is treated as a single entity.

In the above example, the relation between College and Course is acting as an Entity in Relation

with Student.

ER-to-Relational Mapping

The ER Model is intended as a description of real-world entities. Although it is constructed in such a

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

way as to allow easy translation to the relational schema model, this is not an entirely

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

trivial process. The ER diagram represents the conceptual level of database design meanwhile

the relational schema is the logical level for the database design.

1. Entities and Simple Attributes:

An entity type within ER diagram is turned into a table. You may preferably keep the same name

for the entity or give it a sensible name but avoid DBMS reserved words as well as avoid the use

of special characters.

Each attribute turns into a column (attribute) in the table. The key attribute of the entity is the

primary key of the table which is usually underlined. It can be composite if required but can

never be null.

It is highly recommended that every table should start with its primary key attribute

conventionally named as TablenameID.

Taking the following simple ER diagram:

The initial relational schema is expressed in the following format writing the table names with the

attributes list inside a parentheses as shown below for

Persons(personid , name, lastname, email)

Persons and Phones are Tables. name, lastname, are Table Columns (Attributes).personid is the

primary key for the table : Person

2. Multi-Valued Attributes

A multi-valued attribute is usually represented with a double-line oval.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

If you have a multi-valued attribute, take the attribute and turn it into a new entity or table of its own.

Then make a 1:N relationship between the new entity and the existing one. In simple words.

1. Create a table for the attribute. 2. Add the primary (id) column of the parent entity as a foreign

key within the new table as shown below:

Persons(personid , name, lastname, email) Phones (phoneid , personid, phone)

personid within the table Phones is a foreign key referring to the personid of Persons

3. 1:1 Relationships

To keep it simple and even for better performances at data retrieval, I would personally

recommend using attributes to represent such relationship. For instance, let us consider the case

where the Person has or optionally has one wife. You can place the primary key of the wife

within the table of the Persons which we call in this case Foreign key as shown below.

Persons(personid , name, lastname, email , wifeid) Wife (wifeid , name)

Or vice versa to put the personid as a foreign key within the Wife table as shown below:

Persons(personid , name, lastname, email)

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Wife (wifeid , name , personid)

For cases when the Person is not married i.e. has no wifeID, the attribute can set to NULL

4. 1:N Relationships

This is the tricky part ! For simplicity, use attributes in the same way as 1:1 relationship but we

have only one choice as opposed to two choices. For instance, the Person can have a House from

zero to many , but a House can have only one Person. To represent such relationship

the personidas the Parent node must be placed within the Child table as a foreign key but not

the other way around as shown next:

It should convert to :

Persons(personid , name, lastname, email

) House (houseid , num , address,

personid)

5. N:N Relationships

We normally use tables to express such type of relationship. This is the same for N − ary

relationship of ER diagrams. For instance, The Person can live or work in many countries. Also, a

country can have many people. To express this relationship within a relational schema we use a

separate table as shown below:

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

It should convert into :

Persons(personid , name, lastname, email) Countries (countryid , name,

code) HasRelat (hasrelatid , personid , countryid)

Relationship with attributes:

It is recommended to use table to represent them to keep the design tidy and clean regardless of

the cardinality of the relationship.

Case Study

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

The relational schema for the ER Diagram is given below as:

Company(CompanyID , name , address) Staff(StaffID , dob , address , WifeID) Child(ChildID

, name , StaffID) Wife

(WifeID , name)

Phone(PhoneID , phoneNumber , StaffID) Task (TaskID , description)

Work(WorkID , CompanyID , StaffID , since)

Perform(PerformID , StaffID , TaskID)

Functional Dependency
The functional dependency is a relationship that exists between two attributes. It typically exists

between the primary key and non-key attribute within a table.

X → Y

The left side of FD is known as a determinant, the right side of the production is known as a

dependent.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

For example:

Assume we have an employee table with attributes: Emp_Id, Emp_Name, Emp_Address.

