EnggTree.com

CS3492 DATABASE MANAGEMENT SYSTEMS LTPC
3003
OBJECTIVES:

e To learn the fundamentals of data models, relational algebra and SQL

e To represent a database system using ER diagrams and to learn normalization techniques

e To understand the fundamental concepts of transaction, concurrency and recovery
processing

e To understand the internal storage structures using different file and indexing techniques
which will help in physical DB design

e To have an introductory knowledge about the Distributed databases, NOSQL and
database security

UNIT I RELATIONAL DATABASES 10

Purpose of Database System — Views of data — Data Models — Database System Architecture —
Introduction to relational databases — Relational Model — Keys — Relational Algebra — SQL
fundamentals — Advanced SQL features — Embedded SQL— Dynamic SQL

UNIT Il DATABASE DESIGN 8

Entity-Relationship model — E-R Diagrams — Enhanced-ER Model — ER-to-Relational Mapping
—Functional Dependencies — Non-loss Decomposition — First, Second, Third Normal Forms,

Dependency Preservation — Boyce/Codd Normal Form — Multi-valued Dependencies and Fourth
Normal Form — Join Dependencies and Fifth Normal Form
UNIT Il TRANSACTIONS 9

Transaction Concepts — ACID Properties — Schedules — Serializability — Transaction support in
SQL- Need for Concurrency — Concurrency control —Two Phase Locking- Timestamp —
Multiversion —Validation and Snapshot isolation— Multiple Granularity locking — Deadlock
Handling — Recovery Concepts — Recovery based on deferred and immediate update — Shadow
paging — ARIES Algorithm

UNIT IV IMPLEMENTATION TECHNIQUES 9

RAID - File Organization — Organization of Records in Files — Data dictionary Storage —
Column Oriented Storage— Indexing and Hashing —Ordered Indices — B+ tree Index Files — B
tree Index Files — Static Hashing — Dynamic Hashing — Query Processing Overview —

Downloaded from EnggTree.com

EnggTree.com

Algorithms for Selection, Sorting and join operations — Query optimization using Heuristics -
Cost Estimation.

UNIT V ADVANCED TOPICS 9

Distributed Databases: Architecture, Data Storage, Transaction Processing, Query processing
and optimization — NOSQL Databases: Introduction — CAP Theorem — Document Based systems
— Key value Stores — Column Based Systems — Graph Databases. Database Security: Security
issues — Access control based on privileges — Role Based access control — SQL Injection —
Statistical Database security — Flow control — Encryption and Public Key infrastructures —
Challenges

TEXT BOOKS:

1. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, “Database System Concepts”,

Seventh Edition, McGraw Hill, 2020.

2. Ramez Elmasri, Shamkant B. Navathe, “Fundamentals of Database Systems”, Seventh
Edition, Pearson Education, 2017

REFERENCES:

1. C.J.Date, A.Kannan, S.Swamynathan, “An Introduction to Database Systems”, Eighth Edition,

Pearson Education, 2006.

Downloaded from EnggTree.com

EnggTree.com

PANIMALAR INSTITUTE OF TECHNOLOGY

DEPARTMENT OF INFORMATION TECHNOLOGY
CS3492 DATABASE MANAGEMENT SYSTEMS
UNIT-1 NOTES
RELATIONAL DATABASES

Purpose of Database System — Views of data — Data Models — Database System Architecture —
Introduction to relational databases — Relational Model — Keys- Relational Algebra — SQL
fundamentals — Advanced SQL features — Embedded SQL— Dynamic SQL

INTRODUCTION
“A database-management system (DBMS) is a collection of interrelated data and a set of
programs to access those data. The collection of data, usually referred to as the database,
contains information relevant to an enterprise. The primary goal of a DBMS is to provide a

way to store and retrieve database information that is both convenient and efficient.”

Database-System Applications
Databases are widely used. Here are some applications:
= Sales: For customer, product, and purchase information.
= Accounting: For payments, receipts, account balances, assets and other accounting
information.
* Human resources: For information about employees, salaries, payroll taxes, and
benefits, and for generation of paychecks.
* Manufacturing: For management of the supply chain and for tracking production of
items in factories, inventories of items in warchouses and stores, and orders for items.
= Online retailers: For sales data noted above plus online order tracking, generation of
recommendation lists, and maintenance of online product evaluations.
* Banking and Finance
0 Banking: For customer information, accounts, loans, and banking transactions.

o Credit card transactions: For purchases on credit cards and generation of

monthly statements.

Downloaded from EnggTree.com

EnggTree.com

o Finance: For storing information about holdings, sales, and purchases of
financial instruments such as stocks and bonds; also for storing real-time market
data to enable online trading by customers and automated trading by the firm.

= Universities: For student information, course registrations, and grades.

* Airlines: For reservations and schedule information. Airlines were among the first to
use databases in a geographically distributed manner.

» Telecommunication: For keeping records of calls made, generating monthly bills,
maintaining balances on prepaid calling cards, and storing information about the

communication networks.

PURPOSE OF DATABASE SYSTEMS/ CHARACTERISTICS OF DBMS
v The typical file processing system is supported by a conventional operating system.

v The system stores permanent records in various files, and it needs different application programs to
extract records from, and add records to, the appropriate files.

v A file processing system has a number of major disadvantages.

Data redundancy and inconsistency.

In file processing, every user group maintains its own files for handling its data processing
applications.

Example:

Consider the UNIVERSITY database. Here, two groups of users might be the course
registration personnel and the accounting office. The accounting office also keeps data on
registration and related billing information, whereas the registration office keeps track of
student courses and grades. Storing the same data multiple times is called data redundancy.
This redundancy leads to several problems.

*Need to perform a single logical update multiple times.

*Storage space is wasted.

*Files that represent the same data may become inconsistent.

Data inconsistency is the various copies of the same data may no larger Agree. Example:
One user group may enter a student's birth date erroneously as JAN-19-1984, whereas the
other user groups may enter the correct value of JAN-29-1984. may be reflected in the

Music department records but not elsewhere in the system.

Downloaded from EnggTree.com

EnggTree.com

Difficulty in accessing data.

Suppose that one of the university clerks needs to find out the names of all students who
live within a particular postal-code area. The clerk asks the data-processing department to
generate such a list. Because the designers of the original system did not anticipate this
request, there is no application program on hand to meet it. There is, however, an
application program to generate the list of all students.

The university clerk has now two choices: either obtain the list of all students and extract
the needed information manually or ask a programmer to write the necessary application
program. Both alternatives are obviously unsatisfactory.

Suppose that such a program is written, and that, several days later, the same clerk needs to
trim that list to include only those students who have taken at least 60 credit hours. As
expected, a program to generate such a list does not exist. Again, the clerk has the
preceding two options, neither of which is satisfactory. The point here is that conventional
file-processing environments do not allow needed data to be retrieved in a convenient and

efficient manner.

Data isolation. Because data are scattered in various files, and files may be in different

formats, writing new application programs to retrieve the appropriate data is difficult.

Integrity problems. The data values stored in the database must satisfy certain types of

consistency constraints. Suppose the university maintains an account for each department,
and records the balance amount in each account. Suppose also that the university requires
that the account balance of a department may never fall below zero. Developers enforce
these constraints in the system by adding appropriate code in the various application

programs.

Atomicity problems. A computer system, like any other device, is subject to failure. In

many applications, it is crucial that, if a failure occurs, the data be restored to the
consistent state that existed prior to the failure. Consider a program to transfer $500 from
the account balance of department A to the account balance of department B. If a system
failure occurs during the execution of the program, it is possible that the $500 was

removed from the balance of department A but was not credited to the balance of

Downloaded from EnggTree.com

EnggTree.com

department B, resulting in an inconsistent database state.

Concurrent-access anomalies. For the sake of overall performance of the system and
faster response, many systems allow multiple users to update the data simultaneously. In
such an environment, interaction of concurrent updates is possible and may result in
inconsistent data. To guard against this possibility, the system must maintain some form of
supervision. But supervision is difficult to provide because data may be accessed by many

different application programs that have not been coordinated previously.

Example: When several reservation clerks try to assign a seat on an airline flight, the
system should ensure that each seat can be accessed by only one clerk at a time for

assignment to a passenger.
® Security problems.

Enforcing security constraints to the file processing system is difficult

VIEWS OF DATA
A database system is a collection of interrelated data and a set of programs that allow users to
access and modify these data. A major purpose of a database system is to provide users with an
abstract view of the data. That is, the system hides certain details of how the data are stored

and maintained.

Data Abstraction

Since many database-system users are not computer trained, developers hide the complexity

from users through several levels of abstraction, to simplify users’ interactions with the system:
e Physical level. The lowest level of abstraction describes how the data are actually

stored. The physical level describes complex low-level data structures in detail.

e Logical level. The next-higher level of abstraction describes what data are stored in the
database, and what relationships exist among those data. The logical level thus
describes the entire database in terms of a small number of relatively simple structures.
This is referred to as physical data independence.

e View level. The highest level of abstraction describes only part of the entire database.

- ™ 2
External Layout View ‘ w

End-Users

Downloa T, IR MG

EnggTree.com

Fig: Views of Data

Instances and Schemas
Databases change over time as information is inserted and deleted. The collection of
information stored in the database at a particular moment is called an instance of the database.

The overall design of the database is called the database schema.

Database systems have several schemas, partitioned according to the levels of abstraction. The
physical schema describes the database design at the physical level, while the logical schema
describes the database design at the logical level.

A database may also have several schemas at the view level, sometimes called subschemas
that describe different views of the database. Application programs are said to exhibit physical
data independence if they do not depend on the physical schema, and thus need not be

rewritten if the physical schema changes.

DATABASE MODELS
A Database model defines the logical design and structure of a database and defines how

data will be stored, accessed and updated in a database management system.

Types of data models
a. Hierarchical Model
b. Network Model
c. Entity-relationship Model
d. Relational Model

a. Hierarchical Model

This database model organizes data into a tree-like-structure, with a single root, to which all
the other data is linked. The hierarchy starts from the Root data, and expands like a tree,
adding child nodes to the parent nodes. In this model, a child node will only have a single

parent node.

Downloaded from EnggTree.com

EnggTree.com

College
|
v v
Department Infrastructure
4 14 4
Course Teachers Students
|
4 y
Theory Labs

Fig: Hierarchical Model

b. Network Model
This is an extension of the Hierarchical model. In this model data is organized more like a
graph, and are allowed to have more than one parent node. This database model was used to

map many-to-many data relationships.

Store

m

Customer Manager Salesman

Order ltems

Fig: Network Model

c. Entity-relationship Model
In this database model, relationships are created by dividing object into entity and its

characteristics into attributes. Different entities are related using relationships.

Let's take an example, If we have to design a School Database, then Student will be
an entity with attributes name, age, address etc. As Address is generally complex, it can
be another entity with attributes street name, pincode, city etc, and there will be a relationship

between them.

Student

Downloaded from EnggTree.com

EnggTree.com

Fig: Entity-relationship Model

d. Relational Model

In this model, data is organized in two-dimensional tables and the relationship is
maintained by storing a common field. The basic structure of data in the relational
model is tables. All the information related to a particular type is stored in rows of that

table. Hence, tables are also known as relations in relational model.

Downloaded from EnggTree.com

EnggTree.com

1 Akon 17 . 1 Java Mr. J
2 Bkon 18 . 2 C++ Miss C
3 Ckon 17 3 C# Mr. C Hash
4 Dkon 18 . 4 Php M. PHP
v
1 . 1 98
1 . 2 . 78
2 . 1 . 76
3 . 2 . 88

Fig: Relational Model

Object oriented model:

In the object-oriented data model (OODM) both data and their relationships are contained in a single
structure known as an object. An object is described by its factual content. An object includes
information about relationships between the facts within the object, as well as information about its
relationships with other objects. Therefore, the facts within the object are given greater meaning. The
OODM s said to be a semantic data model because semantic indicates meaning. The OO data model is
based on the following components:

An object is an abstraction of a real-world entity.

Attributes describe the properties of an object.

Concepts of Database Architecture (Tier Architecture)
Database architecture uses programming languages to design a particular type of software for
businesses or organizations. Database architecture focuses on the design, development,
implementation and maintenance of computer programs that store and organize information for
businesses, agencies and institutions. A database architect develops and implements software
to meet the needs of users.
The design of a DBMS depends on its architecture. It can be centralized or decentralized or
hierarchical. The architecture of a DBMS can be seen as either single tier or multi-tier.
The tiers are classified as follows:

a) I-tier architecture

b) 2-tier architecture

Downloaded from EnggTree.com

EnggTree.com

c) 3-tier architecture
d) 4- n-tier architecture
a) 1-tier architecture
One-tier architecture involves putting all of the required components for a software application

or technology on a single server or platform.

1-Tier Architecture

Client Computers

O
o=

File Server

Fig: 1-tier architecture

Basically, a one-tier architecture keeps all of the elements of an application, including the

interface, Middleware and back-end data, in one place.

b) 2-tier architecture
The two-tier is based on Client Server architecture. The two-tier architecture is like client
server application. The direct communication takes place between client and server. There is

no intermediate between client and server.

Advantages
1. Easy to maintain and modification is bit easy.

2. Communication is faster.

Disadvantages

1. In two tier architecture application performance will be degrade upon increasing the users.

2. Cost-ineffective.

Downloaded from EnggTree.com

EnggTree.com

Client - 1 Client - 2

- -
- -
~ k- “, -
User Interfoce | | User Interfoce
or Display Logic or Dizsplay Logic

Business Logic !t_us_ine_s_s Logic

Database Logic Database Logic

Fig: 2-tier architecture

¢) 3-tier architecture

A 3-tier architecture separates its tiers from each other based on the complexity of the users
and how they use the data present in the database. It is the most widely used architecture to
design a DBMS.

It can be used in web applications and distributed applications.

Client - 1 Client - 2

ol i

user Interface

User Interface :
or Display Logic

or Display Logic

Resources

H Database

Fig: 3-tier architecture

Middle-tier
Server

d) N-tier architecture
N-tier architecture would involve dividing an application into three different tiers. These would

be the

Downloaded from EnggTree.com

EnggTree.com

1. logic tier,
2. the presentation tier, and

3. The data tier.

N-Tier Architecture

e oo

Tier2 Tier 3
Application Server Database
— _'___,_,.,--"‘"-a..___ e
II.___...---" H"""--_.-""'f.
Tier2 Tier 3 Tier 4
Application Server Web Service Database

Fig: N-tier architecture

Database System Architecture

DBMS (Database Management System) acts as an interface between the user and the
database. The user requests the DBMS to perform various operations such as insert, delete,
update and retrieval on the database.

The components of DBMS perform these requested operations on the database and provide

necessary data to the users.

Transaction Management

A transaction is a collection of operations that performs a single logical function in a database application.
Transaction-management component ensures that the database remains in a consistent (correct) state despite
system failures (e.g. power failures and operating system crashes) and transaction failures.
Concurrency-control manager controls the interaction among the concurrent transactions, to ensure the

consistency of the database.

Storage Management

. A storage manager is a program module that provides the interface between the low-level data stored
in the database and the application programs and queries submitted to the system.

. The storage manager is responsible for the following tasks:

. Interaction with the file manager

Downloaded from EnggTree.com

EnggTree.com

. Efficient storing, retrieving, and Storage Management
Database Administrator
. Coordinates all the activities of the database system; the database administrator has a good

understanding of the enterprise’s information resources and needs:

. Schema definition

. Storage structure and access method definition

. Schema and physical organization modification

. Granting user authority to access the database

. Specifying integrity constraints

. Monitoring performance and responding to changes in requirements

Database Users

Users are differentiated by the way they expect to interact with the system.

. Application programmers: interact with system through DML calls.
. Sophisticated users — form requests in a database query language
. Specialized users — write specialized database applications that do not fit into the traditional data

processing framework
. Naive users — invoke one of the permanent application programs that have been written previously
File manager
manages allocation of disk space and data structures used to represent information on disk.
Database manager
The interface between low level data and application programs and queries.
Query processor
translates statements in a query language into low-level instructions the database manager understands.
The various components of DBMS are described below:
1. DDL Compiler:
o Data Description Language compiler processes schema definitions specified in
the DDL.
o Itincludes metadata information such as the name of the files, data items,
storage details of each file, mapping information and constraints etc.

2. DML Compiler and Query optimizer:
o The DML commands such as insert, update, delete, retrieve from the application

program are sent to the DML compiler for compilation into object code for

Downloaded from EnggTree.com

database access.

EnggTree.com

o The object code is then optimized in the best way to execute a query by the

query optimizer and then send to the data manager.

Users: DBA Staff Casual Users Application Parametric Users
/ \ l Programmers
i ; f 4 .
(DDL Privileged Interactive Application
L Statements Commands Query Programs)
\i \i
DDL a Y Host
: uery . » lLanguage
Compiler Compiler Precompiler Compiler
|
: \ Y # Y
: Query DML Compiled
| Optimizer Compiler Transactions
| 7 W
| P 2 i -
| - -~
| - .-\:- T
I i s
i 7 _-” | DBA Commands,
| v i Queries, and Transactions
| /s - =
' ¥ - =
- ol i Runtime Stored
S A e _ | Database [> Data
ystem o = P Manager
Catalog/ g ST rocessor Concurrency Control/ 9
Data -~ Fm- - Backup/Recovery)
Dictionary Y Subsystems
ETEEY il

--__.___—___,_.q
—

Stored Database J

Input/Output

Query and Transaction from Database

Execution: e

Fig: Component modules of a DBMS and their interactions.

3. Data Manager:
o The Data Manager is the central software component of the DBMS also knows
as Database Control System.
o The Main Functions Of Data Manager Are:
1. Convert operations in user's Queries coming from the application programs
or combination of DML Compiler and Query optimizer which is known as

Query Processor from user's logical view to physical file system.

Downloaded from EnggTree.com

EnggTree.com

2. Controls DBMS information access that is stored on disk.

3. It also enforces constraints to maintain consistency and integrity of the data.
4. It also synchronizes the simultaneous operations performed by the
concurrent users.
5. It also controls the backup and recovery operations.
4. Data Dictionary:
o Data Dictionary, stores metadata about the database.
o Data dictionary is used to actually control the data integrity, database operation
and accuracy. It may be used as a important part of the DBMS
5. Data Files:
o Which store the database itself.
6. Compiled DML:
o The DML complier converts the high level Queries into low level file access
commands known as compiled DML.
7. End Users:
o The second class of users is end user, who interacts with system from online
workstation or terminals.
3. Query Processor Units:

a) Machine only understand low level language, so it is the task of query
processor to convert user’s queries in the series of low level instruction. Then after,
it sends these instructions to database manager for execution. There are various
component of query processor.

b) DDL Complier: it records the DDL statements into set of tables containing
data dictionary. It coverts DDL statement into object form from source form.

c) DML Complier: It converts DML statements into low level instructions that
are more easy to understand by query evaluation engine.

d) Query Evaluation Engine: Queries generated by DML compiler are executed
in Query evaluation Engine. DDL Interpreter

4. Storage Manager Units
a) Checks the authority of users to access data.
b) Checks for the satisfaction of the integrity constraints.

