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UNIT – IV FINITE WORD LENGTH EFFECTS 

1. Represent the following numbers in floating point format with five bits in mantissa 

and three bits in exponent.                            (8) [M/J – 13 R08] 

a) 710 

b) 0.2510 

c)  110 

d)  0.2510   

 Solution: 

a) 710 

( )            
                 

b) 0.2510 

(    )            
                

c)  110 

      Assume sign magnitude representation for negative number 

(  )           
                

d)  0.2510      

Assume sign magnitude representation for negative number 

            (     )             
                       

2. Distinguish between fixed point and floating point arithmetic. (4)              

  [N/D – 11 R08] [M/J – 12 R08] 

 

S.No. Fixed Point Arithmetic Floating Point Arithmetic 

1 Fast Operation Slow Operation 

2 Relatively economical 
More expensive because of costlier 

hardware 

3 Small dynamic range Increased dynamic range 

4 
Round off error occur only for 

additions 

Round off errors can occur with both 

additions and multiplication 

5 Overflow occur in addition Overflow does not arise 

6 Used in small computers Used in general purpose computers 
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3. Discuss the various common methods of quantization.             (8) [N/D – 13 R08] 

 The common methods of quantization are 

i. Truncation 

ii. Rounding 

 Truncation: 

Truncation is process of reducing the size of binary number by discarding all bits 

less significant than the least significant bit that is retained. In the truncation of a binary 

number to b bits, all the less significant bits beyond b
th

 bit are discarded. 

Examples: 

i. The 8 bit binary number 0.00110011 may be truncated to 4 bits as 0.0011 

ii. The 8 bit binary number 1.01001001 may be truncated to 4 bits as 1.0100 

When a number is truncated, the signal value is approximated by the highest quantization 

level that is not greater than the signal. 

Rounding: 

Rounding is the process of reducing the size of a binary number to finite word 

size of b bits such that, the rounded b bit number is closest to the original unquantized 

number. 

Examples: 

i. The binary number 0.11010 may be rounded to three bits as either 0.110 or 

0.111. 

ii. If the binary number 0.110111111 is rounded to 8 bits then the result may be 

0.11011111 or 0.1110000. 

 Rounding up or down will have negligible effect on accuracy of computation. 

4. Explain the errors due to rounding and truncation.                      [N/D – 10 R08] 

Explain the problems due to round off and truncation in converting a decimal 

fraction.                                                                                                 (8) [N/D – 10 R08] 

Compare the truncation and rounding errors using fixed point and floating point 

representation.                  (8) [M/J – 14 R08] 

  

 Rounding or truncation introduces an error whose magnitude depends on the number 

of bits truncated or rounded-off. Also, the characteristics of the error depend on the form 

of binary number representation.  

  

Consider a number x, whose original length is ‘L’ bits, as shown below. 

 

Downloaded from EnggTree.com

EnggTree.com



EC3492 – Digital Signal Processing                   IV Semester  

 

Department of Electronics and Communication Engineering                                              3 
 

           Sign     0      1     2                   L–1                                    

           bit 

 

  x =          X     X     X    X      ….         X 

 

Let this number be quantized (truncated or rounded) to ‘B’ bits, as shown below. 

           Sign       0      1      2                   B–1                                    

           bit 

 

 Q(x) =        X     X     X    X          …       X 

 

The quantized number is represented as Q(x). Here B < L. 

 

i) Truncation error for sign magnitude representation: 

 When the number x is positive, truncation results in reducing the magnitude of 

the number. Thus the truncation error is negative and the range is given by, 

 (       )             (1) 

      The largest error occurs when all the discarded bits are one’s.  

 When the number x is negative, truncation results in reducing the magnitude 

of the number. Because of the negative number the resulting will be greater than the 

original number. Thus the truncation error is positive and the range is given by, 

     ( 
      )       (2) 

      The overall range for the sign magnitude representation is  

 (       )     ( 
      )      (3) 

ii) Truncation error for two’s complement representation: 

 When the number x is positive, truncation results in reducing the magnitude of 

the number as in the case of sign magnitude numbers. Thus the truncation error is 

negative. When the number x is negative, truncation results in smaller number. Thus 

the truncation error is negative. The complete range of truncation error for two’s 

complement is given by, 

 (       )              (4) 

iii) Round-off error for sign magnitude and two’s complement representation: 

 The rounding of a binary number involves only the magnitude of the number 

and is independent of the type of fixed point binary representation. The error due to 

rounding may be either positive or negative. Its range is   

 
(       )

 
       

(       )

 
                                                                      (5) 

 

Downloaded from EnggTree.com

EnggTree.com



EC3492 – Digital Signal Processing                   IV Semester  

 

Department of Electronics and Communication Engineering                                              4 
 

x(n) xq(n) 

 

In most of the applications, infinite precision is assumed i.e.,     

Therefore,  

i) Truncation error for sign magnitude representation 

         
   

ii) Truncation error for two’s complement representation 

          

iii) Rounding error for sign magnitude and two’s complement representation 

    

 
    

   

 
 

5. What is quantization noise? Derive the expression for quantization noise power. 

                 (12) [M/J – 12 R08] 

What is meant by quantization? Derive the expression for the quantization error.   