Here Emp_Id attribute can uniquely identify the Emp_Name attribute of employee table because

if we know the Emp_Id, we can tell that employee name associated with it.

Functional dependency can be written as:

Emp_Id → Emp_Name

We can say that Emp_Name is functionally dependent on Emp_Id. Types of Functional dependency

1. Trivial functional dependency

2. Non-trivial functional dependency

1. Trivial functional dependency

o A → B has trivial functional dependency if B is a subset of A.

o The following dependencies are also trivial like: A → A, B → B

Example:

1. Consider a table with two columns Employee_Id and Employee_Name.

2. {Employee_id, Employee_Name} → Employee_Id is a trivial functional

dependency as Employee_Id is a subset of {Employee_Id, Employee_Name}.

3. Also, Employee_Id → Employee_Id and Employee_Name → Employee_Name are

trivia l dependencies too.

2. Non-trivial functional dependency

o A → B has a non-trivial functional dependency if B is not a subset of A.

o When A intersection B is NULL, then A → B is called as complete non-trivial.

Example:

1. ID → Name,

2. Name → DOB

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Armstrong'sAxioms

If F is a set of functional dependencies then the closure of F, denoted as F+, is the set of all

functional dependencies logically implied by F. Armstrong's Axioms are a set of rules, that when

applied repeatedly, generates a closure of functional dependencies.

Reflexive rule − If alpha is a set of attributes and beta is_subset_of alpha, then alpha

holds beta.

Augmentation rule − If a → b holds and y is attribute set, then ay → by also holds.

That is adding attributes in dependencies, does not change the basic dependencies.

Transitivity rule − Same as transitive rule in algebra, if a → b holds and b → c holds,

then a → c also holds. a → b is called as a functionally that determines b.

Non-loss Decomposition

Decomposition in DBMS removes redundancy, anomalies and inconsistencies from a database by

dividing the table into multiple tables.

The following are the types:

Lossless Decomposition

Decomposition is lossless if it is feasible to reconstruct relation R from decomposed tables using

Joins. This is the preferred choice. The information will not lose from the relation when

decomposed. The join would result in the same original relation.

Let us see an example:

<EmpInfo>

Emp_ID Emp_Name Emp_Age Emp_Location Dept_ID Dept_Name

E001 Jacob 29 Alabama Dpt1 Operations

E002 Henry 32 Alabama Dpt2 HR

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

E003 Tom 22 Texas Dpt3 Finance

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Decompose the above table into two tables:

<EmpDetails>

Emp_ID Emp_Name Emp_Age Emp_Location

E001 Jacob 29 Alabama

E002 Henry 32 Alabama

E003 Tom 22 Texas

<DeptDetails>

Dept_ID Emp_ID Dept_Name

Dpt1 E001 Operations

Dpt2 E002 HR

Dpt3 E003 Finance

Now, Natural Join is applied on the above two tables:

The result will be:

Emp_I D Emp_Nam e Emp_Ag e Emp_Locatio n Dept_I D Dept_Nam e

E001 Jacob 29 Alabama Dpt1 Operations

E002 Henry 32 Alabama Dpt2 HR

E003 Tom 22 Texas Dpt3 Finance

Therefore, the above relation had lossless decomposition i.e. no loss of information.

Lossy Decomposition

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

As the name suggests, when a relation is decomposed into two or more relational schemas, the

loss of information is unavoidable when the original relation is retrieved.

Let us see an example:

<EmpInfo>

Emp_I D Emp_Nam e Emp_Ag e Emp_Locatio n Dept_I D Dept_Nam e

E001 Jacob 29 Alabama Dpt1 Operations

E002 Henry 32 Alabama Dpt2 HR

E003 Tom 22 Texas Dpt3 Finance

Decompose the above table into two tables:

<EmpDetails>

Emp_ID Emp_Name Emp_Age Emp_Location

E001 Jacob 29 Alabama

E002 Henry 32 Alabama

E003 Tom 22 Texas

<DeptDetails>

Dept_ID Dept_Name

Dpt1 Operations

Dpt2 HR

Dpt3 Finance

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

● Now, you won’t be able to join the above tables, since Emp_ID isn’t part

of the DeptDetails relation.