¢) Preserves atomicity and controls concurrency.

Downloaded from EnggTree.com

EnggTree.com

d) Manages allocation of space on disk.

INTRODUCTION TO RELATIONAL DATABASES
A relational database is based on the relational model and uses a collection of tables to

represent both data and the relationships among those data. It also includes a DML and DDL.

The relational model is an example of a record-based model. Record-based models are so

named because the database is structured in fixed-format records of several types.

A relational database consists of a collection of tables, each of which is assigned a unique
name. A row in a table represents a relationship among a set of values.

RELATIONAL MODEL EXAMPLE

Department Professor
No. HName
i Ho. Hame DeptMo. | courses
Course
Student
Ho. DeptHo.| Pref ID | Onit
Id Hame Course

RELATIONAL DATA MODEL IN DBMS: CONCEPTS, CONSTRAINTS., EXAMPLE

The relational model represents the database as a collection of relations. A relation is nothing
but a table of values. Every row in the table represents a collection of related data values.
These rows in the table denote a real-world entity or relationship.
Some popular Relational Database management systems are:

e DB2 and Informix Dynamic Server - IBM

e Oracle and RDB — Oracle

e SQL Server and Access - Microsoft

Relational Model Concepts
1. Attribute: Each column in a Table. Attributes are the properties which define a

Downloaded from EnggTree.com

EnggTree.com

relation. e.g., Student Rollno, NAME etc.
2. Tables — In the Relational model the, relations are saved in the table format. It is stored
along with its entities. A table has two properties

rows and columns. Rows represent records and columns represent attributes.

3. Tuple — It is nothing but a single row of a table, which contains a single record.

4. Relation Schema: A relation schema represents the name of the relation with its attributes.
5. Degree: The total number of attributes which in the relation is called the degree of the
relation.

6. Cardinality: Total number of rows present in the Table.

7. Column: The column represents the set of values for a specific attribute.

8. Relation instance — Relation instance is a finite set of tuples in the RDBMS system.
Relation instances never have duplicate tuples.

9. Relation key - Every row has one, two or multiple attributes, which is called relation key.
10. Attribute domain — Every attribute has some pre-defined value and scope which is

known as attribute domain

Table also called Relation

Primary Key

gurud9.com

CustomerlD CustomerName

Status
1 Google Active
2 Amazon Active — Tuple OR Row
3 Apple

Inactive Total # of rows Is Cardinality

Column OR Attributes

=l -) | o .
ia of columin ic Daorase
otal # of column is Degree

Fig: Relational Model Concepts

Relational Integrity constraints

Relational Integrity constraints is referred to conditions which must be present for a valid
relation. These integrity constraints are derived from the rules in the mini-world that the
database represents.

Constraints on the Relational database management system are mostly divided into three main

categories are:

Downloaded from EnggTree.com

EnggTree.com

a) Domain constraints
b) Key constraints

c) Referential integrity constraints

a) Domain Constraints

Domain constraints can be violated if an attribute value is not appearing in the corresponding
domain or it is not of the appropriate data type.

Domain constraints specify that within each tuple, and the value of each attribute must be
unique. This is specified as data types which include standard data types integers, real
numbers, characters, Booleans, variable length strings, etc.

Example:

Create DOMAIN CustomerName CHECK (value not NULL)

The example shown demonstrates creating a domain constraint such that CustomerName is not

NULL.
Key constraints

An attribute that can uniquely identify a tuple in a relation is called the key of the table. The
value of the attribute for different tuples in the relation has to be unique.

Example:

In the given table, CustomerID is a key attribute of Customer Table. It is most likely to have a

single key for one customer, CustomerID =1 is only for the CustomerName =" Google".

Customer Contact
FirstName | LastName CustID CustID | ContactInformation ContactType
Elaine Stevens 101 101 555-2653 Work
Mary Dittman 102 101 555-0057 Cell
Skip Stevenson 103 102 555-8816 Work
Drew Lakeman 104 Ry 104 | 555-0949 Work
Eva Plummer 105 \ 103 | 555-0650 Work
Parent Table Primary 101 | 555-8855 Home
) 105 Plummer@akcomms.com Email
101 Stevens{@akcomms.com Email
OnetoMany \1 101 |[555:5787 Fax
Relationship 103 Stevenson@akcomms.com | Email
105 | 555-5675 Work
102 Dittman@akcomms.com Email
Fcﬁ;gn Child Table

Fig: Relational Integrity constraints

Downloaded from EnggTree.com

EnggTree.com

b) Referential integrity constraints

Referential integrity constraints is based on the concept of Foreign Keys. A foreign key is an
important attribute of a relation which should be referred to in other relationships. Referential
integrity constraint state happens where relation refers to a key attribute of a different or same
relation. However, that key element must exist in the table.

Example:

In the below example, we have 2 relations, Customer and Billing.

Tuple for CustomerID =1 is referenced twice in the relation Billing. So we know
CustomerName=Google has billing amount $300

CustomerlD CustomerName Status

1 Google Active

". 2 Amazon Active
%3 Apple Inactive
'.. Customer
.: Billing
InvoiceNo "&,;s:tomerlD Amount
1 "o, | 17p100
.‘ 5
1 /5200
3 2 $150

Operations in Relational Model
Insert, update, delete and
select.
e Insert is used to insert data into the relation
e Delete is used to delete tuples from the table.
e Modify allows you to change the values of some attributes in existing tuples.
e Select allows you to choose a specific range of data.
Whenever one of these operations are applied, integrity constraints specified on the relational

database schema must never be violated.

Downloaded from EnggTree.com

EnggTree.com

a) Insert Operation

The insert operation gives values of the attribute for a new tuple which should be inserted into

a relation.
CustomerlD CustomerName Status CustomerlD CustomerName Status
1 Google Active 1 Google Active
7 Amion Aclive 7 Anon Aclive
1 Apple Inactive 3 Apple Inactive
A Nibabs Actie

b) Update Operation
You can see that in the below-given relation table CustomerName='Apple' is updated from

Inactive to Active.

Custornerl) CustomerName Status Customerl CustomerName Status
1 Google Activa 1 Google Active
2 Amacon Acliye 2 Amason Aclive
3 Apple Inactive 3 Apple Actve
4 Alibaba Active 4 Alibaba Active

¢) Delete Operation

To specify deletion, a condition on the attributes of the relation selects the tuple to be deleted.

Cnslomen!l CuslomerMama 8Ll Coslomen s CuslomerMama SLilug
1 Gnngle Acfiva 1 Gongle Acfiva
2 \mazan Active 2 \mazon Active
3 Apple Active 4 Mibaba Active
4 Alibaba Active

In the above-given example, CustomerName= "Apple" is deleted from the table.
The Delete operation could violate referential integrity if the tuple which is deleted is

referenced by foreign keys from other tuples in the same database.

Downloaded from EnggTree.com

EnggTree.com

d) Select Operation

CustornenlD— CuslomerName Slaluy

CoslomenlD CuslomerName Slalus
1 Gongle Achive 7 Amazon Artva
2 Amazon Active

4 Alibaba Active

In the above-given example, CustomerName="Amazon" is selected

Best Practices for creating a Relational Model

Data need to be represented as a collection of relations
Each relation should be depicted clearly in the table
Rows should contain data about instances of an entity
Columns must contain data about attributes of the entity
Cells of the table should hold a single value

Each column should be given a unique name

No two rows can be identical

The values of an attribute should be from the same domain

Advantages of using Relational model

Simplicity: A relational data model is simpler than the hierarchical and network model.
Structural Independence: The relational database is only concerned with data and not
with a structure. This can improve the performance of the model.

Easy to use: The relational model is easy as tables consisting of rows and columns is
quite natural and simple to understand

Query capability: It makes possible for a high-level query language like SQL to avoid
complex database navigation.

Data independence: The structure of a database can be changed without having to
change any application.

Scalable: Regarding a number of records, or rows, and the number of fields, a database

should be enlarged to enhance its usability.

Disadvantages of using Relational model

Few relational databases have limits on field lengths which can't be exceeded.

Downloaded from EnggTree.com

EnggTree.com

e Relational databases can sometimes become complex as the amount of data grows, and
the relations between pieces of data become more complicated.
e Complex relational database systems may lead to isolated databases where the

information cannot be shared from one system to another.

Keys in Database Management System (DBMS)

Database table consists of rows and columns, which are technically called 'record or
tuple' and 'attributes or fields' respectively. A database table is generally called a 'relation’.
The keys are used to uniquely identify a record (row) in the table. Which key should be used

depends on requirement.

1. Table = Relation
2. Row = Record/Tuple
3. Column = Attribute/Field

Example:
Attribute name

S. No. Name of Article Weight Cost

01. @l& _> 1Kg 100

| Dra.n%& Kg 30

03 \ Grape% 2Kg 80

d
“'“-u._.-"'f 3 1
p . \a
Attribute Cell ecord

List of keys in DBMS
1. Super key

2. Candidate key
3. Primary key
4. Composite key

Downloaded from EnggTree.com

EnggTree.com

Compound key
Secondary or Alternative key

5

6

7. Non- key attribute
8. Non- prime attribute
9

Foreign key
10. Simple key
11. Artificial key

1) Super keys
Super key is a set of one or more than one columns (attributes) which uniquely identifies

each record in a table. Super key is a super set of candidate key.

.- :EED]_L 1:4.5;__\ First Name of Student Last Name of Student Course code
lr'f 01. \[Adam Gilchrist A100

\ [02 || Alex Peter B30

N5 7 [T e C80

For example: Roll No. is unique in relation. This can be selected as a super key. Also we
can select more than one column as a super key to uniquely identify a row, like roll no., First

name.

2) Candidate keys
Candidate key is a set of one or more than one columns (attributes) which uniquely
identifies each record in a table, but there must not be redundant values (repetition of cells)

in selected attribute. Candidate key is a sub set of Super key.

: ’Ego]l. No.\ \ First Name of Student Last Name of Student Cou.rs;:ci:’n'&?"'x
| TR Adam Gilchrist 7 AT00
ll\. 02 / Adam Peter : B30 :
i3/ John Gilchrist ~ cso |/
= .\'\,___ ,_,-’/

For example: Roll No. is unique in relation. This can be selected as a candidate key. Also

Downloaded from EnggTree.com

EnggTree.com

we can select more than one column as a candidate key to uniquely identify a record. Unlike
the super key in above example we can select only those attributes which don’t have repeating

cells like course code.

3) Primary keys
Primary key is used to uniquely identify a record in relation. The primary keys are
compulsory in every table. The primary keys are having model stability, occurrence of

minimum fields, being definitive and feature of accessibility.

Example
Eoll. No. First Name of Student | Last Name of Student | Course code
0111 Adam Gilchnst A100
0222 Adam Peter B0
0333 \ John Gilchrist C80
X

Primaryv Key

Only Roll No. is unique in the above table, so it is selected as primary key. Course code can
also be selected as a primary key.

4) Composite keys

Composite Key has at-least two or more than two attributes which specially identifies the

occurrence of an entity.

Eoll. No. First Name of Student Last Name of Student Course code
0111 Adam Gilchrist A100
0222 Adam Peter B30
0333 Jal Gilchn ’f/ C80
—__| John 1 st ;

Composite key
In the above example the Roll No. and Course Code is combined to uniquely identify the
record in relation.

5) Compound key

Downloaded from EnggTree.com

EnggTree.com

Like other keys Compound key is also used to uniquely recognize a record in relation.
This can be an attribute or a set of attributes, but the attributes in relation cannot be use

as independent keys. If we use them individually, we will not get any unique record.

6) Secondary or Alternative key
The key other than primary keys are called as secondary or alternative keys. Example: If
we consider Roll No. and Course code as primary key then First Name of Student and First

Name of Student will be Secondary/alternate keys.

Roll. No. First Name of Student Last Name of Student Course code
0111 Adam Gilchrist A100

0222 Adam Peter B30

0333 John Gilchrist C80

S

Secondary or alternate key

7) Non-key Attribute

The attributes excluding the candidate keys are called as non-key attributes.

Example: If we consider Roll No. and Course code as candidate key then First Name of

Student and First Name of Student will be Non Key attribute.

o

)

Roll. No. First Name of student ast Name of Student Course code
0111 Adam Gilchrist A100
0222 Adam Peter B30
0333 John Gilchrist C80
el [

Non-kev Attribute
8) Non-prime Attribute

Downloaded from EnggTree.com

EnggTree.com

Excluding primary attributes in a table are non-prime attributes.

Foll. No. First Name of Student [ast Name of Student Course code
0111 Adam Gilchrist A100

0222 Adam Deter B30

0333 John ilchrist C80

N

Non prime attributes

Example: It is considered as only Roll No. is primary key, so all the remaining attributes will
be non-prime attributes, but if we considering course code also a primary key than it will not

non-prime attribute.

9) Foreign keys
Foreign key is a key of one table, which points to the primary key in second table. It has a

relationship with primary key in another table.

b\

¥ BusinessEntitylD

PersonType

MameStyle

Title PersonPhone (Person)
FirstMame (‘F BusinessEntitylD)
Middletame e ¥ PhoneNumber

LastiMame ¥ umberTypelD
Suffix ModifiedDate
EmailPromotion |

AdditionalContactinfo
Demographics
rowguid

ModifiedDate

Downloaded from EnggTree.com

EnggTree.com

The "BusinessEntityID" attribute in the "Person" relation is the PRIMARY
KEY. The "BusinessEntityID" attribute in the '""PersonPhone'relation is a FOREIGN
KEY.

10) Simple key

Simple key is a single cell to specially identify a record. The single cell cannot be divided
into more cells. Primary key is a super set of simple key.

Example: In the below example student id is a single field because no other student will have

same Id. Therefore, it is a simple key.

Roll. No First Name of Student Last Name of Student Course code
0111 Adam Gilchrist A100
{0222 Adam Peter B30
0333 \ John Gilchrist Cg0
I
Smmple key

11) Artificial key

When primary key is very large and complex, then ‘Artificial keys’ are used.

RELATIONAL ALGEBRA
Relational algebra is a procedural query language that works on relational model. The purpose
of a query language is to retrieve data from database or perform various operations such as
insert, update, delete on the data.
On the other hand relational calculus is a non-procedural query language, which means it tells
what data to be retrieved but doesn’t tell how to retrieve it.
Types of operations in relational algebra
1. Basic Operations

2. Derived Operations

Basic/Fundamental Operations:
1. Select (o)

2. Project (T])
3. Union (U)
4. Set Difference (-)

Downloaded from EnggTree.com

EnggTree.com

5. Cartesian product (X)
6. Rename (p)

Derived Operations:

1. Natural Join ()

2. Left, Right, Full outer join (3, b<, D<)

3. Intersection (N)

4. Division (=)

1. Select Operator (o)

Select Operator is denoted by sigma (o) and it is used to find the tuples (or rows) in a relation

(or table) which satisfy the given condition.

Syntax of Select Operator (o)

o Condition/Predicate(Relation/Table name)

Select Operator (¢) Example
Table: CUSTOMER

Customer Id | Customer Name | Customer City
C10100 Steve Agra
C10111 Raghu Agra

C10115 Chaitanya Noida
C10117 Ajeet Delhi

C10118 Carl Delhi

Query:

o Customer City="Agra" (CUSTOMER)

Output:

Customer Id

Customer Name

Customer City

C10100

Steve

Agra

Downloaded from EnggTree.com

EnggTree.com

C10111 Raghu Agra

2. Project Operator ([])
Project operator is denoted by || symbol and it is used to select desired columns (or attributes)
from a table (or relation).

Project operator in relational algebra is similar to the Select statement in SQL.

Syntax of Project Operator ([])

[] column_namel, column_name2, ,column nameN(table name)

Project Operator (] [) Example

In this example, we have a table CUSTOMER with three columns, we want to fetch only two
columns of the table, which we can do with the help of Project Operator [].

Table: CUSTOMER

Customer Id Customer Name Customer City
C10100 Steve Agra

C10111 Raghu Agra

C10115 Chaitanya Noida

C10117 Ajeet Delhi

C10118 Carl Delhi

Query:
[Customer Name, Customer City (CUSTOMER)

Output:
Customer Name | Customer City
Steve Agra
Raghu Agra
Chaitanya Noida
Ajeet Delhi
Carl Delhi

Downloaded from EnggTree.com

https://beginnersbook.com/2018/11/sql-select/

EnggTree.com

3. Union Operator (U)

Union operator is denoted by U symbol and it is used to select all the rows (tuples) from two

tables (relations).

Let’s say we have two relations R1 and R2 both have same columns and we want to select all
the tuples(rows) from these relations then we can apply the union operator on these relations.
Note: The rows (tuples) that are present in both the tables will only appear once in the union

set. In short you can say that there are no duplicates present after the union operation.

Syntax of Union Operator (U)

table namel U table name2

Union Operator (U) Example

Course_Id Student Name | Student Id
Cl101 Aditya S901
C104 Aditya S901
C106 Steve S911
C109 Paul S921
CI115 Lucy S931
Table 1: COURSE

Student Id | Student Name | Student Age

S901 Aditya 19

So11 Steve 18

S921 Paul 19

S931 Lucy 17

S941 Carl 16

S951 Rick 18

Downloaded from EnggTree.com

EnggTree.com

Table 2: STUDENT

Query:
[] Student Name (COURSE) U [] Student Name (STUDENT)
Output:

Student Name
Aditya
Carl
Paul

Lucy
Rick

Steve

4. Intersection Operator ()

Intersection operator is denoted by N symbol and it is used to select common rows (tuples)
from two tables (relations).

Syntax of Intersection Operator ()

table namel N table name2

Intersection Operator (N) Example

Course Id [Student Name | Student Id
C101 Aditya S901
C104 Aditya S901
C106 Steve S911
C109 Paul S921
Cl115 Lucy S931

Table 1: COURSE

Student Id | Student Name | Student Age
S901 Aditya 19
S911 Steve 18

Downloaded from EnggTree.com

EnggTree.com

S921 Paul 19
S931 Lucy 17
S941 Carl 16
S951 Rick 18

Table 2: STUDENT

Query:
[] Student Name (COURSE) N [] Student Name (STUDENT)

Output:

Student Name
Aditya

Steve

Paul

Lucy

5. Set Difference (-)
Set Difference is denoted by — symbol. Let’s say we have two relations R1 and R2 and we want
to select all those tuples(rows) that are present in Relation R1 but not present in Relation R2,

this can be done using Set difference R1 — R2.