              [N/D – 12 R08]  

Explain the quantization noise and derive the expression for finding quantization 

noise power.                      (8) [N/D – 10 R08] 

QUANTIZATION: 

In DSP, the continuous time input signals are converted into digital using ADC.  The 

process of converting analog signal to digital signal is given below. 

 

 

 The signal  ( ) is sampled at regular intervals     , where            to 

create a sequence  ( ). This is done by a sampler. The numeric equivalent of each 

sample  ( ) is expressed by a finite number of bits giving the sequence   ( ). The 

1 

Sampler Quantizer x(t) 
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difference signal  (  )    (  )   (  )  is called quantization noise or A/D conversion 

noise. 

The common methods of quantization are 

1) Truncation 

2) Rounding 

EXPRESSION FOR QUANTIZATION NOISE POWER: 

Input quantization error: 

The quantization error is given by 

 ( )     (  )   (  )  

         where  

    ( ) = sampled quantization value  

  ( ) = sampled unquantized value 

 Depending  on  the  way  in which   (  )  is quantized  different  distributions  of 

quantization  noise may be obtained . If rounding  is used, the error signal  satisfies  the 

relation 

    

 
  ( )  

   

 
 

 The other type of quantization can be obtained by truncation.  In truncation the signal 

is represented  by the highest  level  that  is not greater  than  the signal . In two’s 

complement truncation, the error  (  )  is always negative and satisfies the inequality,  

      ( )    

       Steady state input noise power: 

The quantization error is commonly viewed as an additive noise signal, that is  

   ( )    (  )    (  )  

The A/D converter output is the sum of the input signal  ( )  and the error signal  ( )  

as shown below. 
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If rounding is used for quantization error  ( )    ( )    ( ) is bounded by 

 
    

 
   ( )  

   

 
.  

The error  ( ) has the following properties: 

1. The error sequence  ( ) is a sample sequence of a stationary random process. 

2. The error sequence is uncorrelated with  ( ) and other signals in the system. 

3. The error is a white noise process with uniform amplitude probability distribution 

over the range of quantization error. 

The variance of  ( ) is given by 

  
   [  ( )]    [ ( )] 

   where   [ ( )] is the average of   ( ) and  [ ( )] is mean value of  ( ) 

For rounding 

  
  ∫       ( )   ( )

 

   

 

    

 

 

  
    [

  

 
]
    

 

   

 

 

Therefore, 

  
  

    

  
 

6. Derive the signal to quantization noise ratio of A/D converter.      (6) [M/J – 14 R08] 

The signal to quantization noise ratio of A/D converter is given by 

SNR = 10 log[Px(n)/Pe(n)] 

          = 10 log Px(n) – 10 log Pe(n) 

          = 10 log Px(n) – 10 log 
    

  
   

          = 10 log Px(n) + 10 log       + 10 log 12   

          = 10 log Px(n) + 20B log 2+ 10.8 

          = 10 log Px(n) + 6.02B + 10.8 

     SNR = 10 log Px(n) + 6B + 10.8 

For every increase in B bits the signal to quantization noise ratio increases by 6 dB. 
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7. How is the steady state output noise variance calculated?            (8) [N/D – 10 R08] 

 Steady state output noise variance (or) power: 

 The quantized input to a digital system with impulse response  ( ) due to A/D 

conversion noise can be represented as shown in figure. 

 

Let  ( ) be the output noise due to quantization of the input. Then, 

 ( )   ( )   ( ) 

 ∑ ( ) (   )

 

   

 

The variance of any term in above sum in equal to     ( ). 

  The variance of the sum of independent random variable is the sum of their variances. 

If the quantization errors are assumed to be independent at different sampling instances, 

then the variance of the output is 

  
 ( )(  )   

 ( )    
 ∑  ( )

 

   

  

  To find the steady state variance, extend the limit k up to infinity. Then, 

  
    

 ∑  ( )

 

   

 

  Using Parseval’s theorem the steady state output noise variance due to the 

quantization error is given by 

  
    

 ∑  ( )

 

   

   
 
 

   
∮  ( ) (   )
 

        

  where the closed contour of integration is around the unit circle | |    in which case 

only the poles that lie inside the unit circle are evaluated using the residue theorem. 
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8. Determine the steady state output noise variance due to quantization of input, for 

the first order filter  ( )    (   )   ( ).                            (16)   

Given   ( )    (   )   ( ) 

Taking z transform on both sides 

 ( )       ( )   ( ) 

 ( )  
 ( )

 ( )
 

 

      
 

 

   
 

 (   )  
   

      
 

  
    

 
 

   
∮  ( ) (   )
 

       

  
    

 
 

   
∮

 

   
 
   

      

       

  
    

 
 

   
∮

   

(   )(     )
 

 

    

  
    

 [           
   

(   )(     )
    (   )              

   

(   )(     )
    (  

 

 
)] 

Assume a < 1 

  
    

 [(   )
   

(   )(     )
|
   

] 

  
    

 
   

     
    

 
 

    
 

9. Consider a second order IIR filter with  ( )  
   

(           ) (            )
. Explain the 

effect of quantization on pole locations of the system when realized in direct form 

and in cascade form. Assume b = 3 bits.             (10) [N/D – 11 R08] 

Solution: 

Given:   ( )  
   

(         )(          )
 

Direct form: 

  ( ) can be written as, 
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 ( )   
 

(                  )
 

The poles are at         and         

Let us quantize the co-efficient by truncation. 