● Therefore, the above relation has lossy decomposition.

NORMALIZATION

Database Normalization is a technique of organizing the data in the database. Normalization is a

systematic approach of decomposing tables to eliminate data redundancy(repetition) and

undesirable characteristics like Insertion, Update and Deletion Anamolies. It is a multi-step

process that puts data into tabular form, removing duplicated data from the relation tables.

Normalization is used for mainly two purposes,

● Eliminating redundant(useless) data.

● Ensuring data dependencies make sense i.e data is logically stored.

Problems Without Normalization

If a table is not properly normalized and have data redundancy then it will not only eat up extra

memory space but will also make it difficult to handle and update the database, without facing

data loss. Insertion, Updation and Deletion Anamolies are very frequent if database is not

normalized. To understand these anomalies let us take an example of a Student table.

rollno name branch hod office_tel

401 Akon CSE Mr. X 53337

402 Bkon CSE Mr. X 53337

403 Ckon CSE Mr. X 53337

404 Dkon CSE Mr. X 53337

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

In the table above, we have data of 4 Computer Sci. students. As we can see, data for the fields

branch, hod(Head of Department) and office_tel is repeated for the students who are in the same

branch in the college, this is Data Redundancy.

1. Insertion Anomaly

Suppose for a new admission, until and unless a student opts for a branch, data of the student cannot

be inserted, or else we will have to set the branch information as NULL.

Also, if we have to insert data of 100 students of same branch, then the branch information will be

repeated for all those 100 students.

These scenarios are nothing but Insertion anomalies.

2. Updation Anomaly

What if Mr. X leaves the college? or is no longer the HOD of computer science department? In

that case all the student records will have to be updated, and if by mistake we miss any record, it

will lead to data inconsistency. This is Updation anomaly.

.3. Deletion Anomaly

In our Student table, two different informations are kept together, Student information and

Branch information. Hence, at the end of the academic year, if student records are deleted, we

will also lose the branch information. This is Deletion anomaly.

Normalization

o Normalization is the process of organizing the data in the database.

o Normalization is used to minimize the redundancy from a relation or set of relations. It is

also used to eliminate the undesirable characteristics like Insertion, Update and Deletion

Anomalies.

o Normalization divides the larger table into the smaller table and links them using

relationship.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

o The normal form is used to reduce redundancy from the database table.

Types of Normal Forms

Normal Form Description

1NF A relation is in 1NF if it contains an atomic value.

2NF A relation will be in 2NF if it is in 1NF and all non-key attributes are fully

functional dependent on the primary key.

3NF A relation will be in 3NF if it is in 2NF and no transition dependency exists.

4NF A relation will be in 4NF if it is in Boyce Codd normal form and has no multi-

valued dependency.

5NF A relation is in 5NF if it is in 4NF and not contains any join dependency and

joining should be lossless.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

https://www.javatpoint.com/dbms-first-normal-form
https://www.javatpoint.com/dbms-second-normal-form
https://www.javatpoint.com/dbms-third-normal-form
https://www.javatpoint.com/dbms-forth-normal-form
https://www.javatpoint.com/dbms-fifth-normal-form

2. First Normal Form (1NF)

o A relation will be 1NF if it contains an atomic value.

o It states that an attribute of a table cannot hold multiple values. It must hold only single-

valued attribute.

o First normal form disallows the multi-valued attribute, composite attribute, and their

combinations.

Example: Relation EMPLOYEE is not in 1NF because of multi-valued attribute EMP_PHONE.