Syntax of Set Difference (-)

table namel - table name?2

Query:

Let’s write a query to select those student names that are present in STUDENT table but not
present in COURSE table.

[] Student Name (STUDENT) - [] Student Name (COURSE)

Output:

Student Name
Carl

Downloaded from EnggTree.com

EnggTree.com

Rick

6. Cartesian product (X)
Cartesian product is denoted by X symbol. Let’s say we have two relations R1 and R2 then the

Cartesian product of these two relations (R1 X R2) would combine each tuple of first relation
R1 with the each tuple of second relation R2. I know it sounds confusing but once we take an

example of this, you will be able to understand this.

Syntax of Cartesian product (X)
R1 X R2

Cartesian product (X) Example

Col A| Col B
AA 100
BB 200
CC 300
Table 1: R
Col X | Col Y
XX 99
YY 11
77 101
Table 2: S

Downloaded from EnggTree.com

Query:

EnggTree.com

Let’s find the Cartesian product of table R and S.

RXS

Output:

Note: The number of rows in the output will always be the cross product of number of rows in

each table. In our example table 1 has 3 rows and table 2 has 3 rows so the output has 3x3 =9

Trows.

7. Rename (p)

Rename (p) operation can be used to rename a relation or an attribute of a relation.

Syntax:

Col A| Col B| Col X Col Y
AA 100 XX 99

AA 100 YY 11

AA 100 77 101

BB 200 XX 99

BB 200 YY 11

BB 200 77 101

cC 300 XX 99

CcC 300 YY 11

CcC 300 77 101

p(new_relation name, old relation name)

Rename (p) Example
Let’s say we have a table customer, we are fetching customer names and we are renaming the

resulted relation to CUST NAMES.

Downloaded from EnggTree.com

EnggTree.com

Table: CUSTOMER

Customer Id| Customer Name | Customer City
C10100 Steve Agra
C10111 Raghu Agra
C10115 Chaitanya Noida
C10117 Ajeet Delhi
C10118 Carl Delhi

Query:
p(CUST_NAMES, [[(Customer Name)(CUSTOMER))

Output:

CUST NAMES

Steve

Raghu

Chaitanya

Ajeet
Carl

8. Joins
Join is a combination of a Cartesian product followed by a selection process. A Join operation

pairs two tuples from different relations, if and only if a given join condition is satisfied.

Types of join
v/ Theta (0) Join
Theta join combines tuples from different relations provided they satisfy the theta condition.
The join condition is denoted by the symbol 0.
Notation
R1 xoR2
R1 and R2 are relations having attributes (A1, A2, .., An) and (B1, B2,.. ,Bn) such that the
attributes don’t have anything in common, that is R1 N R2 = ®.

Downloaded from EnggTree.com

EnggTree.com

Theta join can use all kinds of comparison operators.

Student
SID Name Std
101 Alex 10
102 Maria 11
Subjects
Class Subject
10 Math
10 English
11 Music
11 Sports
Student Detail —
STUDENT XStudent.Std = Subject.Class SUBJECT
Student_detail
SID Name Std Class Subject
101 Alex 10 10 Math
101 Alex 10 10 English

Downloaded from EnggTree.com

EnggTree.com

102 Maria 11 11 Music

102 Maria 11 11 Sports

Equijoin
v/ When Theta join uses only equality comparison operator, it is said to be equijoin. The

above example corresponds to equijoin.

Natural Join (<)

v Natural join does not use any comparison operator. It does not concatenate the way a
Cartesian product does. We can perform a Natural Join only if there is at least one
common attribute that exists between two relations. In addition, the attributes must
have the same name and domain.

v/ Natural join acts on those matching attributes where the values of attributes in both the

relations are same.

Courses
CID Course Dept
CS01 Database CS
MEO1 Mechanics ME
EEO1 Electronics EE
HoD
Dept Head
CS Alex

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

ME

Maya

EE

Mira

Courses ¥ HoD

Course Head

Database | Alex

Mechanics | Maya

Dept | CID
CS | CS01
ME | MEOI
EE | EEO1

Electronics | Mira

v/ Outer Joins

Theta Join, Equijoin, and Natural Join are called inner joins. An inner join includes only those
tuples with matching attributes and the rest are discarded in the resulting relation.

There are three kinds of outer joins — left outer join, right outer join, and full outer join.

v/ Left Outer Join(R :NS)

All the tuples from the Left relation, R, are included in the resulting relation. If there are

tuples in R without any matching tuple in the Right relation S, then the S-attributes of the

resulting relation are made NULL.

Left
A B
100 Database
101 Mechanics

Downloaded from EnggTree.com

EnggTree.com

102 Electronics

Downloaded from EnggTree.com

EnggTree.com

Right
A B
100 [Alex
102 | Maya
104 | Mira

Courses HoD

A B C D

100 | Database | 100 | Alex

101 | Mechanics | --- —

102 | Electronics | 102 [Maya

¢ Right Outer Join: (R X[S)

All the tuples from the Right relation, S, are included in the resulting relation. If there are
tuples in S without any matching tuple in R, then the R-attributes of resulting relation are

made NULL.

Courses HoD

A B C D

100 | Database | 100 | Alex

102 | Electronics | 102 [Maya

Downloaded from EnggTree.com

EnggTree.com

104 | Mira

Downloaded from EnggTree.com

EnggTree.com

¢ Full Outer Join: (R X §)

All the tuples from both participating relations are included in the resulting relation. If there
are no matching tuples for both relations, their respective unmatched attributes are made

NULL.

Courses HoD

A B C D

100 | Database | 100 | Alex

101 | Mechanics | --- —

102 | Electronics | 102 [Maya

104 | Mira

SQL FUNDAMENTALS

SQL | DDL, DQL, DML, DCL and TCL Commands
Structured Query Language(SQL) is the database language which can perform certain
operations on the existing database and also we can use this language to create a database.

SQL uses certain commands like Create, Drop, Insert etc. to carry out the required tasks.

These SQL commands are mainly categorized into four categories as:
1. DDL — Data Definition Language
2 DQI — Data Query Language
3. DML — Data Manipulation Language
4. DCL - Data Control Language

Downloaded from EnggTree.com

1.

EnggTree.com

DDL(Data Definition Language) : DDL or Data Definition Language actually
consists of the SQL commands that can be used to define the database schema. It simply
deals with descriptions of the database schema and is used to create and modify the

structure of database objects in the database.

Examples of DDL commands:
e CREATE - is used to create the database or its objects (like table, index, function,
views, store procedure and triggers).
e DROP —is used to delete objects from the database.
e ALTER:-is used to alter the structure of the database.
e TRUNCATE-is used to remove all records from a table, including all spaces
allocated for the records are removed.

o COMMENT -is used to add comments to the data dictionary.

e RENAME -is used to rename an object existing in the database.

DQL (Data Query Language) :
DML statements are used for performing queries on the data within schema objects.
The purpose of DQL Command is to get some schema relation based on the query

passed to it.

Example of DQL:
e SELECT —is used to retrieve data from the a database.

DML (Data Manipulation Language) : The SQL commands that deals with the
manipulation of data present in the database belong to DML or Data Manipulation

Language and this includes most of the SQL statements.

Examples of DML:
e INSERT - is used to insert data into a table.
e UPDATE - is used to update existing data within a table.
e DELETE — is used to delete records from a database table.

Downloaded from EnggTree.com

EnggTree.com

4. DCL(Data Control Language) : DCL includes commands such as GRANT and
REVOKE which mainly deals with the rights, permissions and other controls of the

database system.

Examples of DCL commands:
e GRANT-gives user’s access privileges to database.
e REVOKE-withdraw user’s access privileges given by using the GRANT

command.

5. TCL(transaction Control Language) : TCL commands deals with the transaction
within the database.
Examples of TCL commands:
e COMMIT- commits a Transaction.
e ROLLBACK- rollbacks a transaction in case of any error occurs.
e SAVEPOINT-sets a savepoint within a transaction.

e SET TRANSACTION-specify characteristics for the transaction.
1. DDL
commands SQL:
create command

Create is a DDL SQL command used to create a table or a database in relational database

management system.
Creating a Database
To create a database in RDBMS, create command is used. Following is the syntax,

create database <db_name>

Example for creating

Database create database test;

The above command will create a database named test, which will be an empty schema

without any table.

Downloaded from EnggTree.com

EnggTree.com

To create tables in this newly created database, we can again use the create command.

Creating a Table
Create command can also be used to create tables. Now when we create a table, we have to
specify the details of the columns of the tables too. We can specify the names and data types

of various columns in the create command itself.

Following is the syntax,

create table <table name> (

column_namel datatypel, column name2 datatype2, column name3 datatype3,
column_name4 datatype4

);

create table command will tell the database system to create a new table with the given table

name and column information.

Most commonly used data types for Table columns

Datatype Use
INT used for columns which will store integer values.
FLOAT used for columns which will store float values.
DOUBLE used for columns which will store float values.
VARCHAR used for columns which will be used to store characters and integers, basically a string.
CHAR used for columns which will store char values(single character).

DATE used for columns which will store date values.

used for columns which will store text which is generally long in length. For example, if
you create a table for storing profile information of a social networking website, then for

TEXT about me section you can have a column of type TEXT.

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Example:

SQL> create table bankAccount(id number(3),custname varchar(15),branch varchar(10));

Table created.

SQL> desc bankAccount;

Name Null? Type

ID NUMBER(3)
CUSTNAME VARCHAR2(15)
BRANCH VARCHAR2(10)

SQL: ALTER command

alter command is used for altering the table structure, such as,
e to add a column to existing table
e to rename any existing column
e to change datatype of any column or to modify its size.

e to drop a column from the table.
ALTER Command: Add a new Column

Using ALTER command we can add a column to any existing table. Following is the syntax,

ALTER TABLE table name ADD(column_name datatype);

ALTER TABLE table name ADD(column_name datatype);
SQL> alter table bankAccount add city varchar(10);
Table altered.

ALTER Command: Add multiple new Columns

Using ALTER command we can even add multiple new columns to any existing table.

Following is the syntax,

Downloaded from EnggTree.com

EnggTree.com

ALTER TABLE table name ADD(column_namel datatypel, column-name2 datatype2,);

ALTER Command: Add Column with default value
ALTER command can add a new column to an existing table with a default value too. The

default value is used when no value is inserted in the column. Following is the syntax,

ALTER TABLE table name ADD(column-namel datatypel DEFAULT some_value);
ALTER Command: Modify an existing Column

ALTERcommand can also be used to modify data type of any existing column. Following is

the syntax,
ALTER TABLE table name modify(column_name

datatype); SQL> alter table bankAccount modify id number(4);

Table altered.

SQL> desc bankAccount;

Name Null? Type

ID NUMBER(4)
CUSTNAME VARCHAR2(15)
BRANCH VARCHAR2(10)

ALTER Command: Rename a Column
Using ALTERcommand you can rename an existing column. Following is the syntax,

ALTER TABLE table name RENAME old column_name TO new_column_name;

SQL> alter table bankAccount drop column branch;
Table altered.

Downloaded from EnggTree.com

EnggTree.com

SQL> desc bankAccount;

Name Null? Type

ID NUMBER(4)
CUSTNAME VARCHAR2(15)
CITY VARCHAR2(10)

SQL> alter table bankAccount rename to

acct; Table altered.

SQL> desc acct;

Name Null? Type

ID NUMBER(4)
CUSTNAME VARCHAR2(15)
CITY VARCHAR2(10)

ALTER Command: Drop a Column

ALTERcommand can also be used to drop or remove columns. Following is the syntax,

ALTER TABLE table name DROP(column_name);

TRUNCATE command

TRUNCATE command removes all the records from a table. But this command will not
destroy the table's structure. When we use TRUNCATE command on a table its (auto-

increment) primary key is also initialized. Following is its syntax,

TRUNCATE TABLE table name
SQL> truncate table bankAccount;

Table truncated.

Downloaded from EnggTree.com

EnggTree.com

SQL> desc bankAccount;

Name Null? Type

ID NUMBER(4)
CUSTNAME VARCHAR2(15)
CITY VARCHAR2(10)

DROP command

DROP command completely removes a table from the database. This command will also

destroy the table structure and the data stored in it. Following is its syntax,
DROP TABLE table_name

SQL> drop table bankAccount ;
Table dropped.

RENAME query
RENAMEcommand is used to set a new name for any existing table. Following is the syntax,

RENAME TABLE old_table name to new_table_name

2. DML Command

Using INSERT SQL command

Data Manipulation Language (DML) statements are used for managing data in database. DML
commands are not auto-committed. It means changes made by DML command are not

permanent to database, it can be rolled back.
INSERT command

Insert command is used to insert data into a table. Following is its general

syntax, INSERT INTO table name VALUES(datal, data2, ...)

Downloaded from EnggTree.com

EnggTree.com

Insert value into only specific columns
We can use the INSERT command to insert values for only some specific columns of a row.
We can specify the column names along with the values to be inserted like this,

INSERT INTO student(id, name) values(value, value);

The above SQL query will only insert id and name values in the newly inserted record.
Insert NULL value to a column
Both the statements below will insert NULL value into age column of the student table.

SQL> desc acct;

Name Null? Type

ID NUMBER(4)
CUSTNAME VARCHAR2(15)
CITY VARCHAR2(10)

INSERT - is used to insert data into a table.

SQL> insert into acct
values(101,'santhosh','mumbai'); 1 row created.

SQL> select * from acct;

ID CUSTNAME CITY

101 santhosh Mumbai

SQL> insert into acct
values(&id,'&custname','&city'); Enter value for id:
102

Enter value for custname:

sreeram Enter value for city:

bangalore

Downloaded from EnggTree.com

https://www.geeksforgeeks.org/sql-insert-statement/

EnggTree.com

old 2: values(&id,'&custname','&city")

new 2: values(102,'sreeram','bangalore')

Downloaded from EnggTree.com

EnggTree.com

1 row created.

SQL>/

Enter value for id: 103

Enter value for custname:

mohan Enter value for city:

kerala

old 2: values(&id,'&custname','&city")

new 2: values(103,'mohan','kerala")

1 row
created.

SQL>/

Enter value for id: 104

Enter value for custname: setti

Enter value for city: bengal

old 2: values(&id,'&custname','&city")

new 2: values(104,'setti','bengal')

1 row
created.

SQL>/

Enter value for id: 105

Enter value for custname:

balaji Enter value for city:

delhi

old 2: values(&id,'&custname','&city")
new 2: values(105,'balaji','delhi")

1 row created.

SQL> select * from acct;

Downloaded from EnggTree.com

EnggTree.com

ID CUSTNAME CITY

101 santhosh mumbai

Downloaded from EnggTree.com

EnggTree.com

102 sreeram bangalore
103 mohan kerala
104 setti bengal
105 balaji delhi

Using UPDATE SQL command

UPDATE command

UPDATE command is used to update any record of data in a table. Following is its general
syntax,

UPDATE table name SET column_name = new_value WHERE some_condition;

WHERE is used to add a condition to any SQL query, we will soon study about it in detail.

Updating Multiple Columns
We can also update values of multiple columns using a single UPDATE statement.
UPDATE student SET name='Abhi', age=17 where s_id=103;

The above command will update two columns of the record which has s_id 103.

S ID NAME AGE
101 Adam 15
102 Alex 18
103 Abhi 17

UPDATE Command: Incrementing Integer Value

UPDATE student SET age = age+1;

As you can see, we have used age = age + 1 to increment the value of age by 1.
NOTE: This style only works for integer values.

UPDATE - is used to update existing data within a table.

SQL> update acct set custname="raju’,city="trichy' where id=104;

Downloaded from EnggTree.com

https://www.geeksforgeeks.org/sql-update-statement/

EnggTree.com

1 row updated.

Downloaded from EnggTree.com

EnggTree.com

SQL> select * from acct;

ID CUSTNAME CITY

101 santhosh mumbai
102 sreeram bangalore
103 mohan kerala
104 raju trichy
105 balaji delhi

Using DELETE SQL command
DELETE command
DELETE command is used to delete data from a

table. Following is its general syntax,

DELETE FROM table name;

Let's take a sample table student:

S ID [NAME |AGE

101 Adam 15

102 Alex 18

103 Abhi 17

Delete all Records from a Table

DELETE FROM student;

The above command will delete all the records from the table student.

Delete a particular Record from a Table

Downloaded from EnggTree.com

EnggTree.com

In our student table if we want to delete a single record, we can use the WHERE clause to
provide a condition in our DELETE statement.
DELETE FROM student WHERE s_id=103;

The above command will delete the record where s _id is 103 from the table student.

SID |S NAME |AGE

101 Adam 15

102 Alex 18

Isn't DELETE same as TRUNCATE

TRUNCATE command is different from DELETE command. The delete command will delete
all the rows from a table whereas truncate command not only deletes all the records stored in
the table, but it also re-initializes the table(like a newly created table).

DELETE - is used to delete records from a database

table. SQL> delete acct where id=103;

1 row deleted.

SQL> select * from acct;

ID CUSTNAME CITY

101 santhosh mumbai
102 sreeram bangalore
104 raju trichy
105 balaji delhi

3. TCL (Transaction Control Language) COMMANDS
COMMIT, ROLLBACK AND SAVEPOINT SQL COMMANDS

Downloaded from EnggTree.com

https://www.geeksforgeeks.org/sql-delete-statement/

EnggTree.com

Transaction Control Language (TCL) commands is used to manage transactions in the
database. These are used to manage the changes made to the data in a table by DML
statements. It also allows statements to be grouped together into logical transactions.
COMMIT command

COMMIT command is used to permanently save any transaction into the database.

To avoid that, we use the COMMIT command to mark the changes as permanent.

Following is commit command's syntax,

COMMIT;

COMMIT- commits a Transaction.
SQL> commit;

Commit complete.

SQL> select * from

acct;
ID CUSTNAME CITY
101 santhosh mumbai
102 sreeram bangalore
104 raju trichy
105 balaji delhi
ROLLBACK command

This command restores the database to last commited state. It is also used with SAVEPOINT
command to jump to a savepoint in an ongoing transaction.
Following is rollback command's syntax,

ROLLBACK TO savepoint_name;

Downloaded from EnggTree.com

EnggTree.com

SAVEPOINT command

Downloaded from EnggTree.com

EnggTree.com

SAVEPOINT command is used to temporarily save a transaction so that you can rollback to

that point whenever required.

Following is savepoint command's syntax,
SAVEPOINT savepoint name;

SAVEPOINT- sets a savepoint within a transaction.

SQL>savepoint sl;

Savepoint created.

Using Savepoint and Rollback

Following is the table class,

ID NAME
1 Abhi
2 Adam
4 Alex

Let’s use some SQL queries on the above table and see the results.