(    )  
         
→       (      )  

                  
→              (     )  

          
→        (     )   

(     )  
         
→       (      )  

                  
→              (     )  

          
→        (     )   

Hence,  

 ( )   
 

(                   )
 

 ( )   
  

                
 

 ( )   
  

(       )(      )
 

  So,   ̅̅̅        and   ̅̅ ̅       

         Thus the pole locations are shifted from 0.5, 0.45 to 0.695 and 0.18 respectively. 

 Cascade Form: 

 ( )  
   

(         )(          )
 

(   )  
         
→       (      )  

                  
→              (     )  

          
→        (   )   

(    )  
         
→       (      )  

                  
→              (     )  

          
→        (     )   

 Hence, 

 ( )  
   

(         )(           )
 

  So,   ̅̅̅      and   ̅̅ ̅        

         There is no change in first pole location and the second pole location is shifted from 

0.45 to 0.375. 

10. Explain coefficient quantization in IIR filter.           (16) [N/D – 12 R08] 

The filter coefficients are computed to infinite precision in theory. But, in digital 

computation the filter coefficients are represented in binary and are stored in registers. If 

b bit register is used, the filter coefficients must be rounded or truncated to b bits, which 

produces an error. This error is known as coefficient quantization error.  
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Due to quantization of coefficients, the frequency response of the filter may differ 

appreciably from the desired response and sometimes the filter may actually fail to meet 

the desired specifications. If the poles of desired filter are close to the unit circle, then 

those of the filter with quantized coefficients may lie just outside the unit circle, leading 

to instability. 

Example: 

Consider a second order IIR filter with  ( )  
   

(           ) (            )
. Explain the effect 

of quantization on pole locations of the system when realized in direct form and in 

cascade form. Assume b = 3 bits.  

Answer: Refer problem No: 9             

11. Draw the product quantization noise model of second order IIR system. (8)  

                        [M/J – 13 R08] 
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12. Determine the output round-off noise power for the system having transfer function 

H(z) = 
 

(        )(        )
 which is realized in cascade form. Assume word 

length is 4 bits.  (8) 

Solution: 

Given: 

 ( )   
 

(        )(        )
 

  

 

 

 

 

 

   
      

      
  

    
    

 
 

   
∮  ( ) (   )
 

       

    
    

   

where  

  
 

   
∮  ( ) (   )
 

       

     ( ) is the transfer function seen by the error source   ( ) 

                         

 ( )   
 

(        )(        )
 

     I = sum of residues at poles within the unit circle 

  
 

   
∮

 

(        )(        ) 

 
 

(      )(      )
       

  
 

   
∮

( )( )

(     )(     ) 

 
 

(      )(      )
       

  
 

   
∮

( )

(     )(     ) 

 
 

(      )(      )
    

The poles z = 0.5 and z = 0.4 are within unit circle. 

0.5 

z-1 

  

z-1 

x(n) y(n) 

0.4 

𝑒 (𝑛) 𝑒 (𝑛) 
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  (     )
( )

(     )(     )
 

 

(      )(      )
|
     

   

 (     )
( )

(     )(     )
 

 

(      )(      )
|
     

  

                 

    
    

 (    ) 

    
  

    

  
(    ) 

    
  

   ( )

  
(    ) 

    
           (    ) 

    
             

    
    

 
 

   
∮  ( ) (   )
 

       

    
    

   

where  

  
 

   
∮  ( ) (   )
 

       

     ( ) is the transfer function seen by the error source   ( ) 

 ( )   
 

(        )
 

     I = sum of residues at poles within the unit circle 

  
 

   
∮

 

(        ) 

 
 

(      )
       

  
 

   
∮

( )

(     ) 

 
 

(      )
       

  
 

   
∮

 

(     ) 

 
 

(      )
    

 The pole z = 0.4 is within unit circle. 

  (     )
 

(     )
 

 

(      )
|
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 (      ) 

    
           (      ) 

    
             

          Therefore, 

   
                                     

13. Determine the dead band of the system  ( )       (   )      (   )  

 ( ). Assume 8 bits are used for signal representation.            (8) [M/J – 13 R08] 

Given:  ( )      (   )      (   )   ( ) 

Assume 

 ( )  {
                  
                   

}    

 (  )   (  )    

         (                  )   

   ( )     (   )  [    (   )]     (   )  [    (   )]  ( ) 

0            0 0        

1                     0 0            

2                                            

3                                                 

4                                                 

(      )  
         
→       (            )  

                   
→               (          )  

          
→        (          )   

(          )  
         
→       (           )  

                   
→               (          )  

          
→        ( )   

(       )  
         
→       (           )  
                   
→               (          )  

          
→        (         )   

(         )  
         
→        (          )    
                   
→               (          )  

          
→        ( )   

            
         
→        (           )   

                   
→              (          ) 

          
→       (          )   
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(          )  
         
→        (           )    

                   
→               (          )  

          
→       (          )   

          

 
  

  

     
 

                     

 

14. Describe the quantization in floating point realization of IIR digital filters.    

                   (16) [N/D –13 R08] 

Refer Page No: 7.37 in Digital Signal Processing by Ramesh Babu 

15. Explain the finite word length effects in FIR digital filters.             (8)[N/D – 13  R08] 

 Explain the round off noise in direct form realization of a linear phase FIR filter 

with relevant diagrams.                (8) [A/M – 11 R08] 

 Explain the effects of coefficient quantization in FIR filters.       