EMPLOYEE table:

EMP_ID EMP_NAME EMP_PHONE EMP_STATE

14 John 7272826385,

9064738238

UP

20 Harry 8574783832 Bihar

12 Sam 7390372389,

8589830302

Punjab

The decomposition of the EMPLOYEE table into 1NF has been shown below:

EMP_ID EMP_NAME EMP_PHONE EMP_STATE

14 John 7272826385 UP

14 John 9064738238 UP

20 Harry 8574783832 Bihar

12 Sam 7390372389 Punjab

12 Sam 8589830302 Punjab

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Second Normal Form (2NF)

● In the 2NF, relational must be in 1NF.

● In the second normal form, all non-key attributes are fully functional dependent on

the primary key

Example: Let's assume, a school can store the data of teachers and the subjects they teach. In a

school, a teacher can teach more than one subject.

TEACHER table

TEACHER_ID SUBJECT TEACHER_AGE

25 Chemistry 30

25 Biology 30

47 English 35

83 Math 38

83 Computer 38

In the given table, non-prime attribute TEACHER_AGE is dependent on TEACHER_ID which

is a proper subset of a candidate key. That's why it violates the rule for 2NF.

To convert the given table into 2NF, we decompose it into two tables:

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

TEACHER_DETAIL table:

TEACHER_ID TEACHER_AGE

25 30

47 35

83 38

TEACHER_SUBJECT table:

TEACHER_ID SUBJECT

25 Chemistry

25 Biology

47 English

83 Math

83 Computer

Third Normal Form (3NF)

o A relation will be in 3NF if it is in 2NF and not contain any transitive partial dependency.

o 3NF is used to reduce the data duplication. It is also used to achieve the data integrity.

o If there is no transitive dependency for non-prime attributes, then the relation must be in

third normal form.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

A relation is in third normal form if it holds at least one of the following conditions for every

non-trivial function dependency X → Y.

1. X is a super key.

2. Y is a prime attribute, i.e., each element of Y is part of some candidate key.

Example:

EMPLOYEE_DETAIL table:

EMP_ID EMP_NAME EMP_ZIP EMP_STATE EMP_CITY

222 Harry 201010 UP Noida

333 Stephan 02228 US Boston

444 Lan 60007 US Chicago

555 Katharine 06389 UK Norwich

666 John 462007 MP Bhopal

Super key in the table above:

{EMP_ID}, {EMP_ID, EMP_NAME}, {EMP_ID, EMP_NAME, EMP_ZIP}. so on

Candidate key: {EMP_ID}

Non-prime attributes: In the given table, all attributes except EMP_ID are non-prime.

Here, EMP_STATE & EMP_CITY dependent on EMP_ZIP and EMP_ZIP dependent on

EMP_ID. The non-prime attributes (EMP_STATE, EMP_CITY) transitively dependent on super

key(EMP_ID). It violates the rule of third normal form.

That's why we need to move the EMP_CITY and EMP_STATE to the new

<EMPLOYEE_ZIP> table, with EMP_ZIP as a Primary key.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

EMPLOYEE table:

EMP_ID EMP_NAME EMP_ZIP

222 Harry 201010

333 Stephan 02228

444 Lan 60007

555 Katharine 06389

666 John 462007

EMPLOYEE_ZIP table:

EMP_ZIP EMP_STATE EMP_CITY

201010 UP Noida

02228 US Boston

60007 US Chicago

06389 UK Norwich

462007 MP Bhopal

Boyce Codd normal form (BCNF)

o BCNF is the advance version of 3NF. It is stricter than 3NF.

o A table is in BCNF if every functional dependency X → Y, X is the super key of the

table.

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

o For BCNF, the table should be in 3NF, and for every FD, LHS is super key.

Example: Let's assume there is a company where employees work in more than one department.