INSERT INTO class VALUES(5, 'Rahul');

COMMIT;

UPDATE class SET name = 'Abhijit' WHERE id ="5";
SAVEPOINT A;

INSERT INTO class VALUES(6, 'Chris");

Downloaded from EnggTree.com

EnggTree.com

SAVEPOINT B;

INSERT INTO class VALUES(7, 'Bravo");
SAVEPOINT C;

SELECT * FROM class;

NOTE: SELECT statement is used to show the data stored in the table.
The resultant table will look like,

ID NAME
1 Abhi
2 Adam
4 Alex
5 Abhijit
6 Chris
7 Bravo

Now let's use the ROLLBACK command to roll back the state of data to the savepoint B.
ROLLBACK TO B;

ROLLBACK- rollbacks a transaction in case of any error
occurs. SQL> rollback to s1;

Rollback complete.
SELECT * FROM class;
SQL> select * from
acct;

Now our class table will look like,

ID NAME

Downloaded from EnggTree.com

https://www.geeksforgeeks.org/sql-transactions/

EnggTree.com

1 Abhi
2 Adam
4 Alex
5 Abhijit
6 Chris

Now let's again use the ROLLBACK command to roll back the state of data to the savepoint A
ROLLBACK TO A;

SELECT * FROM class;

Now the table will look
like,
ID NAME
1 Abhi
2 Adam
4 Alex
5 Abhijit

So now you know how the commands COMMIT, ROLLBACK and SAVEPOINT works.

ADVANCED SQL FEATURES

Database Querying — Simple Queries, Nested Queries, Sub Queries and Joins
SQL - SELECT Query
The SQL SELECT statement is used to fetch the data from a database table which returns this

data in the form of a result table. These result tables are called result-sets.

Syntax
SELECT columnl, column2, columnN FROM table_name;

Downloaded from EnggTree.com

EnggTree.com

Here, columnl, column?2... are the fields of a table whose values you want to fetch. If you want

to fetch all the fields available in the field, then you can use the following syntax.
SELECT * FROM table name; Example

Consider the CUSTOMERS table having the following records —

ID | NAME AGE ADDRESS SALARY
1. | Ramesh 32 Ahmedabad 2000.00
2. | Khilan 25 | Delhi 1500.00
3. | kaushik 23 Kota 2000.00
4. | Chaitali 25 Mumbeai 6500.00
5. | Hardik 27 Bhopal 8500.00
6. | Komal 22 MP 4500.00
7. | Mufty 24 Indore 10000.00

The following code is an example, which would fetch the ID, Name and Salary fields of the
customers available in CUSTOMERS table.

sql> select id, name, salary from customers;

This would produce the following result —

ID NAME SALARY
1 Ramesh 2000.00

2 Khilan 1500.00

3 kaushik 2000.00

4 Chaitali 6500.00

5 Hardik 8500.00

6 Komal 4500.00

7 Mufty 10000.00

Downloaded from EnggTree.com

EnggTree.com
If you want to fetch all the fields of the CUSTOMERS table, then you should use the following
query.

sql> select * from customers;

This would produce the result as shown below.

ID | NAME AGE ADDRESS SALARY
1{ Ramesh 32 Ahmedabad 2000.00
2. | Khilan 25 | Delhi 1500.00
3. | kaushik 23 Kota 2000.00
4. | Chaitali 25 Mumbai 6500.00
5. | Hardik 27 Bhopal 8500.00
6. | Komal 22 MP 4500.00
7. | Mufty 24 Indore 10000.00

SUB QUERY IN ORACLE QUERY

While creating a database if we want to extract some information regarding the data in the

database then we use a Query.

Example: If we write a simple Query to create a table:

CREATE TABLE Product (Prod_Id Number Not Null, Prod_Name Varchar2(50,
Quantity Varchar2(15), Price Number);

Then, the result will be as in the following.

Product Table
Prod_id Prod_Name IQuantity Price

Downloaded from EnggTree.com

EnggTree.com

Sub Query

If a Query that contains another Query, then the Query inside the main Query is called a Sub
Query and the main Query is known as the parent Query. In Oracle the Sub Query will
executed on the prior basis and the result will be available to the parent Query and then the
execution of the parent/main Query takes place. Sub Queries are very useful for selecting rows
from a table having a condition that depends on the data of the table itself. A Sub Query can
also be called a Nested/Inner Query.

These Sub Queries can be used with:
e WHERE Clause
e SELECT Clause
e FROM Clause

QU ERY e Parent Query

Syntax
SELECT <column, ...> FROM <table> WHERE expression operator (
SELECT<column,...> FROM<table>WHERE <condition>);

Or
SELECT Col name [, Col name] FROM tablel [,table2] WHERE Col name OPERATOR (
SELECT Col name [,Col name] FROM tablel [,table2] [WHERE]);

STUDENT TABLE

Downloaded from EnggTree.com

EnggTree.com

TN A AR | T A R | T L A]t At i |8] e | R R ATt | e e et E et

W E X B W | sot. [Fiter

sup_0 [§ stuoname |§ ace |l eman [§ course

1 1 Anjali 26 anjali@a. .. 10

2 2 Shweta 27 shweta. .. 30

3 3 5apna 25 sapna@... 30

4 4 Dioli 26 doli@ab. .. 10
SUBJECT TABLE

A E X8 B | sot.. |Fiter:

B courseo | course nave |§ FacuLTy |

1 10 Oradle Amnit
2 20 Automata Amit
3 30 Metwork Seema
4 40 Unix Seema

1. Sub Query using WHERE
Clause SELECT * FROM student

WHERE course_id in (SELECT course id
FROM subject
WHERE course name = 'Oracle')

il W

[Results _J Script Output
Results:

R Explain |) Autotrace | £ADEMS Output | @ owa output

stupm [f suonave | ace(] eman |} course |

1 -Dnli 26 doli@abe.com 10

2 1 Anjali 26 anjali@abc, com 10

2. Sub Query using FROM Clause

SELECT a.course name, b.Avg Age
FROM subject a, (SELECT course id, Avg(Age) as Avg Age

Downloaded from EnggTree.com

EnggTree.com

FROM student GROUP BY course id) b
WHERE b.course id = a.course_id

(B Results. || Seript Output | TExplain | R autotrac

Results:
COURSE_NAME ! A'-.-'G_AGE|
1 Metwork 26
2 Orade 26

3. Sub Query using SELECT Clause SELECT course_id, course_name, (
SELECT count (course_id) as num_of student

FROM student a

WHERE a.course id = b.course_id

GROUP BY course_id

) No_of Students

FROM subject b

[Results| 5] seript Output | B Explain | B Autotrace | DBMS Outpy

Results;
COURSE_ID |@ COURSE_MNAME |@ NO_OF_STUDENTS |
1 10 Qracle 2
2 20 Automata {rully
3 30 Metwork 2
4 40 Unix {rully

Downloaded from EnggTree.com

EnggTree.com

Types of Sub Queries

Types of Sub Query
Single row Uncorrelated
| Subquery Subquery

Multiple rows W Correlated
Subquery Subquery

Multiple

Column
Subquery

EMPLOYEE TABLE with Column Name

Columing | Dt | Constraints | Grants | Statistics | Trigoers | Flashback [Dependencies | Detals | indexes |S0L

o o 1 @ Acvors...

[§ Column Mame
EMPLOYEE D
FIRST_NAME
LAST_NAME
JEMAL
PrONE_NUMBER

| HIRE_DATE
|308_ID
SALARY
ICOMMISSION_PCT
BMANACER ID
DEPARTMENT _ID

i DotaType
MMEER(S, 0)
VARCHAR 2 (20 BYTE)
VARCHAR 2(25 BYTE)
VARCHARZ(25 BYTE)
VARCHAR 2{2) BYTE)
DATE

VARCHAR2{10 BYTE)
MUMBER(E, 7)
MUMBER(2,7)
MUMBER (5,0}
FUMBER(4,0)

Downloaded from EnggTree.com

|| rudabie [DataDefauit |[§ cousen [Primary ey || commens |

i)
Yes
]
-]
e
ko
Ho

Yes
Y
Ve
Yiet

()

E8288E

gEi3

B ow th s ovn b WA

a

1 Prienary key o...
{radll) First name of ...
(ol Linsit naamee of ..
[l Emall il of the...,
[redl) Phone rumbse....
i) Date when ...
(i) Current job of..,
[rul) Monihly salar. ..
{radl) Corsszion ...
(el Managsr o of...
{radl) Department id. ..

EnggTree.com

EMPLOYEE TABLE with Data

Cokumns |Diata| Constraints | Grants | Statistics | Triggers | Flashback | Dependencies |Detalls |Indexes |5QL

A UE XD D sor. R

e [8 rrsTne|§ s | e |§ prone veer [§ rareoate [§ o8 o |§ 5.8 cow. B ma B e |

1 198 Donald OConnel DOCONM... 650.507.9833 21-m-07 SH.CLERK 2500 {rually 124 50
2 199 Doughas Grant DGRANT 650.507.9844 13-1AN-0E SH_CLERK 2600 {pully 124 50
3 200 Jennifer whalen JWHALEM 515.123.4944 17-5EP-03 AD_ASST 400 () 101 w0
4 201 Michael Hartsten MHARTSTE 515.123.5555 17FER-04 MIE_MAN 13000 {nul) 100 m
5 202 Pat Fay PRAY £03.123.6666 1T-ALGO5 MK_REP £000 {nuly 20 .
& 203 Susan Mavris SMAVRIS 515.123.7777 07-2UN-02 HR_REF £500 ()} w1 40
7 204 Hermann Baser HEAER 515.123.8868 07-RN-02 PR_REP 10000 (e} w1 0
g 205 Sheley Hggns SHIGGINS 515.123.8080 oF-2Un-0z2 AC_MGR 12008 (il w1 110
g 206 Viliam Gtz WGIETZ 515.123.3181 0F-M-02 AC_ACC,., 8300 () 205 110
10 100 Steven King SKING 515.123.4567 17-Rn-03 ADPRES 24000) (i) o0
11 101 Neena Kodhhar MKOCHH... 515.123.4568 21-5EP-05 AD_VP 17000 () 100 o0
12 102 Lex DeHaan LDEMAAN 515.123.4569 13-AN-01 AD_VP 17000 () 00 o0
13 103 Alexander Hunold AHUNOLD 590.423.49567 03-1AN-06 IT_PROG 2000 {mually w2 &0
14 104 Bruge Ernst BERMNST 590.423.4568 2MaY07 IT_PROG 6000 (il 103 60
15 105 Daned Mustn DAUSTIN 590.423.4569 25-UN05 IT_PROG 4300 () 103 &0
15 106 vall Patabala VPATABAL 590.423.4560 05-FEB-06 IT_PROG 4an0 () w3 &0
17 107 Diana Lorentz DUORENTZ 590.423.5567 07 FEB-07 IT_PROG 4200 () 103 &0
13 108 Nancy Greenberg MGREENBE 515.124.4569 iT-AUGOZ FI_MGR 12008 {null} 01 00
13 109 Darsiel Faviet DFAVIET 515.124.4169 16-AUG0Z FI_ACCO.. 9000 {rwally 08 100
m 110 John Chen MHEN 515.124.4269 28-SEP-05 FI_ACCO... 8200 () 108 00
2 111 fomaed Soarra ISCIARRA 515.124.4369 30-5EP-05 FI_ACCO.. 7700 {rully 108 100
) 112 Jose Mantel Urman JMURMAN 5151244468 OFMER0E. FI_ACCO.. 7400 (il 108 100
3 113lus Popp LPOPP 515.124.4557 O7-DECO7 FI_ACCO... &a00 {rully 08 00
T4 114 Maary Rarhash: NRAPREAI S5 177 4681 ATAECNT B MAM 1400 Fru Y i N
DEPARTMENT TABLE with Column name
Eui.nhs._mtaImtmﬁlﬁmhismﬂﬂul:lw.lmlw | Detade [Indexes |S0L
| 7 @ s
@ com Name 1§ pataType I redtatle [DataDefout [§ coumnm [§ Primerykey [§ comments |
i-DEPMTHE‘ﬂ_ID NUMEER(4,0) Mo (rdl) 1 1 Primary ey c...
ARTHENT _NAME VARCHAR (3] BYTE) Mo (el 2 {reall} A not rull cok....
F:usm_m NUMEER(5,0) Tes (null) 3 (rll) Manager_id 0.,
IH.DEA'.ITEH_JD MUMBER((4,0) Yes (o) & {rull} Location id wh...

Downloaded from EnggTree.com

EnggTree.com

DEPARTMENT TABLE with Data

slumns |Data| Constraints | Grants | Statistics | Triggers |Flashbadk | Dependendes | Details | Inde:

r E’[ﬂ EXE® B sot.. Filter:|

B oerarvenT ID | DEPARTMENT NAME |[§ ManAcER_ID [LocaTION DD |

1 10 Administration 200 1700
2 20 Marketing 201 1800
3 30 Purchasing 114 1700
4 40 Human Resources 203 2400
5 50 Shipping 121 1500
5] o0 IT 103 1400
7 70 Public Relations 204 2700
8 80 Sales 145 2500
9 90 Executive 100 1700
10 100 Finance 108 1700
13 110 Accounting 205 1700
12 120 Treasury {rull) 1700
13 130 Corporate Tax {null}y 1700
14 140 Control And Credit {rull) 1700
15 150 Shareholder Services {null}y 1700
16 160 Benefits {null) 1700
17 170 Manufacturing {null}y 1700
18 180 Construction {rull) 1700
19 190 Contracting {null}y 1700
20 200 Operations {rull) 1700
21 210 IT Support {null}y 1700
27 220 NOC {null) 1700
77 270 TT Halndeal frally 1700

1. Single Row Sub Query

In a Single Row Sub Query the queries return a single/one row of results to the parent/main

Query. It can include any of the following operators:

+ =Equalsto

e (reater than
e < Lessthan
e >= Greater than Equals to

e <= Less than Equals to

Downloaded from EnggTree.com

EnggTree.com

e Not Equals to

Example
SELECT * FROM employees WHERE salary = (SELECT MIN(salary) FROM employees);

CLEHRA® BB & 0.004975%seconds

SELECT * FROM employees
WHEFE salary = (SELECT MIN({=zalary) FROM employees);

avw

B Resuits:] script Output | BEsptan | B autotrace | 0ems cutput | € owa cutput
il . . . : . : : . . :
g ew.§ r.. 8 Last.. (@ eman (@ prone.. B ni. @ dosp |§ saary |8 com. |l ™. 8 oepasmvenT ID |
1 1327) Olson TIOLSOM 650.124.8234 10-AP.,. 5T_CLERK 2100 {nul) 121

Single Row Sub Query using HAVING Clause

SELECT department id,

MIN(salary) FROM employees

GROUP BY department id

HAVING MIN(salary) > (SELECT MIN(salary)
FROM employees

WHERE department_id = 50);

Execute the Query, the result will be as in the following:

Downloaded from EnggTree.com

EnggTree.com

ﬁ_@@aﬁlﬁﬁ.é.u.uﬁ?m&mm

SELECT department id, MIN(salary) FROM enmployees GROUP BY department id
HAVIHG MIH (salary) = | SELECT MIH (salary)
FROM employees WHERE department id = 50);

‘aw

[Results [script Output | ERExplain f@numtacehﬁ.mams Output | 4 OWA Qutput

Results:

DEP'ARTMEITI’_ID|EE MIN{SALAF‘.Y}|

1 100 6900
2 30 2500
3 {rwill) 7000
+ 20 6000
5 70 10000
6 90 17000
7 110 8300
8 40 6500
g a0 6100
10 10 4400
11 60 4200

Multiple Row Sub Query

A Multiple Row Sub Query returns a result of multiple rows to the outer/main/parent query. It
includes the following operators:

1. IN

2. ANY

3. ALL or EXISTS

Downloaded from EnggTree.com

EnggTree.com

Example

SELECT e.first name, e.salary
FROM employees e

WHERE salary IN (SELECT
MIN(e.salary) FROM employees e
GROUP BY e.department _id);

Execute the Query, then the result will be as in the following:

=EERAS B8 ¢ | 001008317 seconds
|

| SELECT e.first name, e.salary FROM employees e
!‘i'II-[E[RE galary IH [SELECT MIH (e.s3alary)

|FROM employees &

|i}Rl]1I'P BY e.department id):

|

il W

B> Results| [script Output | ¥Explain | B Autotrace | FDBMS outp

Results:

FIRST_NAME |[] SALARY |

1 Jennifer 4400
2 Pat 5000
3 Susan 6500
4 Hermanrn 10000
5 William 3300
& Neena 17000
Jlex 17000
& Bruce &000
9 Diana 4200
10 Luis 5300
11 Karen 2500
12 Shanta 5500
13 James 2500

14713 2100

Downloaded from EnggTree.com

EnggTree.com

Multiple Column Sub Query
Multiple Column Sub Queries are queries that return multiple columns to the outer SQL query. It

uses the IN operator for the WHERE and HAVING clause.

SELECT e.department id, e.job_id,e.salary

FROM employees e

WHERE (e job id, e.salary) IN (SELECT e.job id, e.salary
FROM employees e

WHERE e.department _id = 50) ;

Execute the Query, then the result will be as in the following:

PERRAS® BB ¢ 0.01087118sec0nds

SELECT e.department_id, e.job_id,s.salary FROM emplovees & WHERE (e.job_id, e.salary)] IN
{ SELECT e.job_id, e.salary FROM enmployvess e VWHERE e.department id = 50)

£

> Resuits| 2] saript output | EExplain | B Autotrace | @ 0BMs output | € owa output

Results:

pePaRTMENT D [J0B_ID |[§ savamy |

1 50 SH_CLERK 2600
2 50 SH_CLERK 2600
3 50 ST_MAN 8000
4 50 ST_MAN 8200
5 50 5T_MAN 7900
[50 ST _MaM 6500
7 50 ST_MAN 5800
8 50 ST_CLERK 3200
g 50 ST_CLERK 3200
10 50 ST_CLERK 2700
11 50 ST_CLERK 2700
12 50 ST_CLERK 2400
13 50 ST_CLERK 2400
15 50 ET_G.EP‘.K 2200
15 50 ST_CLERK 2200

Downloaded from EnggTree.com

EnggTree.com

Note: We can use a Sub Query using a FROM clause in the main query.