                 (8)[M/J – 14 R08] [A/M –11 R08] 

Refer Page No: 7.41 in Digital Signal Processing by Ramesh Babu 

16. Explain the following                (8) [M/J – 12 R08] 

a) Coefficient quantization error 

b) Product quantization error 

c) Signal scaling 

d) Truncation and Rounding 

a) Coefficient quantization error: 

The filter coefficients are computed to infinite precision in theory. But, in 

digital computation the filter coefficients are represented in binary and are stored in 

registers. If b bit register is used, the filter coefficients must be rounded or truncated 

to b bits, which produces an error. This error is known as coefficient quantization 

error. Due to quantization of coefficients, the frequency response of the filter may 

differ appreciably from the desired response and sometimes the filter may actually fail 

to meet the desired specifications. If the poles of desired filter are close to the unit 

circle, then those of the filter with quantized coefficients may lie just outside the unit 

circle, leading to instability. 

b) Product quantization error: 

Product quantization errors arise at the output of a multiplier. Multiplication of 

b bit data with b bit coefficient results in a product having 2b bits. Since b bit register 
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is used, the multiplier output must be rounded or truncated to b bits, which produces 

an error. This error is known as product quantization error. 

c) Signal scaling: 

  Saturation arithmetic eliminates limit cycles due to overflow, but it causes 

undesirable signal distortion due to the nonlinearity of the clipper. In order to limit the 

amount of non-linear distortion, it is important to scale the input signal (scaling factor 

S0) and the unit sample response between the input and any internal summing nodes 

in the system such that overflow become a rare event. 

 

d) Truncation and Rounding:  

Truncation: 

Truncation is process of reducing the size of binary number by discarding all 

bits less significant than the least significant bit that is retained. In the truncation of a 

binary number to b bits all the less significant bits beyond b
th

 bit are discarded. 

  Rounding: 

 Rounding is the process of reducing the size of a binary number to finite word 

size of b bits such that, the rounded b bit number is closest to the original unquantized 

number. 

 

17. a) How is signal scaling used to prevent overflow limit cycle in the digital filter 

implementation? Explain with an example. (8)          (N/D 11 R08) (M/J 13 R08) 

Signal Scaling: 

 Saturation arithmetic eliminates limit cycles due to overflow, but it causes undesirable 

signal distortion due to the nonlinearity of the clipper. In order to limit the amount of 

non-linear distortion, it is important to scale the input signal and the unit sample response 

between the input and any internal summing nodes in the system such that overflow 

become a rare event. 
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Consider a second order IIR filter shown in figure. A scale factor    is 

introduced between the input  ( ) and the adder 1, to prevent overflow at the output 

adder 1. 

Now the overall input-output transfer function is 

 ( )    
      

      
  

             
 

 ( )    
 ( )

 ( )
 

From the figure, 

  ( )  
 ( )

 ( )
  

  
     

      
  
  

  
 ( )

 

If the instantaneous energy in the output sequence  ( ) is less than the finite 

energy in the input sequence then, there will not be any overflow. 

 ( )   
   ( )

 ( )
    ( ) ( )  

  where, 

  
  

 

 
   ∮  ( ) (   )     

 

 

  
  

 

 
   ∮

     
 ( ) (   ) 

 

  
  

 

 
 

where  

  
 

   
∮

     

 ( ) (   ) 
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18. Describe the effects of quantization in IIR filter. Consider a first order filter with 

difference equation  ( )   ( )      (   )   Assume that the data register 

length is three bits plus a sign bit. The input x(n)=0.875δ(n). Explain the limit 

cycle oscillations in the above filter, if quantization is performed by means of 

rounding and signed magnitude representation. (16) 

  Solution: 

  Given:  ( )   ( )      (   ) 

 ( )         ( )   

 ( )  {
                 
                   

}    

 (  )    

         (                  )   

   ( )     (   )  [    (   )]  ( ) 

0                 

1                  

2                  

3                     

4                      

 

(      )  
         
→       (      )  

                   
→               (     )  

          
→        (   )   

(    )  
         
→       (      )  

                   
→               (     )  

          
→        (    )   

(     )  
         
→       (      )  

                   
→               (     )  

          
→        (     )   

(      )  
         
→       (      )  

                   
→               (     )  

          
→        (     )   
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19. Consider all pole second order IIR digital filter described by difference equation 

 ( )       (   )       (   )   ( )   Assuming 8-bits to represent a 

pole, determine the dead band region governing the limit cycle. (8) 

Given:  ( )       (   )       (   )   ( ) 

Assume 

 ( )  {
                  
                   

}    

 (  )   (  )    

         (                  )   

   ( )      (   )  [     (   )]       (   )  [      ( 
  )] 

 ( ) 

0            0 0        

1                     0 0            

2                                            

3                                                 

4                                                 

 