EMPLOYEE table:

EMP_ID EMP_COUNTRY EMP_DEPT DEPT_TYPE EMP_DEPT_NO

264 India Designing D394 283

264 India Testing D394 300

364 UK Stores D283 232

364 UK Developing D283 549

In the above table Functional dependencies are as follows:

1. EMP_ID → EMP_COUNTRY

2. EMP_DEPT → {DEPT_TYPE, EMP_DEPT_NO}

Candidate key: {EMP-ID, EMP-DEPT}

The table is not in BCNF because neither EMP_DEPT nor EMP_ID alone are keys.

To convert the given table into BCNF, we decompose it into three tables:

EMP_COUNTRY table:

EMP_ID EMP_COUNTRY

264 India

264 India

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

EMP_DEPT table:

EMP_DEPT DEPT_TYPE EMP_DEPT_NO

Designing D394 283

Testing D394 300

Stores D283 232

Developing D283 549

EMP_DEPT_MAPPING table:

EMP_ID EMP_DEPT

D394 283

D394 300

D283 232

D283 549

Functional dependencies:

1. EMP_ID → EMP_COUNTRY

2. EMP_DEPT → {DEPT_TYPE, EMP_DEPT_NO}

Candidate keys:

For the first table: EMP_ID

For the second table: EMP_DEPT

For the third table: {EMP_ID, EMP_DEPT}

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Now, this is in BCNF because left side part of both the functional dependencies is a key.

Fourth normal form (4NF)

o A relation will be in 4NF if it is in Boyce Codd normal form and has no multi-valued

dependency.

o For a dependency A → B, if for a single value of A, multiple values of B exists, then the

relation will be a multi-valued dependency.

Example

STUDENT

STU_ID COURSE HOBBY

21 Computer Dancing

21 Math Singing

34 Chemistry Dancing

74 Biology Cricket

59 Physics Hockey

The given STUDENT table is in 3NF, but the COURSE and HOBBY are two independent entity.

Hence, there is no relationship between COURSE and HOBBY.

In the STUDENT relation, a student with STU_ID, 21 contains two

courses, Computer and Math and two hobbies, Dancing and Singing. So there is a Multi-

valued dependency on STU_ID, which leads to unnecessary repetition of data.

So to make the above table into 4NF, we can decompose it into two tables:

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

STUDENT_COURSE

STU_ID COURSE

21 Computer

21 Math

34 Chemistry

74 Biology

59 Physics

STUDENT_HOBBY

STU_ID HOBBY

21 Dancing

21 Singing

34 Dancing

74 Cricket

59 Hockey

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

Fifth normal form (5NF)

o A relation is in 5NF if it is in 4NF and not contains any join dependency and joining

should be lossless.

o 5NF is satisfied when all the tables are broken into as many tables as possible in order to

avoid redundancy.

o 5NF is also known as Project-join normal form (PJ/NF).

Example

SUBJECT LECTURER SEMESTER

Computer Anshika Semester 1

Computer John Semester 1

Math John Semester 1

Math Akash Semester 2

Chemistry Praveen Semester 1

In the above table, John takes both Computer and Math class for Semester 1 but he doesn't take

Math class for Semester 2. In this case, combination of all these fields required to identify a valid

data.

Suppose we add a new Semester as Semester 3 but do not know about the subject and who will

be taking that subject so we leave Lecturer and Subject as NULL. But all three columns together

acts as a primary key, so we can't leave other two columns blank.

So to make the above table into 5NF, we can decompose it into three relations P1, P2 & P3:

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

P1

SEMESTER SUBJECT

Semester 1 Computer

Semester 1 Math

Semester 1 Chemistry

Semester 2 Math

P2

SUBJECT LECTURER

Computer Anshika

Computer John

Math John

Math Akash

Chemistry Praveen

P3

SEMSTER LECTURER

Semester 1 Anshika

Semester 1 John

Semester 1 John

Semester 2 Akash

Semester 1 Praveen

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

www.EnggTree.com