SELECT e.first name, e.salary, e.department id, b.salary avg

FROM employees e,

(SELECT el.department_id, AVg(el.salary) salary avg

FROM employees el

GROUP BY el.department id) b

WHERE e.department id = b.department id AND e.salary > b.salary avg; Execute the Query,

then the result will be as in the following:

PERR® BB ¢ 0.01013745seconds

SELECT e.first name, e.zalary, e.department id, h.zalary awg

FROM employees e,

[SELECT el.department id, #Vgiel.salary) salary awvg

FROM emnployees el

GROUP BY el.department id) b

THERE e.department id = b.department id #HD e.zalary > b.salary awy;

#
N

I -

[
B> Results (=] seript Output | B Explain EfAutotrace |£EDEI‘~’IS Cutput | € OWA Output
Results;
g rFrmst_name [saary @ DEPARTMENTID ([SALARY_AvG
1! 13000 20 9500
2 Shelley 12008 110 10154
3 Steven 24000 90 19333.33333333333333333333...
4 Alexander 9000 a0 5760
5 Bruce 6000 60 5750
& MNancy 12008 100 8501.333333333333333333333...
7 Daniel 3000 100 8601,333333333333333333333...
8 Den 11000 30 4150
9 Matthew 8000 50 3475.555555555555555555555. ..
10 Adam 8200 50 3475.555555555555555555555. ..
11 Payam 7900 50 3475.555555555555555555555. .
12 Shanta 6500 50 3475.555555555555555555555. ..
13 Kevin 5800 50 3475.555555555555555555555. ..
14 Renske 3600 50 3475.555555555555555555555. ..
15 Trenna 3500 50 3475.555555555555555555555. ..

Downloaded from EnggTree.com

EnggTree.com

Nested Sub Query

When we write a Sub Query in a WHERE and HAVING clause of another Sub Query then it is
called a nested Sub Query.

SELECT e.first name,e.salary

FROM employees ¢ WHERE e.manager id in (SELECT e.manager id FROM employees e
WHERE department_id in (select d.department id

FROM departments d

WHERE d.department name='Purchasing'));

Execute the Query, then the result will be as in the following:
;[} ERR® BB ¢ | 0.0579305 seconds

select e.first name,e.zalary

from emplovees e

where e.manager id in

[select e.manager id

from ewployees e

where department id im (select d.department id
from departments d

where d.department name='Purchasing' 1) ;I

Downloaded from EnggTree.com

EnggTree.com

[AY
[Results: |} Script Output i':ﬁEprain|'§EjAuh:tace|-_E.DEMS Qutpi
Results:
FIRST_NAME || SALARY |
1 Eleni 10500
2 Gerald 11000
3 Alberto 12000
4 Karen 13500
5 John 14000
& Kevin 5800
7 Shanta A500
& Payam 7900
3 Adam 2200
10 Matthew a000
11 Den 11000
12 Lex 17000
P T

Correlated Sub Query
A Correlated Sub Query contains a reference to a table that appears in the outer query. It is

used for row by row processing, in other words the Sub Query will execute row by row for the

parent query.

SELECT a.first name|' '/|a.last name, a.department id, (SELECT b.first name||'

'|b.last name

FROM employees b WHERE b.employee id in (SELECT d.manager id FROM
departments d

WHERE d.department name='IT")) as MANAGER

FROM employees a ;

Execute the Query, then the result will be as in the following:

Downloaded from EnggTree.com

EnggTree.com

FPERRO WY ¢ 005068072 seconds
T

|select a.first _name||' '|la.last_hame, a.department_id,
(select b.first name||' '||b.last name from employees b where b.employee id im
liselect d.manager_id from departments d where d.department name='IT' |) as MANAGER

|[FROM employees a ,:I
|

-
[Results: || script Output | ¥ Explain | B Autotrace |13DBM5 Output | % OWA Output
Results:
B AFIRST_MAME|["]|A.LAST_NAME |E} DEPARTMENT _ID I MANAGER.
1 Donald OConnell 50 Alexander Hunold
2 Douglas Grant 50 Alexander Hunold
3 Jennifer Whalen 10 Alexander Hunold
4 Michael Hartstein 20 Alexander Hunold
5 PatFay 20 Alexander Hunold
& Susan Mavris 40 Alexander Hunold
7 Hermann Baer 70 Alexander Hunold
8 Shelley Higgins 110 Alexander Hunold
9 Wiliam Gietz 110 Alexander Hunold
10 Steven King 90 Alexander Hunold
11 Meena Kochhar 90 Alexander Hunold
12 Lex De Haan 90 Alexander Hunold
13 Alexander Hunold 60 Alexander Hunold

DBMS | Nested Queries in SQL
In nested queries, a query is written inside a query. The result of inner query is used in
execution of outer query. We will use STUDENT, COURSE, STUDENT_COURSE tables

for understanding nested queries.

Downloaded from EnggTree.com

EnggTree.com

STUDENT
S ID S_NAME S_ADDRESS S_PHONE S_AGE
S1 RAM DELHI 9455123451 18
S2 RAMESH GURGAON 9652431543 18
S3 SUJIT ROHTAK 9156253131 20
S4 SURESH DELHI 9156768971 18
COURSE
C ID C NAME
Cl DSA
C2 Programming
C3 DBMS

STUDENT_COURSE

S_ID C_ID
S1 Cl
S1 C3
S2 Cl
S3 C2
S4 C2
S4 C3

There are mainly two types of nested queries:

Independent Nested Queries: In independent nested queries, query execution starts from
innermost query to outermost queries. The execution of inner query is independent of outer
query, but the result of inner query is used in execution of outer query. Various operators like

IN, NOT IN, ANY, ALL etc. are used in writing independent nested queries.

IN: If we want to find out S_ID who are enrolled in C_ NAME ‘DSA’ or ‘DBMS’, we can
write it with the help of independent nested query and IN operator. From COURSE table, we

Downloaded from EnggTree.com

EnggTree.com

can find out C_ID for C_ NAME ‘DSA’ or DBMS’ and we can use these C_IDs for finding
S_IDs from STUDENT_COURSE TABLE.

STEP 1: Finding C_ID for C_ NAME ="DSA’ or ‘DBMS’
Select C_ID from COURSE where C_NAME = ‘DSA’ or C_NAME = ‘DBMS’

STEP 2: Using C_ID of step 1 for finding S_ID
Select S_ID from STUDENT COURSE where C_ID IN

(SELECT C_ID from COURSE where C_ NAME = ‘DSA’ or C_ NAME="DBMS’);
The inner query will return a set with members C1 and C3 and outer query will return those
S_IDs for which C_ID is equal to any member of set (C1 and C3 in this case). So, it will return

S1, S2 and S4.

Note: If we want to find out names of STUDENTSs who have either enrolled in ‘DSA’ or
‘DBMS’, it can be done as:

Select S NAME from STUDENT where S_ID IN
(Select S_ID from STUDENT COURSE where C_ID IN

(SELECT C_ID from COURSE where C_ NAME="DSA’ or C_ NAME="DBMS"));

NOT IN: If we want to find out S_IDs of STUDENTSs who have neither enrolled in ‘DSA’ nor
in ‘DBMS’, it can be done as:

Select S_ID from STUDENT where S_ID NOT IN
(Select S_ID from STUDENT_COURSE where C_ID
IN

(SELECT C_ID from COURSE where C_ NAME="DSA’ or C NAME="DBMS"));

Downloaded from EnggTree.com

EnggTree.com

The innermost query will return a set with members C1 and C3. Second inner query will return
those S_IDs for which C_ID is equal to any member of set (C1 and C3 in this case) which are
S1, S2 and S4. The outermost query will return those S_IDs where S_ID is not a member of
set

(S1, S2 and S4). So it will return S3.

Co-related Nested Queries: In co-related nested queries, the output of inner query depends on
the row which is being currently executed in outer query. e.g.; If we want to find out S NAME
of STUDENTSs who are enrolled in C_ID ‘C1’, it can be done with the help of co- related

nested query as:

Select S NAME from STUDENT S where EXISTS (select * from STUDENT COURSE
SC
where S.S_ID=SC.S_ID and SC.C_ID="CI’);

For each row of STUDENT S, it will find the rows from STUDENT COURSE where
S.S_ID

= SC.S_ID and SC.C_ID="CI’. If for a S_ID from STUDENT S, atleast a row exists in
STUDENT _COURSE SC with C_ID="CI’, then inner query will return true and

corresponding S_ID will be returned as output.

JOINS IN ORACLE
In Oracle, a join is the most powerful operation for merging information from multiple tables
based on a common field. There are various types of joins but an INNER JOIN is the common

of them.

Syntax

SELECT coll, col2, col3...
FROM table namel,

table name?2

WHERE table namel.col2 = table name2.coll;

Downloaded from EnggTree.com

EnggTree.com

Types Of Joins
— 3 INNER JOIN

| > rqQuI JOIN
J

—ey QUTER JOIN

— NON EQUI JOIN
0 = LEFT OUTER JOIN

—eep SELF JOIN RIGHT OUTER JOIN

I FULL OUTER JOIN
| e—3 CROSS JOIN

N —_—y NATURAL JOIN

—p USING CLAUSE

S _— ON CLAUSE

To understand each of the preceding joins clearly we are assuming the following

"CUSTOMER" and "ORDERS" tables: CREATE TABLE Customer

(
Cust_id Number(10) NOT NULL, Cust name

varchar2(20), Country varchar2(20), Receipt_no
Number(10),
Order_id Number(10) NOT NULL,

)

CREATE TABLE Orders

(
Order_id Number(10), Item_ordered varchar2(20), Order_date date

)

Downloaded from EnggTree.com

EnggTree.com

Table: CUSTOMER

AConnections | (. || 2] Olftender.sd | [0} testisg’ [locar EBcuSTOMER
3 7 Columns |Data Constraints | Grants [Statisties | Trggers | Fashhad [Dependances | Detads | indexes |SQL
r r
E| Ecm Al @ E X E R s Fiter:| . . .
i 8 n | mst_mJﬁ cusT tune (B conmmy [B receeT ho |§ oroer D |
5 E?Tm 1 111PPFP usA 113 1
& m COUNTRIES 2 112 ARAR e 115 2
= 0B OEE 3 1138883 Australs 116 5
g st o 4 114CCCC England 112 1
B oust_nave 5 1150000 Germany 111 4
H counmy 5 116 EEEE Dubal 14 7
B RECEPT MO
B oroer_I0
Table: ORDERS
[&) Connections R 13 =] [Bliitender.sgl |[B] testrsw | loct [oroERS
@ @ v Columns |Data| Constraints | Grants |S13tist!cs | Triogers |Flashback |
EIEB Connections aed - E@ @ o® @ B | sort... :Filter:l
-8 hr B oroer 0 |F rmEM orDEReD |§ oRDER_DATE |
E@ ol 1 1Talc 24-DEC-07
B--{F3 Tables
o3 E@ cou - 2 2 Soap 13-AUG-01
=1 cusToMER 3 3 Deo Spray 19-MAR-05
B CusT_ID 4 4 Hair Oil O5-MOV-12
-B cusT_mMaME
-B counTRY

-E RECEIFT_NO
B orRDER_ID
o-{E] DEPARTMENTS
o5 EMPLOYEES

+--fEE FINAL_RCH_MH_10
0 108_HISTORY
+-{EE 1085

0 LocaTIoNS

-1 S

i B ORDER_ID

~E ITEM_ORDERED
- E ORDER_DATE

o e O o 0y 0 O

First of all we will explain the "USING" clause and the "ON" clause.

Downloaded from EnggTree.com

EnggTree.com

1. Using Clause

To join a table using the USING Clause we write the following command.
Query

SELECT Cust_id, Cust_name, Country, item_Ordered, Order date
FROM Customer C JOIN Orders O USING (Order_id);

Execution of the query with result

ESELECT cust_id, cust name, country, Item ordered, order date
|FROM custower © join orders o
|USTHG (order_id);

..
B Results =] script Output | EfExpain |j§:.':3 Autotrace |=EDBM5 Output | £ OWa Cutput
Results:
cusT o [cusT name |f counTry § mEM oroereD [§ ORDER DAT

1 111 PPPP LISA Talc 24-DEC-07

2 114 CCCC England Talc 24-DEC-07

3 112 AAAA LK Soap 13-AUG-01

4 115 DDOD Germany Hair Qil O5-MOV-12
2.0n Clause

To join a table using an ON Clause we write the following command:

Query
SELECT Cust _id, Cust_name, Country, item Ordered, Order date
FROM Customer C JOIN Orders O USING (C.Order _id =

0.Order _id);

Execution of the query with result

Downloaded from EnggTree.com

EnggTree.com

= 2R @ B8 ¢ | 0.00538435 seconds

EELECT cust_id, cust_name, country, Item ordered, order_ date
FROM customer © Jjoin orders o

|0 (c.order_id = o.order_id]):
..
B> Results| (5] script output | EExplain | S Autotrace | @0eMs output | @ owa output
Results:
cusT_D |[§ cust_name | counTry @ TEM_ORDERED [[§ ORDER_DATE
1 111 PPPP UsA Talc 24-DEC-0T
2 114 ccce England Talc 24-DEC-07
3 117 ARAA LK. Soap 13-AUG-01
4 1150000 Germany Hair il 05-NOV-12
Equi Join

An Equi join is used to get the data from multiple tables where the names are common and the

columns are specified. It includes the equal ("=") operator.
Example
SELECT Cust _id, Cust_name, item_Ordered, Order date

FROM Customer C, Orders O WHERE C.Order _id = O.Order id;

Execution of the query with result

Downloaded from EnggTree.com

EnggTree.com

= ?ﬁ a & ﬂ E 4‘ 0.01020067 seconds

|SELECT Cust_id,Cust _name,Item ordered,Order date
|\ FRORL customer C, orders O
[THERE c.order_id = o.order_id:

i, W
B results | (=] Script output | EExplain | B Autotrace | FDBMS Output | € owa outr
Results:

cusT_io |{ cusT_mame [f] rEm_oroeren [oroer_pate |

1 111 PPPP Talc 294-DEC-O7F
2 112 AAAR Soap 13-AUG-01
3 114 CCCC Talc 294-DEC-O7F
= 115 DDDD Hair Cil QA5-MOV-12

1. Inner Join

An Inner Join retrieves the matching records, in other words it retrieves all the rows where
there is at least one match in the tables.

Example

SELECT Cust_id, Cust_name, Country, item_ordered, Order_date

FROM Customer INNER JOIN Orders USING (Order id);

Execution of the query with result

Downloaded from EnggTree.com

EnggTree.com

SELECT cust_id, cust_name, country, Item ordered, order date
FROM customer IHHER JOIN orders
UsIHG (Order id):
% 4
[Results. =] Script Output | T3)Explain |£‘.:.'_:ﬂ.ﬂ.utntral:e |.'E.DE=M5 Output | A OWA Output
Results:
cusT o [cust_name |§ country [f| rEM_orDERED |[] ORDER DATE
1 111 PPPP USA Talc 24-DEC-07
) 114 ccee England Talc 24-DEC-07
3 112 AAAA UK Soap 13-AUG-01
4 1150000 Germany Hair il O5-MOV-12
2. Outer Join

The records that don't match will be retrieved by the Outer join. It is of the following three
types:

1. Left Outer Join

2. Right Outer Join

3. Full Outer Join

1. Left Outer Join

A Left outer join retrieves all records from the left hand side of the table with all the matched
records. This query can be written in one of the following two ways.

Example

Method

1

SELECT Cust _id, Cust_name, Country, item_ordered, Order date
FROM customer C, LEFT OUTER JOIN Orders O ON (C. Order_id = O.Order _id)

Downloaded from EnggTree.com

EnggTree.com

Execution of the query with result

Downloaded from EnggTree.com

EnggTree.com

FERRS B8 & 000754279 seconds

SELECT Cust_id,Cust name,Country,ltem ordered,Order date
FROM customer o LEFT OUTER JOTH orders 0 OH(c.order id = o.order_id):

[Results (5] script Output | BExplain | EAutotrace | @0ems output | (A owa output

Iesults:
B custo | custname | country |[§ rmEm oroerep ([omper_DATE
1 111 PPPP USA Talc 24-DEC-07
2 112 AAAA UK Soap 13-AUG-D1
3 113 BBBB Australia {nuill}) {nully
4 114 CCCC England Tale 24-DEC07
5 115DDDD Germany Hair il 05-MNOv-12
& 116 EEEE Dubai (ruall}) {nwill})

Or: Method 2

SELECT Cust _id, Cust_name, Country, item_ordered, Order date
FROM customer C, Orders O

WHERE C.Order id = O.Order id(+);

Execution of the query with result

Downloaded from EnggTree.com

EnggTree.com

ERARS BB ¢ 0.00426452seconds

|SELECT Cust id,Cust name,Country,Item ordered, Order date
|FRI]H CUusSLomer , orders o

|WHERE c.order_id = o.order id(+]:

[Results| =] script Output | BlExplain | B Autotrace | (A DBMS Output | €1 owa output
Results:
CUST_ID |Et cusT_NaME (]| counTRY | [TEM_ORDERED |@ ORDER_DATE

1 111 PPPP USA Talc 24-DEC-O7

2 112 AAAA LIk Soap 13-AUG-01

3 113 BEBB Australia {null) {nwilly

4 114 CCCC England Talc 24-DECO7F

5 115 DDDD Germany Hair il O5-MOV-12

6 116 EEEE Dubai (rul)
2. Right Outer Join

A Right Outer Join retrieves the records from the right hand side columns.

Example

Method

SELECT Cust_id, Cust_name, Country, item_ordered, Order_date
FROM customer C, RIGHT OUTER JOIN Orders O ON (C. Order_id = O.Order id)

Execution of the query with result

Downloaded from EnggTree.com

EnggTree.com

PERABS BB ¢

SELECT Cust_id,Cust _name,Country,Item ordered,Order date
FROM customer c RIGHT OUTER JOTH orderzs 0 OH{c.order_id = o.order_id):

L
W

B> Resuits| (=] Script Output | EExplain | B Autotrace | EL0BMS Output | 4 owa output
Results:
cusT 0 |§ cust name [country [mEM oroEReD [f ORDER DATE

i 111FRPP Usa Talc 24-DEC-07

2 114CCec England Talc 24-DEC-07

3 112 AAAA UK Soap 13-AUG-01

4 (nually {raall}y {rully Deno Spray 19-MAR-05

5 115 0DOD Germany Hair il O5-MNOV-12

Or: Method 2
SELECT Cust _id, Cust_name, Country, item_ordered, Order date
FROM customer C, Orders O WHERE C.Order_id(+)=

0.Order id;

Execution of the query with result

Downloaded from EnggTree.com

EnggTree.com

.E;' S a é:; = | ﬁ z D.UU??BIZZSsemnds

|SELECT Cust_id,Cust_nawme,Country,Item ordered,Order_ date

|FROM customer c, orders o
|

| i‘I'IHERE c.order_idi+) = o.order_id;

.