(      )  
         
→       (            )  

                   
→               (          )  

          
→        (          )   

 

(          )  
         
→       (           )  

                   
→               (          )  

          
→        ( )   

 

(       )  
         
→       (           )  
                   
→               (          )  

          
→        (         )   

 

(         )  
         
→        (          )    
                   
→               (          )  

          
→        ( )   

 

            
         
→        (           )   

                   
→              (          ) 

          
→       (          )   
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(          )  
         
→        (           )    

                   
→               (          )  

          
→       (          )   
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EC 3492 – DIGITAL SIGNAL PROCESSING 

UNIT V – DSP APPLICATIONS 

1. A signal x(n) is given by  ( )                              (8)        

a) Obtain the decimated signal with a factor of 2. 

b) Obtain the interpolated signal with a factor of 2. 

Solution: 

 Given:  ( )                              

a) Decimation with a factor of 2: 

 ( )                    

b) Interpolation with a factor of 2: 

 ( )                                                    

2. How does the sampling rate increase by an integer factor I and derive the input-  

       output relationship in both time and frequency domains.                      
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3. Explain sampling rate reduction by an integer factor ‘D’. Derive the relation 

between input and output frequency.  (8) 
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4. For the multirate system shown in figure, find the relation between x(n) and y(n).  

                                      (N/D 11 R08) 

 

 

 

 

SOLUTION: 

 

 ( )   (  ) 

 ( )    ( )  (  )  (  )     

  ( )      (  )    (  )    ( )    ( )    ( )       

  (   )        ( )    ( )    ( )       

 ( )   (    ) 

 ( )     (  )  ( )  ( )  ( )    

   ( )        (  )    ( )    ( )    ( )      

 ( )    (   )    ( ) 

 ( )      (  )  ( )  ( )  ( )  ( )    

Therefore, 

 ( )   (   ) 

 

𝑣(𝑛) 

𝑤𝑢(𝑛) 𝑤(𝑛) 

𝑣𝑢(𝑛) 

𝑣𝑢(𝑛   ) 
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5. Explain sampling rate conversion by a rational factor and derive input-output 

relation in both time and frequency domain. (10)                      
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UNIT V DIGITAL SIGNAL PROCESSOR  

 

INTRODUCTION 

A digital signal processor (DSP) is a specialized microprocessor (or a SIP block), with 

its architecture optimized for the operational needs of digital signal processing.  

The goal of DSP is usually to measure, filter or compress continuous real-world  analog signals. 

Most  general -purpose  microprocessors  can also execute  digital  signal  processing  algorithms 

successfully , but may not be able to keep up with such processing  continuously  in real-time. 

Also , dedicated  DSPs  usually  have  better  power  efficiency , thus they are more  suitable  in 

portable devices such as  mobile phones  because of power consumption  constraints.  DSPs often 

use special memory architectures that are able to fetch multiple data or instructions  at the same 

time. 

 

Circular Buffering 

Digital  Signal Processors  are designed  to quickly carry out FIR filters and similar  techniques . 

To understand  the hardware , we must first understand  the algorithms . In this section  we will 

make a detailed list of the steps needed to implement  an FIR filter. In the next section we will 

see how DSPs are designed to perform these steps as efficiently as possible. 

To start, we need to distinguish  between  off-line processing  and  real-time processing . In off-

line processing, the entire input signal resides in the computer at the same time. For example, a 

geophysicist  might  use a seismometer  to record  the ground  movement  during  an earthquake . 

After the shaking  is over, the information  may be read into a computer  and analyzed  in some 

way. Another example of off-line processing is medical imaging, such as computed tomography 

and  MRI . The  data  set is acquired  while  the patient  is inside  the machine , but  the image 

reconstruction  may be delayed until a later time. The key point is that  all  of the information  is 

simultaneously  available to the processing program. This is common in scientific research and 

engineering , but not in consumer  products . Off-line processing  is the realm of personal 

computers and mainframes. 

In real-time processing , the output  signal  is produced  at the same time that the input signal  is 

being acquired. For example, this is needed in telephone communication, hearing aids, and radar

. These  applications  must  have  the  information  immediately  available , although  it can  be 

delayed  by a short amount . For instance , a 10 millisecond  delay in a telephone  call cannot  be 

detected by the speaker or listener. Likewise, it makes no difference if a radar signal is delayed 

by a few seconds before being displayed to the operator. Real-time applications input a sample, 

perform  the algorithm , and output  a sample , over-and-over . Alternatively , they may input  a 

group
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of samples, perform the algorithm, and output a group of samples. This is the world of Digital 

Signal Processors. 

 

Now look at Fig. 28-2 and imagine that this is an FIR filter being implemented in real-time. To 

calculate the output sample, we must have access to a certain number of the most recent samples 

from the input. For example, suppose we use eight coefficients in this filter, a0, a1, … a7. This 

means we must know the value of the eight most recent samples from the input signal, x[n], x[n-

1], … x[n-7]. These eight samples must be stored in memory and continually updated as new 

samples are acquired. What is the best way to manage these stored samples? The answer 

is circular buffering. 
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Figure 28-3 illustrates an eight sample circular buffer. We have placed this circular buffer in 

eight consecutive memory locations, 20041 to 20048. Figure (a) shows how the eight samples 

from the input might be stored at one particular instant in time, while (b) shows the changes after 

the next sample is acquired. The idea of circular buffering is that the end of this linear array is 

connected to its beginning; memory location 20041 is viewed as being next to 20048, just as 

20044 is next to 20045. You keep track of the array by a pointer (a variable whose value is 

an address) that indicates where the most recent sample resides.  

For instance, in (a) the pointer contains the address 20044, while in (b) it contains 20045. When 

a new sample is acquired, it replaces the oldest sample in the array, and the pointer is moved one 

address ahead. Circular buffers are efficient because only one value needs to be changed when a 

new sample is acquired. 

Four parameters are needed to manage a circular buffer. First, there must be a pointer that 

indicates the start of the circular buffer in memory (in this example, 20041). Second, there must 

be a pointer indicating the end of the array (e.g., 20048), or a variable that holds its length (e.g., 

8). Third, the step size of the memory addressing must be specified. In Fig. 28-3 the step size 

is one, for example: address 20043 contains one sample, address 20044 contains the next sample, 

and so on. This is frequently not the case. For instance, the addressing may refer to bytes, and 

each sample may require two or four bytes to hold its value. In these cases, the step size would 

need to be two or four, respectively. 

These three values define the size and configuration of the circular buffer, and will not change 

during the program operation. The fourth value, the pointer to the most recent sample, must be 
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modified as each new sample is acquired. In other words, there must be program logic that 

controls how this fourth value is updated based on the value of the first three values. While this 

logic is quite simple, it must be very fast. This is the whole point of this discussion; DSPs should 

be optimized at managing circular buffers to achieve the highest possible execution speed. 

As an aside, circular buffering is also useful in off-line processing. Consider a program where 

both the input and the output signals are completely contained in memory. Circular buffering 

isn't needed for a convolution calculation, because every sample can be immediately accessed. 

However, many algorithms are implemented in stages, with an intermediate signal being created 

between each stage. For instance, a recursive filter carried out as a series of biquads operates in 

this way. The brute force method is to store the entire length of each intermediate signal in 

memory. Circular buffering provides another option: store only those intermediate samples 

needed for the calculation at hand. This reduces the required amount of memory, at the expense 

of a more complicated algorithm. The important idea is that circular buffers are useful for off-

line processing, but critical for real-time applications. 

Now we can look at the steps needed to implement an FIR filter using circular buffers for both 

the input signal and the coefficients. This list may seem trivial and overexamined- it's not! The 

efficient handling of these individual tasks is what separates a DSP from a traditional 

microprocessor. For each new sample, all the following steps need to be taken: 

 

The goal is to make these steps execute quickly. Since steps 6-12 will be repeated many times 

(once for each coefficient in the filter), special attention must be given to these operations. 

Traditional microprocessors must generally carry out these 14 steps in serial (one after another), 

while DSPs are designed to perform them in parallel. In some cases, all of the operations within 

the loop (steps 6-12) can be completed in a single clock cycle. Let's look at the internal 

architecture that allows this magnificent performance. 
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ARCHITECTURE OF THE DIGITAL SIGNAL PROCESSOR 

One of the biggest  bottlenecks  in executing  DSP algorithms  is transferring  information  to and 

from  memory . This  includes data , such  as samples  from  the input  signal  and  the filter 

coefficients , as well  as program  instructions , the binary  codes  that  go into  the program 

sequencer . For example , suppose  we need to multiply  two numbers  that reside  somewhere  in 

memory . To do this , we must  fetch  three  binary  values  from  memory , the  numbers  to be 

multiplied, plus the program instruction describing what to do. 

Figure 28-4a shows how this seemingly simple task is done in a traditional microprocessor . This 

is often called a Von Neumann  architecture , after the brilliant  American  mathematician  John 

Von  Neumann  (1903 -1957 ). Von  Neumann  guided  the mathematics  of many  important 

discoveries  of the early  twentieth  century . His many  achievements  include : developing  the 

concept of a stored program computer, formalizing the mathematics  of quantum mechanics, and 

work on the atomic bomb. If it was new and exciting, Von Neumann was there! 

As shown  in (a), a Von Neumann  architecture  contains  a single  memory  and a single  bus for 

transferring  data  into and out of the central  processing  unit  (CPU). Multiplying  two numbers 

requires  at least three clock cycles, one to transfer  each of the three numbers  over the bus from 

the memory to the CPU. We don't count the time to transfer the result back to memory, because 

we assume that it remains in the CPU for additional manipulation (such as the sum of products in 

an FIR filter). The Von Neumann design is quite satisfactory when you are content to execute all 

of the required tasks in serial. In fact, most computers today are of the Von Neumann design. We 

only need other architectures when very fast processing is required, and we are willing to pay the 

price of increased complexity. 

This  leads  us to the Harvard  architecture , shown  in (b). This  is named  for the work  done  at 

Harvard University  in the 1940s under the leadership  of Howard Aiken (1900-1973). As shown 

in this illustration , Aiken insisted on separate  memories  for data and program instructions , with 

separate buses for each. Since the buses operate independently, program instructions and data can 

be fetched  at the same time, improving  the speed over the single  bus design . Most present  day 

DSPs use  this dual bus architecture.  