! [Results. [seript output | B Explain |§§_§Aumtra-:e |13DBMS Output | (3 OWa Output
| Results:
cusT 0 | cusT_name | country || TEM_ORDERED |[§ ORDER_DATE
1 111PPPP USA Talc 24.-DEC-07
3 114 e England Talc 24DEC-07
3 112 AAAA UK Soap 13-AUG-01
; 4 {ull) (ul) (nul) Deo Spray 19-MAR-05
] 5 115D0DD Germany Hair il 05-MOV-12
3. Full Outer Join

To retrieve all the records, both matching and unmatched from all the tables then use the FULL
OUTER JOIN.

Example
SELECT Cust _id, Cust name, Country, item_ordered, Order date
FROM customer C, FULL OUTER JOIN Orders OON (C. Order_id = O.Order _id)

Execution of the query with result

Downloaded from EnggTree.com

EnggTree.com

S | g m—————— e s S —

FERERO 88 ¢ 0.01077024seconds

|SELECT Cust id,Cust name,Country,Iten ordered,Order date
FROM customer c FULL OUTER JOIH orders 0 OM{c.order_id = o.order id):

>
b

.
[Results =] script Output | EExpiain | Bl Autotrace | A DEMS output | €A owa output
| == | &
Results:
B custo|f custnave |§ country [[§ mem_oroerep [oRpER_DATE

1 111 PPPP LSA Talc 24-DEC-O7
2 117 AAAA LIk Soap 13-AUG-01
3 113 BEBE Australia {rull) {nully

4 114 CCCC England Talc ZHDECAOY
5 1150000 Germany Hair il O5-MOY-12
f 116 EEEE Dubai {rull) {nully

7 {rually (o) (il Deo Spray 19MAR-05

2. Non-Equi Join

n_n

A Non-Equi join is based on a condition using an operator other than equal to

Example

SELECT Cust _id, Cust name, Country, Item ordered, Order date
FROM Customer C, Oredrs O WHERE C. Order id >

0.Order id;

Downloaded from EnggTree.com

EnggTree.com

Execution of the query with result:

FPERRS BB ¢

SELECT Cust_id,Cust_name , Country,Item ordered, Order date
FROM customer «, orders O
VWHERE c.order_id > o.order_id:

r

[Results. || 5cript Output

EAExplain | Autotrace |iE.DEr~15 cutput | €% OWA Output
Jesults:
cusT o |§ cust_name|f] country |[] mEM_oRDERED] ORDER DATE
1 112 AARAA LIK Talc 24-DEC-07
2 115 DDDD Germany Talc 24DEC-O7
3 113 BEEB Australia Talc 24-DEC-O7
4 116 EEEE Dubai Talc 24-DECO7
3 1150000 Germany Soap 13-ALG-01
5] 113 EBEE Australia Soap 13-AUG-01
7 116 EEEE Dubai Soap 13-AUG-01
8 115DDDD Germany Deo Spray 19-MAR-05
9 113 BEEBB Australia Deo Spray 19-MAR-05
10 116 EEEE Dubai Deo Spray 19-MAR-05
11 113 BEEB Australia Hair il Q5-NOV-12
12 116 EEEE Dubai Hair Oil QO5-MOV-12

Downloaded from EnggTree.com

EnggTree.com

![ao ERR G B©B3 ¢ | 0.0075173 seconds

SELECT cl.Cust id, cZ.Cust name,cl.Country,cZ.0rder id
FRODM customer cl, customer ci
THEBE cl.oust id = CZ.receipt no;

. 4

B> Resuits| [=] seript Output | & Explain | 5 Autotrace | Boams output | @ ow
Results:
cust_o [cust_nave |[§ country [§ oroER_ID |
1 111 DDDD USA 4
2 112 CCCC UK 1
3 113 PPPP Australia 1
4 114 EEEE England i
5 115 AAAA Germany 2
& 116 BEEB Dubai
4. Natural Join

A natural join is just like an equi-join since it compares the common columns of both tables.

Example
SELECT Cust_id, Cust_name, Country, Item_ordered,
Order_date FROM Customer, NATURAL JOIN Orders;

Execution of the query with result:

Downloaded from EnggTree.com

EnggTree.com

b@@a@'ﬂﬁ'élﬂ.ﬂlﬂg‘;ﬂ.ﬁm@

SELFECT Cust_id,Cust name,Country,Iten ordered,Order date
FROM customer WATURAL JOIW orders:

4

.
[Results| [=] script Output | T Explain | P autotrace |[E,DBM5 Output | €A owa output
Results:
cusT 0 [§ cust_name |[§ couwtry |§ mEm_oroerep | oroER_DATE

1 111 PPPP USA Talc 24-DEC-07

2 112 AAAA UK Soap 13-AUG-01

3 114 CCCC England Talc 24-DEC-07

4 1150000 Germany Hair Qil 05-MOY-12

5. Cross Join

This join is a little bit different from the other joins since it generates the Cartesian product of two

tables as in the following:

Table 1 | | Table 2 |

Downloaded from EnggTree.com

EnggTree.com

Syntax
SELECT * FROM table namel CROSS JOIN table name?2;

Example
SELECT Cust _id, Cust_name, Country, Iltem_ordered, Order date FROM Customer,
CROSS JOIN Orders;

SQL - Using Joins
The SQL Joins clause is used to combine records from two or more tables in a database. A JOIN
is a means for combining fields from two tables by using values common to each. Consider the following

two tables —

Table 1 — CUSTOMERS Table

ID NAME AGE ADDRESS SALARY
1 Ramesh 32 Ahmedabad 2000.00
2 Khilan 25 Delhi 1500.00
3 kaushik 23 Kota 2000.00|
4 Chaitali 25 Mumbai 6500.00
5 Hardik 27 Bhopal 8500.00
6 Komal 22 MP 4500.00
7 Mufty 24 Indore 10000.00|

Downloaded from EnggTree.com

EnggTree.com

Table 2 — ORDERS Table

OID DATE CUSTOMER ID AMOUNT
102 2009-10-08 00:00:00 3 3000
100 2009-10-08 00:00:00 3 1500
101 2009-11-20 00:00:00 2 1560
103 2008-05-20 00:00:00 4 2060

Now, let us join these two tables in our SELECT statement as shown below.

SQL> SELECT ID, NAME, AGE, AMOUNT
CUSTOMERS.ID = ORDERS.CUSTOMER _ID;

This would produce the following result.

ID NAME AGE AMOUNT
3 kaushik 23 3000
3 kaushik 23 1500
2 Khilan 25 1560
4 Chaitali 25 2060

FROM CUSTOMERS, ORDERS WHERE

Here, it is noticeable that the join is performed in the WHERE clause. Several operators can be

used to join tables, such as =, <, >, <>, <=, >=, |=, BETWEEN, LIKE, and NOT; they can all be

used to join tables. However, the most common operator is the equal to symbol.

There are different types of joins available in SQL —

e INNER JOIN — returns rows when there is a match in both tables.

Downloaded from EnggTree.com

EnggTree.com

e LEFT JOIN — returns all rows from the left table, even if there are no matches in the right
table.

e RIGHT JOIN — returns all rows from the right table, even if there are no matches in the left
table.

e FULL JOIN — returns rows when there is a match in one of the tables.

e SELF JOIN —is used to join a table to itself as if the table were two tables, temporarily
renaming at least one table in the SQL statement.

e CARTESIAN JOIN — returns the Cartesian product of the sets of records from the two or

more joined tables.

SQL - INNER JOINS

The most important and frequently used of the joins is the INNER JOIN. They are also referred to
as an EQUIJOIN.

The INNER JOIN creates a new result table by combining column values of two tables (table1 and
table2) based upon the join-predicate. The query compares each row of tablel with each row of
table2 to find all pairs of rows which satisfy the join-predicate. When the join-predicate is satisfied,

column values for each matched pair of rows of A and B are combined into a result row.

Syntax
SELECT tablel.columnl, table2.column2... FROM
tablel INNER JOIN table2

ON tablel.common_field = table2.common_field;

Example Consider the following two tables.

Table 1 — CUSTOMERS Table is as follows.

ID NAME AGE | ADDRESS SALARY

1 Ramesh 32 hmedabad 2000.00

Downloaded from EnggTree.com

EnggTree.com

2 Khilan 25 Delhi 500.00
3 kaushik 23 Kota 2000.00
4 Chaitali 25 Mumbai 6500.00
5 Hardik 27 Bhopal 8500.00
6 Komal 22 MP 4500.00
7 Mufty 24 Indore 10000.00

Table 2 — ORDERS Table is as follows.

OID DATE CUSTOMER ID | AMOUNT
102 2009-10-08 00:00:00 3 3000
100 2009-10-08 00:00:00 3 1500
101 2009-11-20 00:00:00 2 1560
103 2008-05-20 00:00:00 4 2060

Now, let us join these two tables using the INNER JOIN as follows —

Sql> select

orders.customer _id;

id, name, amount, date

from customers inner join orders on customers.id =

This would produce the following result.

ID | NAME | AMOUNT DATE

3 | kaushik 3000 2009-10-08 00:00:00
3 | kaushik 1500 2009-10-08 00:00:00
2 | Khilan 1560 2009-11-20 00:00:00
4 | Chaitali 2060 2008-05-20 00:00:00

SQL - LEFT JOINS

The SQL LEFT JOIN returns all rows from the left table, even if there are no matches in the right
table. This means that if the ON clause matches 0 (zero) records in the right table; the join will still

Downloaded from EnggTree.com

EnggTree.com

return a row in the result, but with NULL in each column from the right table.

Downloaded from EnggTree.com

EnggTree.com

This means that a left join returns all the values from the left table, plus matched values from the right

table or NULL in case of no matching join predicate.
Syntax

The basic syntax of a LEFT JOIN is as follows.
SELECT tablel.columnl, table2.column2... FROM

tablel LEFT JOIN table2

ON tablel.common_field = table2.common_field;
Here, the given condition could be any given expression based on your requirement.
Example

Consider the following two tables,

Table 1 — NAME | AGE | ADDRESS | SALARY
CUSTOMERS

Table is as

follows.ID

1 Ramesh | 32 Ahmedabad | 2000.00
2 Khilan | 25 Delhi 1500.00
3 kaushik | 23 Kota 2000.00
4 Chaitali | 25 Mumbai 6500.00
5 Hardik | 27 Bhopal 8500.00
6 Komal | 22 MP 4500.00
7 Muffy | 24 Indore 10000.00

Table 2 — Orders Table is as follows.

Downloaded from EnggTree.com

EnggTree.com

OID DATE CUSTOMER ID | AMOUNT
102 | 2009-10-08 00:00:00 3 3000
100 | 2009-10-08 00:00:00 3 1500
101 | 2009-11-20 00:00:00 2 1560
103 | 2008-05-20 00:00:00 4 2060

Now, let us join these two tables using the LEFT JOIN as follows.
sql> select id, name, amount, date from customers left join orders on customers.id =

orders.customer _id;

This would produce the following result —

ID | NAME [AMOUNT DATE
1 | Ramesh NULL NULL
2 | Khilan 1560 2009-11-20 00:00:00
3 | kaushik 3000 2009-10-08 00:00:00
3 | kaushik 1500 2009-10-08 00:00:00
4 | Chaitali 2060 2008-05-20 00:00:00
5 | Hardik NULL NULL
6 | Komal NULL NULL
7 | Mufty NULL NULL

SQL - RIGHT JOINS

The SQL RIGHT JOIN returns all rows from the right table, even if there are no matches in the
left table. This means that if the ON clause matches 0 (zero) records in the left table; the join will
still return a row in the result, but with NULL in each column from the left table.

This means that a right join returns all the values from the right table, plus matched values from the

left table or NULL in case of no matching join predicate.
Syntax

SELECT tablel.columnl, table2.column2... FROM
tablel RIGHT JOIN table2

Downloaded from EnggTree.com

EnggTree.com

ON tablel.common_field = table2.common_field;

Downloaded from EnggTree.com

EnggTree.com

Example: Consider the following two tables,

Table 1 — CUSTOMERS Table is as follows.

ID | NAME | AGE | ADDRESS | SALARY
1 | Ramesh | 32 Ahmedabad | 2000.00
2 | Khilan | 25 Delhi 1500.00
3 | kaushik | 23 Kota 2000.00
4 | Chaitali | 25 Mumbeai 6500.00
5 | Hardik | 27 Bhopal 8500.00
6 | Komal |22 MP 4500.00
7 | Muffy | 24 Indore 10000.00

Table 2 — ORDERS Table is as follows.

OID | DATE CUSTOMER _ID | AMOUNT
2009-10-08

102 3 3000
00:00:00
2009-10-08

100 3 1500
00:00:00
2009-11-20

101 2 1560
00:00:00
2008-05-20

103 4 2060
00:00:00

Now, let us join these two tables using the RIGHT JOIN as follows.
SQL> SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS

RIGHT JOIN ORDERS
ON CUSTOMERS.ID = ORDERS.CUSTOMER ID;

Downloaded from EnggTree.com

EnggTree.com

This would produce the following result —

ID | NAME | AMOUNT DATE

3 | kaushik 3000 2009-10-08 00:00:00
3 | kaushik 1500 2009-10-08 00:00:00 |
2 | Khilan 1560 2009-11-20 00:00:00 |
4 | Chaitali 2060 2008-05-20 00:00:00 |

SQL - FULL JOINS

The SQL FULL JOIN combines the results of both left and right outer joins.
The joined table will contain all records from both the tables and fill in NULLSs for missing

matches on either side.

Syntax
SELECT tablel.columnl, table2.column2... FROM
tablel FULL JOIN table2

ON tablel.common _field = table2.common_field;

Here, the given condition could be any given expression based on your requirement.

Example

Consider the following two tables.

Table 1 — CUSTOMERS Table is as follows.

ID | NAME | AGE | ADDRESS | SALARY
1 | Ramesh | 32 | Ahmedabad [2000.00
Khilan 25 Delhi 1500.00

kaushik | 23 Kota 2000.00

Chaitali | 25 Mumbai 6500.00
Hardik [27 Bhopal 8500.00
Komal 22 MP 4500.00

N | B W]

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

7 | Mufty 24 Indore 10000.00

Table 2 — ORDERS Table is as follows.

OID DATE AMOUNT | CUSTOMER_ID
2009-10-08
102 3 3000
00:00:00
2009-10-08
100 3 1500
00:00:00
2009-11-20
101 2 1560
00:00:00
2008-05-20
103 4 2060
00:00:00

Now, let us join these two tables using FULL JOIN as follows.

SQL> SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS
FULL JOIN ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER ID;

This would produce the following result —

ID [NAME | AMOUNT DATE
1 | Ramesh NULL NULL
2 | Khilan 1560 2009-11-20 00:00:00
3 | kaushik 3000 2009-10-08 00:00:00
3 | kaushik 1500 2009-10-08 00:00:00
4 | Chaitali 2060 2008-05-20 00:00:00
5 | Hardik NULL NULL
6 | Komal NULL NULL
7 | Mufty NULL NULL
3 | kaushik 3000 2009-10-08 00:00:00
3 | kaushik 1500 2009-10-08 00:00:00

Downloaded from EnggTree.com

EnggTree.com

2 | Khilan 1560 2009-11-20 00:00:00

Downloaded from EnggTree.com

EnggTree.com

4 | Chaitali 2060 2008-05-20 00:00:00

If your Database does not support FULL JOIN (MySQL does not support FULL JOIN), then you
can use UNION ALL clause to combine these two JOINS as shown below.

Sql> select id, name, amount, date from customers left join orders on customers.id
= orders.customer_id union all select id, name, amount, date from customers right join

orders on customers.id = orders.customer_id

SQL - SELF JOINS
The SQL SELF JOIN is used to join a table to itself as if the table were two tables; temporarily

renaming at least one table in the SQL statement.

Syntax
SELECT a.column_name, b.column_name... FROM tablel a, tablel b
WHERE a.common_field = b.common_field;

Here, the WHERE clause could be any given expression based on your requirement.

Example Consider the following table.

CUSTOMERS Table is as follows.

ID [NAME | AGE | ADDRESS | ALARY

1 | Ramesh [32 | Ahmedabad | 2000.00
Khilan | 25 Delhi 1500.00
kaushik [23 Kota 2000.00
Chaitali | 25 Mumbai 6500.00
Hardik | 27 Bhopal 8500.00
Komal | 22 MP 4500.00
Mufty | 24 Indore 10000.00

N N | B W]

Downloaded from EnggTree.com

EnggTree.com

Now, let us join this table using SELF JOIN as follows —

Downloaded from EnggTree.com

EnggTree.com

sql> select a.id, b.name, a.salary from customers a, customers b where a.salary <

b.salary;

This would produce the following result —

ID | NAME | SALARY
2 | Ramesh 1500.00
2 | kaushik 1500.00
1 | Chaitali | 2000.00

2 | Chaitali 1500.00
3 | Chaitali 2000.00
6 | Chaitali | 4500.00
1 Hardik 2000.00
2 Hardik 1500.00
3 Hardik 2000.00
4 | Hardik 6500.00
6 | Hardik 4500.00

1 Komal 2000.00
Komal 1500.00
Komal 2000.00
1 Mufty 2000.00
Mufty 1500.00
Muffy 2000.00
Mufty 6500.00
Mufty 8500.00
Muffy 4500.00

Wl N

N L] B W]

SQL - CARTESIAN or CROSS JOINS

Downloaded from EnggTree.com

The CARTESIAN JOIN or CROSS JOIN returns the Cartesian product of the sets of records from

two or more joined tables. Thus, it equates to an inner join where the join-condition always

EnggTree.com

evaluates to either True or where the join-condition is absent from the statement.

Syntax

The basic syntax of the CARTESIAN JOIN or the CROSS JOIN is as follows —

SELECT tablel.columnl, table2.column2...FROM tablel, table2 [, table3]

Example

Consider the following two tables.

Table 1 — CUSTOMERS table is as follows.