Figure (c) illustrates the next level of sophistication, the  Super Harvard Architecture. This term 

was coined by Analog Devices to describe the internal operation of their ADSP-2106x and new 

ADSP -211 xx  families  of  Digital  Signal  Processors . These  are  called  SHARC ® DSPs , a 

contraction  of the longer  term, Super Harvard ARChitecture . The idea is to build upon the 

Harvard architecture by adding features to improve the throughput. While the SHARC DSPs are 

optimized  in dozens  of ways ,  two areas  are important  enough  to be included  in Fig. 28-4c: an

 instruction cache, and an  I/O controller.  
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First , let's look  at how the instruction  cache  improves  the performance  of the Harvard 

architecture . A handicap of the basic Harvard design is that the data memory bus is busier than 

the program memory bus. When two numbers  are multiplied , two binary values (the numbers) 

must be passed over the data memory bus, while only one binary value (the program instruction) 

is passed over the program memory bus. To improve upon this situation, we start by relocating 

part  of the "data" to program  memory . For instance , we might  place  the filter  coefficients  in 

program memory, while keeping the input signal in data memory. (This relocated data is called "

secondary  data" in the illustration ). At first glance, this doesn't seem to help the situation; now 

we must transfer one value over the data memory bus (the input signal sample), but two values 

over the program memory bus (the program instruction and the coefficient). In fact, if we were 

executing random instructions, this situation would be no better at all. 

However , DSP algorithms  generally  spend most of their execution  time in loops, such as 

instructions  6-12 of Table  28-1. This  means  that  the  same  set  of program  instructions  will 

continually  pass  from program  memory  to the CPU. The Super  Harvard  architecture  takes 

advantage  of this situation  by including  an instruction  cache in the CPU. This is a small 

memory that contains about 32 of the most recent program instructions. The first time through a 

loop, the program  instructions  must  be passed  over the program  memory  bus. This results  in 

slower operation because of the conflict with the coefficients that must also be fetched along this 

path. However, on additional executions of the loop, the program instructions can be pulled from 

the instruction  cache. This means  that all of the memory  to CPU information  transfers  can be 

accomplished  in a single cycle: the sample  from the input signal comes over the data memory 

bus, the coefficient  comes  over the program  memory  bus, and the program  instruction  comes 

from the instruction cache. In the jargon of the field, this efficient transfer of data is called a  high 

memory-access bandwidth. 

Figure  28-5 presents  a more  detailed  view of the SHARC  architecture , showing  the  I/O 

controller connected  to data memory . This  is how the signals  enter  and exit  the system . For 

instance , the SHARC DSPs provides  both serial and parallel  communications  ports. These are 

extremely  high speed connections . For example , at a 40 MHz clock speed, there are two serial 

ports  that  operate  at 40 Mbits /second  each , while  six parallel  ports  each  provide  a 40 

Mbytes/second data transfer. When all six parallel ports are used together, the data transfer rate 

is an incredible 240 Mbytes/second. 
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This is fast enough to transfer the entire text of this book in only 2 milliseconds! Just as 

important, dedicated hardware allows these data streams to be transferred directly into memory 

(Direct Memory Access, or DMA), without having to pass through the CPU's registers. In other 

words, tasks 1 & 14 on our list happen independently and simultaneously with the other tasks; no 

cycles are stolen from the CPU. The main buses (program memory bus and data memory bus) 

are also accessible from outside the chip, providing an additional interface to off-chip memory 

and peripherals. This allows the SHARC DSPs to use a four Gigaword (16 Gbyte) memory, 

accessible at 40 Mwords/second (160 Mbytes/second), for 32 bit data. Wow! 

This type of high speed I/O is a key characteristic of DSPs. The overriding goal is to move the 

data in, perform the math, and move the data out before the next sample is available. Everything 

else is secondary. Some DSPs have on-board analog-to-digital and digital-to-analog converters, a 

feature called mixed signal. However, all DSPs can interface with external converters through 

serial or parallel ports. 

Now let's look inside the CPU. At the top of the diagram are two blocks labeled Data Address 

Generator (DAG), one for each of the two memories. These control the addresses sent to the 

program and data memories, specifying where the information is to be read from or written to. In 

simpler microprocessors this task is handled as an inherent part of the program sequencer, and is 

quite transparent to the programmer. However, DSPs are designed to operate with circular 

buffers, and benefit from the extra hardware to manage them efficiently. This avoids needing to 

use precious CPU clock cycles to keep track of how the data are stored. For instance, in the 
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SHARC DSPs, each of the two DAGs can control eight circular buffers. This means that each 

DAG holds 32 variables (4 per buffer), plus the required logic. 

Why so many circular buffers? Some DSP algorithms are best carried out in stages. For instance, 

IIR filters are more stable if implemented as a cascade of biquads (a stage containing two poles 

and up to two zeros). Multiple stages require multiple circular buffers for the fastest operation. 

The DAGs in the SHARC DSPs are also designed to efficiently carry out the Fast Fourier 

transform. In this mode, the DAGs are configured to generate bit-reversed addresses into the 

circular buffers, a necessary part of the FFT algorithm. In addition, an abundance of circular 

buffers greatly simplifies DSP code generation- both for the human programmer as well as high-

level language compilers, such as C. 

The data register section of the CPU is used in the same way as in traditional microprocessors. In 

the ADSP-2106x SHARC DSPs, there are 16 general purpose registers of 40 bits each. These 

can hold intermediate calculations, prepare data for the math processor, serve as a buffer for data 

transfer, hold flags for program control, and so on. If needed, these registers can also be used to 

control loops and counters; however, the SHARC DSPs have extra hardware registers to carry 

out many of these functions. 

The math processing is broken into three sections, a multiplier, an arithmetic logic unit (ALU), 

and a barrel shifter. The multiplier takes the values from two registers, multiplies them, and 

places the result into another register. The ALU performs addition, subtraction, absolute value, 

logical operations (AND, OR, XOR, NOT), conversion between fixed and floating point formats, 

and similar functions. Elementary binary operations are carried out by the barrel shifter, such as 

shifting, rotating, extracting and depositing segments, and so on. A powerful feature of the 

SHARC family is that the multiplier and the ALU can be accessed in parallel. In a single clock 

cycle, data from registers 0-7 can be passed to the multiplier, data from registers 8-15 can be 

passed to the ALU, and the two results returned to any of the 16 registers. 

There are also many important features of the SHARC family architecture that aren't shown in 

this simplified illustration. For instance, an 80 bit accumulator is built into the multiplier to 

reduce the round-off error associated with multiple fixed-point math operations. Another 

interesting 
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feature is the use of shadow registers for all the CPU's key registers. These are duplicate 

registers that can be switched with their counterparts in a single clock cycle. They are used 

for fast context switching, the ability to handle interrupts quickly. When an interrupt occurs in 

traditional microprocessors, all the internal data must be saved before the interrupt can be 

handled. This usually involves pushing all of the occupied registers onto the stack, one at a time. 

In comparison, an interrupt in the SHARC family is handled by moving the internal data into the 

shadow registers in a single clock cycle. When the interrupt routine is completed, the registers 

are just as quickly restored. This feature allows step 4 on our list (managing the sample-ready 

interrupt) to be handled very quickly and efficiently. 

Now we come to the critical performance of the architecture, how many of the operations within 

the loop (steps 6-12 of Table 28-1) can be carried out at the same time. Because of its highly 

parallel nature, the SHARC DSP can simultaneously carry out all of these tasks. Specifically, 

within a single clock cycle, it can perform a multiply (step 11), an addition (step 12), two data 

moves (steps 7 and 9), update two circular buffer pointers (steps 8 and 10), and control the loop 

(step 6). There will be extra clock cycles associated with beginning and ending the loop (steps 3, 

4, 5 and 13, plus moving initial values into place); however, these tasks are also handled very 

efficiently. If the loop is executed more than a few times, this overhead will be negligible. As an 

example, suppose you write an efficient FIR filter program using 100 coefficients. You can 
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expect it to require about 105 to 110 clock cycles per sample to execute (i.e., 100 coefficient 

loops plus overhead). This is very impressive; a traditional microprocessor requires many 

thousands of clock cycles for this algorithm. 

FIXED VERSUS FLOATING POINT 

Digital Signal Processing can be divided into two categories, fixed point and floating point. 

These refer to the format used to store and manipulate numbers within the devices.  

Fixed point DSPs usually represent each number with a minimum of 16 bits, although a different 

length can be used. For instance, Motorola manufactures a family of fixed point DSPs that use 24 

bits. There are four common ways that these 2
16

 = 65536 possible bit patterns can represent a 

number.  

In unsigned integer, the stored number can take on any integer value from 0 to 65,535. 

Similarly, signed integer uses two's complement to make the range include negative numbers, 

from -32,768 to 32,767. With unsigned fraction notation, the 65,536 levels are spread uniformly 

between 0 and 1. Lastly, the signed fraction format allows negative numbers, equally spaced 

between -1 and 1. 

In comparison, floating point DSPs typically use a minimum of 32 bits to store each value. This 

results in many more bit patterns than for fixed point, 2
32

 = 4,294,967,296 to be exact. A key 

feature of floating point notation is that the represented numbers are not uniformly spaced. In the 

most common format (ANSI/IEEE Std. 754-1985), the largest and smallest numbers are 

±3.4×10
38

 and �1.2�10
-38

, respectively.  

The represented values are unequally spaced between these two extremes, such that the gap 

between any two numbers is about ten-million times smaller than the value of the numbers. This 

is important because it places large gaps between large numbers, but small gaps between small 

numbers. Floating point notation is discussed in more detail in Chapter 4. 

All floating point DSPs can also handle fixed point numbers, a necessity to implement counters, 

loops, and signals coming from the ADC and going to the DAC. However, this doesn't mean that 

fixed point math will be carried out as quickly as the floating point operations; it depends on the 

internal architecture. For instance, the SHARC DSPs are optimized for both floating point and 

fixed point operations, and executes them with equal efficiency. For this reason, the SHARC 

devices are often referred to as "32-bit DSPs," rather than just "Floating Point." 

Figure 28-6 illustrates the primary trade-offs between fixed and floating point DSPs. In Chapter 

3 we stressed that fixed point arithmetic is much 
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