ID [NAME | AGE | ADDRESS | SALARY
1 | Ramesh [32 | Ahmedabad | 2000.00
2 | Khilan | 25 Delhi 1500.00
3 | kaushik [23 Kota 2000.00
4 | Chaitali | 25 Mumbai 6500.00
5 | Hardik | 27 Bhopal 8500.00
6 | Komal | 22 MP 4500.00
7 | Muffy 24 Indore 10000.00
Table 2: ORDERS Table is as follows —

OID DATE CUSTOMER ID | AMOUNT
102 | 2009-10-08 00:00:00 3 3000
100 [2009-10-08 00:00:00 3 1500
101 [2009-11-20 00:00:00 2 1560
103 [2008-05-20 00:00:00 4 2060

Now, let us join these two tables using CARTESIAN JOIN as follows —

Downloaded from EnggTree.com

EnggTree.com

sql> select id, name, amount, date from customers, orders;

ID NAME [AMOUNT DATE
1 Ramesh 3000 2009-10-08 00:00:00
1 Ramesh 1500 2009-10-08 00:00:00
1 Ramesh 1560 2009-11-20 00:00:00
1 Ramesh 2060 2008-05-20 00:00:00
2 Khilan 3000 2009-10-08 00:00:00
2 Khilan 1500 2009-10-08 00:00:00
2 Khilan 1560 2009-11-20 00:00:00
2 Khilan 2060 2008-05-20 00:00:00
3 kaushik 3000 2009-10-08 00:00:00
3 kaushik 1500 2009-10-08 00:00:00
3 kaushik 1560 2009-11-20 00:00:00
3 kaushik 2060 2008-05-20 00:00:00
4 Chaitali 3000 2009-10-08 00:00:00
4 Chaitali 1500 2009-10-08 00:00:00
4 Chaitali 1560 2009-11-20 00:00:00
4 Chaitali 2060 2008-05-20 00:00:00
5 Hardik 3000 2009-10-08 00:00:00
5 Hardik 1500 2009-10-08 00:00:00
5 Hardik 1560 2009-11-20 00:00:00
5 Hardik 2060 2008-05-20 00:00:00
6 Komal 3000 2009-10-0800:00:00
6 Komal 1500 2009-10-0800:00:00
6 Komal 1560 2009-11-2000:00:00
7 Muffy 2060 2008-05-2000:00:00

Downloaded from EnggTree.com

EnggTree.com

EMBEDDED SQL

The first technique for sending SQL statements to the DBMS is embedded SQL. The SQL standard

defines embeddings of SQL in a variety of programming languages such as C,Java, and Cobol.

A language to which SQL queries are embedded is referred to as a host language, and the SQL

structures permitted in the host language comprise embedded SQL.

The following techniques are used to embed SQL statements in a host language:

Embedded SQL statements are processed by a special SQL precompiler. All SQL statements
begin with an introducer and end with a terminator, both of which flag the SQL statement for
the precompiler. For example, the introducer is "EXEC SQL" in C and "& and the terminator is
a semicolon (;) in C.

Variables from the application program, called host variables, can be used in embedded SQL
statements wherever constants are allowed.

Queries that return a single row of data are handled with a singleton SELECT statement; this
statement specifies both the query and the host variables in which to return data.

Queries that return multiple rows of data are handled with cursors. A cursor keeps track of the
current row within a result set. The DECLARE CURSOR statement defines the query, the
OPEN statement begins the query processing, the FETCH statement retrieves successive rows
of data, and the CLOSE statement ends query processing.

While a cursor is open, positioned update and positioned delete statements can be used to

update or delete the row currently selected by the cursor.

Embedded SQL Example
EXEC SQL statement is used to identify embedded SQL request to the preprocessor EXEC

SQL <embedded SQL statement > END EXEC

Note: this varies by language (for example, the Java embedding uses # SQL
o 3s)

From within a host language, find the names and cities of customers with more than the variable

amount dollars in some account.
‘

Specify the query in SQL and declare a cursor for it EXEC

@o

Downloaded from Engﬁ%ee com

EnggTree.com

SQL

declare c cursor for select depositor.customer_name, customer city from
depositor, customer, account where depositor.customer name =
customer.customer_name and depositor account number = account.account_number

and account.balance > :amount
END EXEC
The open statement causes the query to be evaluated EXEC
SQL open ¢ END EXEC

The fetch statement causes the values of one tuple in the query result to be placed on host language

variables.

EXEC SQL fetch c into :cn, :cc END EXEC Repeated calls to fetch get successive tuples in
the query result

A variable called SQLSTATE in the SQL communication area (SQLCA) gets set to ‘02000’ to indicate no

more data is available

The close statement causes the database system to delete the temporary relation that holds the result of the

query.

EXEC SQL close c END EXEC

Compiling an Embedded SQL Program

Embedded
SOL source
program

| Precornpiler '

Database
request module

Binding
utility

Stripped
SOLFCE program

Ohject I_ZJE.MS ArCcess
Dow e.com

http://www.learnengineering.in/
http://www.learnengineering.in/
http://www.learnengineering.in/
http://www.learnengineering.in/

EnggTree.com

DYNAMIC SQL

Dynamic SQL is the process that we follow for programming SQL queries in such a way that the

queries are built dynamically with the application operations.

It helps us to manage big industrial applications and manage the transactions without any added

overhead.

With dynamic SQL we are free to create flexible SQL queries and the names of the variables or
any other parameters are passed when the application runs. Allows programs to construct and
submit SQL queries at run time. We can use stored procedures to create dynamic queries which

can run when we desire.

For Dynamic SQL, we use the exec keyword.

When we use static SQL it is not altered from one execution to others, but in the case of dynamic

SQL, we can alter the query in each execution.

Why do we need Dynamic SQL?

We need to use Dynamic SQL for the following use cases:

When we need to run dynamic queries on our database, mainly DML queries.

When we need to access an object which is not in existence during the compile time.
Whenever we need to optimize the run time of our queries.

When we need to instantiate the created logic blocks.

When we need to perform operations on application fed data using invoker rights.
Example of the use of dynamic SQL from within a C program.

char * sqlprog = “update account set balance = balance * 1.05 where account number = ?”

EXEC
SQL prepare dynprog from :sqlprog;char account [10] = “A-101";
EXEC SQL execute dynprog using :account;

The dynamic SQL program contains a ?, which is a place holder for a value that is provided

Downloaded from EnggTree.com

EnggTree.com

when the SQL program is executed.

Dynamic SQL statements can be built at run time and placed in a string host variable. They are

sent to the DBMS for processing. Because the DBMS must generate an access plan at run time

for dynamic SQL statements, dynamic SQL is generally slower than static SQL.
The simplest way to execute a dynamic SQL statement is with an EXECUTE IMMEDIATE

statement. This statement passes the SQL statement to the DBMS for compilation and execution.

One disadvantage of the EXECUTE IMMEDIATE statement is that the DBMS must go through

each of the five steps of processing an SQL statement each time the statement is executed.

To address this situation, dynamic SQL offers an optimized form of execution called prepared

execution, which uses the following steps:

The program constructs an SQL statement in a buffer, just as it does for the EXECUTE
IMMEDIATE statement. Instead of host variables, a question mark (?) can be substituted for
a constant anywhere in the statement text to indicate that a value for the constant will be
supplied later. The question mark is called as a parameter marker.

The program passes the SQL statement to the DBMS with a PREPARE statement, which
requests that the DBMS parse, validate, and optimize the statement and generate an execution
plan for it. The program then uses an EXECUTE statement (not an EXECUTE IMMEDIATE
statement) to execute the PREPARE statement at a later time. It passes parameter values for
the statement through a special data structure called the SQL Data Area or SQLDA.

The program can use the EXECUTE statement repeatedly, supplying different parameter
values each time the dynamic statement is executed.

Prepared execution is still not the same as static SQL. In static SQL, the first four steps of
processing an SQL statement take place at compile time. In prepared execution, these steps
still take place at run time, but they are performed only once; execution of the plan takes
place only when EXECUTE is called. This helps eliminate some of the performance

disadvantages inherent in the architecture of dynamic SQL.

Difference between Static SQL and Dynamic SQL

Sr. No.

Key Static SQL Dynamic SQL
Database In Static SQL, database access In Dynamic SQL, how a database
Access procedure is predetermined in the will be accessed, can be determine

statement. only at run time.

Downloaded from EnggTree.com

Sr. No.

Key

Efficiency

Compilation

Application
Plan

Use Cases

Dynamic
Statements

EnggTree.com

Static SQL

Static SQL statements are more
faster and efficient.

Static SQL statements are compiled
at compile time.

Application Plan parsing, validation,
optimization and generation are
compile time activities.

Static SQL is used in case of
uniformly distributed data.

Statements like EXECUTE
IMMEDIATE, EXECUTE,
PREPARE are not used.

Dynamic SQL

Dynamic SQL statements are less
efficient.

Dynamic SQL statements are
compiled at run time.

Application Plan parsing,
validation, optimization and
generation are run time activities.

Dynamic SQL is used in case of
non-uniformly distributed data.

Statements like EXECUTE
IMMEDIATE, EXECUTE,
PREPARE are used

Downloaded from EnggTree.com

EnggTree.com

PANIMALAR INSTITUTE OF TECHNOLOGY

DEPARTMENT OF INFORMATION TECHNOLOGY
CS3492 DATABASE MANAGEMENT SYSTEMS
LECTURE NOTES
UNIT II DATABASE DESIGN

Entity-Relationship model — E-R Diagrams — Enhanced-ER Model — ER-to-Relational Mapping —
Functional Dependencies — Non-loss Decomposition — First, Second, Third Normal Forms,
Dependency Preservation — Boyce/Codd Normal Form — Multi-valued Dependencies and Fourth

Normal Form — Join Dependencies and Fifth Normal Form

ENTITY-RELATIONSHIP MODEL
The ER model defines the conceptual view of a database. It works around real-world entities and

the associations among them.

Entity
An entity can be a real-world object that can be easily identifiable. For example, in a school
database, students, teachers, classes, and courses offered can be considered as entities. All these

entities have some attributes or properties that give them their identity.

Attributes
Entities are represented by means of their properties, called attributes. All attributes have values.

For example, a student entity may have name, class, and age as attributes.

Types of Attributes

Simple attribute — Simple attributes are atomic values, which cannot be divided further.

For example, a student's phone number is an atomic value of 10 digits.

Composite attribute — Composite attributes are made of more than one simple

attribute. For example, a student's complete name may have first name and last name.

Downloaded from EnggTree.com

EnggTree.com

Derived attribute — Derived attributes are the attributes that do not exist in the physical

database, but their values are derived from other attributes present in the database. For

Downloaded from EnggTree.com

EnggTree.com

example, average salary in a department should not be saved directly in the database, instead it

can be derived. For another example, age can be derived from data_of birth.

Single-value attribute — Single-value attributes contain single value. For example —

Social Security Number.

Multi-value attribute — Multi-value attributes may contain more than one values. For

example, a person can have more than one phone number, email address, etc.
Entity-Set and Keys

Entity-Set :

An entity set is a collection of similar types of entities. An entity set may contain entities with
attribute sharing similar values. For example, a Students set may contain all the students of a
school; likewise a Teachers set may contain all the teachers of a school from all faculties. Entity

sets need not be disjoint.

Keys :
Key is an attribute or collection of attributes that uniquely identifies an entity among entity set. For

example, the roll_number of a student makes him/her identifiable among students.

Super Key — A set of attributes (one or more) that collectively identifies an entity in an
entity set.

Candidate Key — A minimal super key is called a candidate key. An entity set may

have more than one candidate key.

Primary Key — A primary key is one of the candidate keys chosen by the database

designer to uniquely identify the entity set.
Relationship

The association among entities is called a relationship. For example, an employee works_at a

department, a student enrolls in a course. Here, Works at and Enrolls are called relationships.

Downloaded from EnggTree.com

EnggTree.com

Relationship Set
A set of relationships of similar type is called a relationship set. Like entities, a relationship too can
have attributes. These attributes are called descriptive attributes.

Degree of Relationship
The number of participating entities in a relationship defines the degree of the relationship.

Binary = degree 2
Ternary = degree 3

n-ary = degree

Mapping Cardinality (cardinality constraint)

It represents the number of entities of another entity set which are connected to an entity

using a relationship set.

For a binary relationship set the mapping cardinality must be one of the following

types:
1. One to one
2. One to many
3. Many to one
4. Many to many

1. One-to-one relationship

Downloaded from EnggTree.com

EnggTree.com

An entity in A is associated with at most (only) one entity in B and an entity in B is associated

with at most (only) one entity in A.

Downloaded from EnggTree.com

EnggTree.com

customer-name customer-address

customer harrower loan

A customer is connected with only one loan using the relationship borrower and a loan is

connected with only one customer using borrower.

2. One-to-many relationship

An entity in A is associated with any number (zero or more) of entities in Band an entity in Bis

associated with at most one (only) entity in A.

customer-name

customer-address

customer borrower loan

In the one-to-many relationship a loan is connected with only one customer using

borrower and a customer is connected with more than one loans using borrower.

Downloaded from EnggTree.com

EnggTree.com

3. Many-to-one relationship

o B
Ay B

Ay B
A Ba
e Ba

An entity in A is associated with at most (only) one entity in B and an entity in B is associated

with any number (zero or more) of entities in A.

customer-name

customer harrower loan

customer-address

In a many-to-one relationship a loan is connected with more than one customer using borrower

and a customer is connected with only one loan using borrower.

4. Many-to-many relationship

A B
Ay B,
Ay B
& By
A By

Downloaded from EnggTree.com

EnggTree.com

An entity in A is associated with any number (zero or more) of entities in Band an entity in Bis

associated with any number (zero or more) of entities in A.

customer-name

customer-id

customer-address

customer harrower loan

A customer is connected with more than one loan using borrower and a loan is connected with

more than one customer using borrower.
E-R Diagrams

E-R diagram is the short form of “Entity-Relationship” diagram. An E-R diagram efficiently shows
the relationships between various entities stored in a database.
E-R diagrams are used to model real-world objects like a person, a car, a company etc. and the

relation between these real-world objects. An e-r diagram has following features:

E-R diagrams are used to represent E-R model in a database, which makes them easy to be

converted into relations (tables).

E-R diagrams provide the purpose of real-world modeling of objects which makes them
intently useful.

E-R diagrams require no technical knowledge & no hardware support.
These diagrams are very easy to understand and easy to create even by a naive user.

It gives a standard solution of visualizing the data logically.

E R Diagrams Symbols, And Notations

Downloaded from EnggTree.com

\/ \ 0 QH

EnggTree.com

Entity

Relationship

Attribute

111

\

Weak Entity

Weak Entity
Relationship

!

Multivalued
Attribute

|

N

!

Key Attribute

Composite
= Attribute

Downloaded from EnggTree.com

EnggTree.com

E R Diagrams Example:

we)jsAg yuewsabeueyy jeydsoy Joj weibeig y¥-3

Downloaded from EnggTree.com

EnggTree.com

uojew.oyu] ai01s Aoeweyd 103 weibeiq 4-3

Downloaded from EnggTree.com

EnggTree.com

ENHANCED ENTITY RELATIONSHIP MODEL (EER MODEL)

EER is a high-level data model that incorporates the extensions to the original ER model.

It is a diagrammatic technique for displaying the following concepts

Sub Class and Super Class
Specialization and Generalization
Union or Category

Aggregation
These concepts are used when the comes in EER schema and the resulting schema diagrams called

as EER Diagrams.

Features of EER Model

EER creates a design more accurate to database schemas.

It reflects the data properties and constraints more precisely.

It includes all modeling concepts of the ER model.

Diagrammatic technique helps for displaying the EER schema.

It includes the concept of specialization and generalization.

It is used to represent a collection of objects that is union of objects of different of

different entity types.
A. Sub Class and Super Class
Sub class and Super class relationship leads the concept of Inheritance.
The relationship between sub class and super class is denoted with @ symbol.
1. Super Class
e Super class is an entity type that has a relationship with one or more subtypes.

e An entity cannot exist in database merely by being member of any super class.

For example: Shape super class is having sub groups as Square, Circle, and Triangle.

Downloaded from EnggTree.com

EnggTree.com

2. Sub Class

e Sub class is a group of entities with unique attributes.

Downloaded from EnggTree.com

EnggTree.com

e Sub class inherits properties and attributes from its super class.

For example: Square, Circle, Triangle are the sub class of Shape super class.

Super class —»| Shape

[

Square Circle Triangle

l)

4
Sub class

Fig. Super class/Sub class Relationship

B. Specialization and Generalization

1. Generalization

e Generalization is the process of generalizing the entities which contain the properties of
all
the generalized entities.
e [tis abottom approach, in which two lower level entities combine to form a higher level
entity.
e Generalization is the reverse process of Specialization.
e [t defines a general entity type from a set of specialized entity type.

e It minimizes the difference between the entities by identifying the common features.

Downloaded from EnggTree.com

EnggTree.com

For example:

Bootom Up
Approach

I Tiger I I Lion I I Elephant]

Fig. Generalization

In the above example, Tiger, Lion, Elephant can all be generalized as Animals.

2. Specialization

Specialization is a process that defines a group entities which is divided into sub groups

based on their characteristic.

It is a top down approach, in which one higher entity can be broken down into two lower

level entity.

It maximizes the difference between the members of an entity by identifying the unique

characteristic or attributes of each member.

It defines one or more sub class for the super class and also forms the

superclass/subclass relationship.

Downloaded from EnggTree.com

EnggTree.com

For example

Employee
Top Down
o Approach
Developer Tester

Fig. Specialization

In the above example, Employee can be specialized as Developer or Tester, based on what role

they play in an Organization.

C. Category or Union

Category represents a single super class or sub class relationship with more than one
super class.

It can be a total or partial participation.

For example Car booking, Car owner can be a person, a bank (holds a possession on a

Car) or a company. Category (sub class) — Owner is a subset of the union of the three
super classes — Company, Bank, and Person. A Category member must exist in at least

one of its super classes.

Downloaded from EnggTree.com

EnggTree.com

Person Bank Company

Owner

Fig. Categories (Union Type)
D. Aggregation
Aggregation is a process that represent a relationship between a whole object and its
component parts.

It abstracts a relationship between objects and viewing the relationship as an object.

It is a process when two entity is treated as a single entity.

Student

Fig. Aggregation
In the above example, the relation between College and Course is acting as an Entity in Relation
with Student.

ER-to-Relational Mapping

The ER Model is intended as a description of real-world entities. Although it is constructed in such a

Downloaded from EnggTree.com

EnggTree.com

way as to allow easy translation to the relational schema model, this is not an entirely

Downloaded from EnggTree.com

EnggTree.com

trivial process. The ER diagram represents the conceptual level of database design meanwhile
the relational schema is the logical level for the database design.

1. Entities and Simple Attributes:

An entity type within ER diagram is turned into a table. You may preferably keep the same name
for the entity or give it a sensible name but avoid DBMS reserved words as well as avoid the use
of special characters.

Each attribute turns into a column (attribute) in the table. The key attribute of the entity is the
primary key of the table which is usually underlined. It can be composite if required but can
never be null.

It is highly recommended that every table should start with its primary key attribute

conventionally named as TablenamelD.

Taking the following simple ER diagram:

The initial relational schema is expressed in the following format writing the table names with the

attributes list inside a parentheses as shown below for
Persons(personid , name, lastname, email)
Persons and Phones are Tables. name, lastname, are Table Columns (Attributes).personid is the

primary key for the table : Person

2. Multi-Valued Attributes

A multi-valued attribute is usually represented with a double-line oval.

Downloaded from EnggTree.com

EnggTree.com

If you have a multi-valued attribute, take the attribute and turn it into a new entity or table of its own.

Then make a 1:N relationship between the new entity and the existing one. In simple words.
1. Create a table for the attribute. 2. Add the primary (id) column of the parent entity as a foreign

key within the new table as shown below:

Persons(personid , name, lastname, email) Phones (phoneid , personid, phone)

personid within the table Phones is a foreign key referring to the personid of Persons

3. 1:1 Relationships

Wife

&¢D

Person

To keep it simple and even for better performances at data retrieval, I would personally
recommend using attributes to represent such relationship. For instance, let us consider the case
where the Person has or optionally has one wife. You can place the primary key of the wife

within the table of the Persons which we call in this case Foreign key as shown below.
Persons(personid , name, lastname, email , wifeid) Wife (wifeid , name)

Or vice versa to put the personid as a foreign key within the Wife table as shown below:

Persons(personid , name, lastname, email)

Downloaded from EnggTree.com

EnggTree.com

Wife (wifeid , name , personid)
For cases when the Person is not married i.e. has no wifelD, the attribute can set to NULL

4. 1:N Relationships

This is the tricky part ! For simplicity, use attributes in the same way as 1:1 relationship but we
have only one choice as opposed to two choices. For instance, the Person can have a House from
zero to many , but a House can have only one Person. To represent such relationship

the personidas the Parent node must be placed within the Child table as a foreign key but not

the other way around as shown next:

Addres House

sl
& <

It should convert to :

Persons(personid , name, lastname, email
) House (houseid , num , address,

personid)

5. N:N Relationships

We normally use tables to express such type of relationship. This is the same for N — ary
relationship of ER diagrams. For instance, The Person can live or work in many countries. Also, a
country can have many people. To express this relationship within a relational schema we use a

separate table as shown below:

Downloaded from EnggTree.com

EnggTree.com

Person

It should convert into :
Persons(personid , name, lastname, email) Countries (countryid , name,

code) HasRelat (hasrelatid , personid , countryid)

Relationship with attributes:

It is recommended to use table to represent them to keep the design tidy and clean regardless of

the cardinality of the relationship.

Case Study

Downloaded from EnggTree.com

EnggTree.com

M
M Add
Task i
1
: 1
Wife
Description

Child

The relational schema for the ER Diagram is given below as:

Company(CompanyID , name , address) Staff(StaffID , dob , address , WifelID) Child(ChildID
, name , StaffID) Wife

(WifelD , name)

Phone(PhonelD , phoneNumber , StaffID) Task (TaskID , description)

Work(WorkID , CompanylID , StaffID , since)

Perform(PerformlD , StaffID , TaskID)

Functional Dependency
The functional dependency is a relationship that exists between two attributes. It typically exists
between the primary key and non-key attribute within a table.
X—-Y

The left side of FD is known as a determinant, the right side of the production is known as a

dependent.

Downloaded from EnggTree.com

EnggTree.com

For example:
Assume we have an employee table with attributes: Emp Id, Emp Name, Emp Address.
Here Emp _Id attribute can uniquely identify the Emp Name attribute of employee table because

if we know the Emp_Id, we can tell that employee name associated with it.

Functional dependency can be written as:
Emp_Id — Emp_Name
We can say that Emp Name is functionally dependent on Emp_Id. Types of Functional dependency

1. Trivial functional dependency

2. Non-trivial functional dependency

1. Trivial functional dependency
o A — B has trivial functional dependency if B is a subset of A.

o The following dependencies are also trivial like: A — A, B — B

Example:

1. Consider a table with two columns Employee Id and Employee Name.

2. {Employee id, Employee Name} — Employee Id is a trivial functional
dependency as Employee Id is a subset of {Employee Id, Employee Name}.

3. Also, Employee Id — Employee Id and Employee Name — Employee Name are

trivia 1 dependencies too.

2. Non-trivial functional dependency
o A — B has a non-trivial functional dependency if B is not a subset of A.

o When A intersection B is NULL, then A — B is called as complete non-trivial.
Example:

1. ID— Name,
2. Name — DOB

Downloaded from EnggTree.com

EnggTree.com

Armstrong'sAxioms
If F is a set of functional dependencies then the closure of F, denoted as F+, is the set of all

functional dependencies logically implied by F. Armstrong's Axioms are a set of rules, that when

applied repeatedly, generates a closure of functional dependencies.

L] Reflexive rule — If alpha is a set of attributes and beta is_subset_of alpha, then alpha
holds beta.

L' Augmentation rule — If a — b holds and y is attribute set, then ay — by also holds.

That is adding attributes in dependencies, does not change the basic dependencies.

N Transitivity rule — Same as transitive rule in algebra, if a — b holds and b — ¢ holds,

then a — c also holds. a — b is called as a functionally that determines b.

Non-loss Decomposition

Decomposition in DBMS removes redundancy, anomalies and inconsistencies from a database by
dividing the table into multiple tables.

The following are the types:

Lossless Decomposition

Decomposition is lossless if it is feasible to reconstruct relation R from decomposed tables using
Joins. This is the preferred choice. The information will not lose from the relation when
decomposed. The join would result in the same original relation.

Let us see an example:

<EmplInfo>
Emp_ID Emp_Name Emp _Age | Emp_Location Dept_ID | Dept_Name
E001 Jacob 29 Alabama Dptl Operations
E002 Henry 32 Alabama Dpt2 HR

Downloaded from EnggTree.com

EnggTree.com

E003 Tom 22 Texas Dpt3 Finance

Downloaded from EnggTree.com

EnggTree.com

Decompose the above table into two tables:

<EmpDetails>
Emp ID Emp Name Emp Age Emp_ Location
E001 Jacob 29 Alabama
E002 Henry 32 Alabama
E003 Tom 22 Texas
<DeptDetails>
Dept_ID Emp_ID Dept_Name
Dptl E001 Operations
Dpt2 E002 HR
Dpt3 E003 Finance
Now, Natural Join is applied on the above two tables:
The result will be:
Emp ID Emp Name | Emp Age | Emp Location | Dept ID | Dept Name
E001 Jacob 29 Alabama Dptl Operations
E002 Henry 32 Alabama Dpt2 HR
E003 Tom 22 Texas Dpt3 Finance

Therefore, the above relation had lossless decomposition i.e. no loss of information.

Lossy Decomposition

Downloaded from EnggTree.com

EnggTree.com

As the name suggests, when a relation is decomposed into two or more relational schemas, the
loss of information is unavoidable when the original relation is retrieved.

Let us see an example:

<Emplnfo>
Emp ID Emp Name | Emp Age | Emp Location | Dept ID | Dept Name
E001 Jacob 29 Alabama Dptl Operations
E002 Henry 32 Alabama Dpt2 HR
E003 Tom 22 Texas Dpt3 Finance

Decompose the above table into two tables:

<EmpDetails>
Emp_ID Emp_Name Emp_Age Emp_Location
E001 Jacob 29 Alabama
E002 Henry 32 Alabama
E003 Tom 22 Texas
<DeptDetails>

Dept_ID Dept Name

Dptl Operations
Dpt2 HR
Dpt3 Finance

Downloaded from EnggTree.com

EnggTree.com

e Now, you won’t be able to join the above tables, since Emp_ID isn’t part
of the DeptDetails relation.

e Therefore, the above relation has lossy decomposition.

NORMALIZATION
Database Normalization is a technique of organizing the data in the database. Normalization is a
systematic approach of decomposing tables to eliminate data redundancy(repetition) and
undesirable characteristics like Insertion, Update and Deletion Anamolies. It is a multi-step

process that puts data into tabular form, removing duplicated data from the relation tables.

Normalization is used for mainly two purposes,
e Eliminating redundant(useless) data.

e Ensuring data dependencies make sense i.e data is logically stored.
Problems Without Normalization

If a table is not properly normalized and have data redundancy then it will not only eat up extra
memory space but will also make it difficult to handle and update the database, without facing
data loss. Insertion, Updation and Deletion Anamolies are very frequent if database is not

normalized. To understand these anomalies let us take an example of a Student table.

rollno name branch hod office_tel
401 Akon CSE Mr. X 53337
402 Bkon CSE Mr. X 53337
403 Ckon CSE Mr. X 53337
404 Dkon CSE Mr. X 53337

Downloaded from EnggTree.com

EnggTree.com

In the table above, we have data of 4 Computer Sci. students. As we can see, data for the fields
branch, hod(Head of Department) and office tel is repeated for the students who are in the same
branch in the college, this is Data Redundancy.

1. Insertion Anomaly

Suppose for a new admission, until and unless a student opts for a branch, data of the student cannot
be inserted, or else we will have to set the branch information as NULL.

Also, if we have to insert data of 100 students of same branch, then the branch information will be
repeated for all those 100 students.

These scenarios are nothing but Insertion anomalies.
2. Updation Anomaly

What if Mr. X leaves the college? or is no longer the HOD of computer science department? In
that case all the student records will have to be updated, and if by mistake we miss any record, it

will lead to data inconsistency. This is Updation anomaly.
.3. Deletion Anomaly

In our Student table, two different informations are kept together, Student information and
Branch information. Hence, at the end of the academic year, if student records are deleted, we

will also lose the branch information. This is Deletion anomaly.

Normalization

o Normalization is the process of organizing the data in the database.

o Normalization is used to minimize the redundancy from a relation or set of relations. It is
also used to eliminate the undesirable characteristics like Insertion, Update and Deletion
Anomalies.

o Normalization divides the larger table into the smaller table and links them using

relationship.

Downloaded from EnggTree.com

EnggTree.com

o The normal form is used to reduce redundancy from the database table.

Types of Normal Forms

Normal Form Description

INF A relation is in INF if it contains an atomic value.

2NF A relation will be in 2NF if it is in 1NF and all non-key attributes are fully

functional dependent on the primary key.

3NF A relation will be in 3NF if it is in 2NF and no transition dependency exists.

4NF A relation will be in 4NF if it is in Boyce Codd normal form and has no multi-

valued dependency.

SNF A relation is in SNF if it is in 4NF and not contains any join dependency and

joining should be lossless.

Downloaded from EnggTree.com

https://www.javatpoint.com/dbms-first-normal-form
https://www.javatpoint.com/dbms-second-normal-form
https://www.javatpoint.com/dbms-third-normal-form
https://www.javatpoint.com/dbms-forth-normal-form
https://www.javatpoint.com/dbms-fifth-normal-form

EnggTree.com

2. First Normal Form (1NF)

o Arelation will be INF if it contains an atomic value.

o It states that an attribute of a table cannot hold multiple values. It must hold only single-

valued attribute.

o First normal form disallows the multi-valued attribute, composite attribute, and their

combinations.

Example: Relation EMPLOYEE is not in INF because of multi-valued attribute EMP_PHONE.

EMPLOYEE table:
EMP_ID | EMP_NAME | EMP_PHONE (| EMP_STATE
14 John 7272826385, UP
9064738238
20 Harry 8574783832 Bihar
12 Sam 7390372389, Punjab
8589830302

The decomposition of the EMPLOYEE table into INF has been shown below:

EMP_ID | EMP_NAME | EMP_PHONE (| EMP_STATE
14 John 7272826385 UP
14 John 9064738238 UP
20 Harry 8574783832 Bihar
12 Sam 7390372389 Punjab
12 Sam 8589830302 Punjab

Downloaded from EnggTree.com

EnggTree.com

Second Normal Form (2NF)
e In the 2NF, relational must be in 1NF.
e In the second normal form, all non-key attributes are fully functional dependent on

the primary key

Example: Let's assume, a school can store the data of teachers and the subjects they teach. In a

school, a teacher can teach more than one subject.

TEACHER table
TEACHER ID | SUBJECT TEACHER _AGE
25 Chemistry 30
25 Biology 30
47 English 35
83 Math 38
83 Computer 38

In the given table, non-prime attribute TEACHER AGE is dependent on TEACHER ID which
is a proper subset of a candidate key. That's why it violates the rule for 2NF.

To convert the given table into 2NF, we decompose it into two tables:

Downloaded from EnggTree.com

EnggTree.com

TEACHER_DETAIL table:

TEACHER_ID | TEACHER_AGE

25 30
47 35
83 38

TEACHER_SUBJECT table:

TEACHER_ID | SUBJECT
25 Chemistry
25 Biology
47 English
83 Math
83 Computer

Third Normal Form (3NF)
o Arelation will be in 3NF if it is in 2NF and not contain any transitive partial dependency.
o 3NF is used to reduce the data duplication. It is also used to achieve the data integrity.
o Ifthere is no transitive dependency for non-prime attributes, then the relation must be in

third normal form.

Downloaded from EnggTree.com

EnggTree.com

A relation is in third normal form if it holds at least one of the following conditions for every
non-trivial function dependency X — Y.
1. Xis a super key.

2. Y is a prime attribute, i.e., each element of Y is part of some candidate key.
Example:

EMPLOYEE_DETAIL table:

EMP_ID | EMP_NAME | EMP_ZIP | EMP _STATE | EMP_CITY
222 Harry 201010 UP Noida
333 Stephan 02228 US Boston
444 Lan 60007 US Chicago
555 Katharine 06389 UK Norwich
666 John 462007 MP Bhopal

Super key in the table above:
{EMP_ID}, {EMP_ID, EMP NAME}, {EMP _ID, EMP NAME, EMP ZIP}. soon
Candidate key: {EMP ID}

Non-prime attributes: In the given table, all attributes except EMP_ID are non-prime.

Here, EMP_STATE & EMP CITY dependent on EMP_ZIP and EMP ZIP dependent on
EMP_ID. The non-prime attributes (EMP_STATE, EMP_CITY) transitively dependent on super
key(EMP_ID). It violates the rule of third normal form.

That's why we need to move the EMP CITY and EMP STATE to the new
<EMPLOYEE_ZIP> table, with EMP_ZIP as a Primary key.

Downloaded from EnggTree.com

EnggTree.com

EMPLOYEE table:
EMP_ID | EMP NAME | EMP_ZIP
222 Harry 201010
333 Stephan 02228
444 Lan 60007
555 Katharine 06389
666 John 462007

EMPLOYEE_ZIP table:

EMP_ZIP | EMP_STATE | EMP_CITY
201010 UP Noida
02228 US Boston
60007 UsS Chicago
06389 UK Norwich
462007 MP Bhopal

Boyce Codd normal form (BCNF)
o BCNEF is the advance version of 3NF. It is stricter than 3NF.
o Atable is in BCNF if every functional dependency X — Y, X is the super key of the
table.

Downloaded from EnggTree.com

EnggTree.com

o For BCNF, the table should be in 3NF, and for every FD, LHS is super key.

Example: Let's assume there is a company where employees work in more than one department.

EMPLOYEE table:
EMP_ID | EMP_COUNTRY | EMP_DEPT | DEPT_TYPE | EMP_DEPT NO
264 India Designing D394 283
264 India Testing D394 300
364 UK Stores D283 232
364 UK Developing D283 549

In the above table Functional dependencies are as follows:
1. EMP _ID — EMP_COUNTRY
2. EMP _DEPT — {DEPT TYPE, EMP_DEPT NO}

Candidate key: {EMP-ID, EMP-DEPT}

The table is not in BCNF because neither EMP_DEPT nor EMP_ID alone are keys.

To convert the given table into BCNF, we decompose it into three tables:

EMP_COUNTRY table:

EMP_ID | EMP_COUNTRY

264 India

264 India

Downloaded from EnggTree.com

EnggTree.com

EMP_DEPT table:

EMP_DEPT | DEPT _TYPE | EMP_DEPT_NO
Designing D394 283
Testing D394 300
Stores D283 232
Developing D283 549

EMP_DEPT MAPPING table:

EMP_ID | EMP DEPT
D394 283
D394 300
D283 232
D283 549

Functional dependencies:

1. EMP ID— EMP_COUNTRY

2. EMP DEPT — {DEPT TYPE, EMP DEPT NO}
Candidate keys:

For the first table: EMP_ID

For the second table: EMP DEPT

For the third table: {EMP ID, EMP DEPT}

Downloaded from EnggTree.com

EnggTree.com

Now, this is in BCNF because left side part of both the functional dependencies is a key.
Fourth normal form (4NF)
o Arelation will be in 4NF if it is in Boyce Codd normal form and has no multi-valued
dependency.
o For a dependency A — B, if for a single value of A, multiple values of B exists, then the

relation will be a multi-valued dependency.

Example
STUDENT
STU_ID [COURSE HOBBY

21 Computer Dancing
21 Math Singing
34 Chemistry Dancing
74 Biology Cricket
59 Physics Hockey

The given STUDENT table is in 3NF, but the COURSE and HOBBY are two independent entity.
Hence, there is no relationship between COURSE and HOBBY.

In the STUDENT relation, a student with STU ID, 21 contains two
courses, Computer and Math and two hobbies, Dancing and Singing. So there is a Multi-
valued dependency on STU ID, which leads to unnecessary repetition of data.

So to make the above table into 4NF, we can decompose it into two tables:

Downloaded from EnggTree.com

EnggTree.com

STUDENT_COURSE

STU_ID | COURSE
21 Computer
21 Math
34 Chemistry
74 Biology
59 Physics

STUDENT_HOBBY

STU_ID | HOBBY
21 Dancing
21 Singing
34 Dancing
74 Cricket
59 Hockey

Downloaded from EnggTree.com

EnggTree.com

Fifth normal form (5NF)

o Arelation is in SNF if it is in 4NF and not contains any join dependency and joining

should be lossless.

o 5NF is satisfied when all the tables are broken into as many tables as possible in order to

avoid redundancy.

o 5NF is also known as Project-join normal form (PJ/NF).

Example

SUBJECT LECTURER | SEMESTER
Computer Anshika Semester 1
Computer John Semester 1
Math John Semester 1
Math Akash Semester 2
Chemistry Praveen Semester 1

In the above table, John takes both Computer and Math class for Semester 1 but he doesn't take
Math class for Semester 2. In this case, combination of all these fields required to identify a valid

data.

Suppose we add a new Semester as Semester 3 but do not know about the subject and who will
be taking that subject so we leave Lecturer and Subject as NULL. But all three columns together
acts as a primary key, so we can't leave other two columns blank.

So to make the above table into SNF, we can decompose it into three relations P1, P2 & P3:

Downloaded from EnggTree.com

EnggTree.com

P1
SEMESTER | SUBJECT
Semester 1 Computer
Semester 1 Math
Semester 1 Chemistry
Semester 2 Math
P2
SUBJECT LECTURER
Computer Anshika
Computer John
Math John
Math Akash
Chemistry Praveen
P3
SEMSTER LECTURER
Semester 1 Anshika
Semester 1 John
Semester 1 John
Semester 2 Akash
Semester 1 Praveen

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

