
Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

EC3492 – Digital Signal Processing IV Semester

Department of Electronics and Communication Engineering 1

UNIT – IV FINITE WORD LENGTH EFFECTS

1. Represent the following numbers in floating point format with five bits in mantissa

and three bits in exponent. (8) [M/J – 13 R08]

a) 710

b) 0.2510

c) 110

d) 0.2510

 Solution:

a) 710

()

b) 0.2510

()

c) 110

 Assume sign magnitude representation for negative number

()

d) 0.2510

Assume sign magnitude representation for negative number

 ()

2. Distinguish between fixed point and floating point arithmetic. (4)

 [N/D – 11 R08] [M/J – 12 R08]

S.No. Fixed Point Arithmetic Floating Point Arithmetic

1 Fast Operation Slow Operation

2 Relatively economical
More expensive because of costlier

hardware

3 Small dynamic range Increased dynamic range

4
Round off error occur only for

additions

Round off errors can occur with both

additions and multiplication

5 Overflow occur in addition Overflow does not arise

6 Used in small computers Used in general purpose computers

Downloaded from EnggTree.com

EnggTree.com

EC3492 – Digital Signal Processing IV Semester

Department of Electronics and Communication Engineering 2

3. Discuss the various common methods of quantization. (8) [N/D – 13 R08]

 The common methods of quantization are

i. Truncation

ii. Rounding

 Truncation:

Truncation is process of reducing the size of binary number by discarding all bits

less significant than the least significant bit that is retained. In the truncation of a binary

number to b bits, all the less significant bits beyond b
th

 bit are discarded.

Examples:

i. The 8 bit binary number 0.00110011 may be truncated to 4 bits as 0.0011

ii. The 8 bit binary number 1.01001001 may be truncated to 4 bits as 1.0100

When a number is truncated, the signal value is approximated by the highest quantization

level that is not greater than the signal.

Rounding:

Rounding is the process of reducing the size of a binary number to finite word

size of b bits such that, the rounded b bit number is closest to the original unquantized

number.

Examples:

i. The binary number 0.11010 may be rounded to three bits as either 0.110 or

0.111.

ii. If the binary number 0.110111111 is rounded to 8 bits then the result may be

0.11011111 or 0.1110000.

 Rounding up or down will have negligible effect on accuracy of computation.

4. Explain the errors due to rounding and truncation. [N/D – 10 R08]

Explain the problems due to round off and truncation in converting a decimal

fraction. (8) [N/D – 10 R08]

Compare the truncation and rounding errors using fixed point and floating point

representation. (8) [M/J – 14 R08]

 Rounding or truncation introduces an error whose magnitude depends on the number

of bits truncated or rounded-off. Also, the characteristics of the error depend on the form

of binary number representation.

Consider a number x, whose original length is ‘L’ bits, as shown below.

Downloaded from EnggTree.com

EnggTree.com

EC3492 – Digital Signal Processing IV Semester

Department of Electronics and Communication Engineering 3

 Sign 0 1 2 L–1

 bit

 x = X X X X …. X

Let this number be quantized (truncated or rounded) to ‘B’ bits, as shown below.

 Sign 0 1 2 B–1

 bit

 Q(x) = X X X X … X

The quantized number is represented as Q(x). Here B < L.

i) Truncation error for sign magnitude representation:

 When the number x is positive, truncation results in reducing the magnitude of

the number. Thus the truncation error is negative and the range is given by,

 () (1)

 The largest error occurs when all the discarded bits are one’s.

 When the number x is negative, truncation results in reducing the magnitude

of the number. Because of the negative number the resulting will be greater than the

original number. Thus the truncation error is positive and the range is given by,

 (
) (2)

 The overall range for the sign magnitude representation is

 () (
) (3)

ii) Truncation error for two’s complement representation:

 When the number x is positive, truncation results in reducing the magnitude of

the number as in the case of sign magnitude numbers. Thus the truncation error is

negative. When the number x is negative, truncation results in smaller number. Thus

the truncation error is negative. The complete range of truncation error for two’s

complement is given by,

 () (4)

iii) Round-off error for sign magnitude and two’s complement representation:

 The rounding of a binary number involves only the magnitude of the number

and is independent of the type of fixed point binary representation. The error due to

rounding may be either positive or negative. Its range is

()

()

 (5)

Downloaded from EnggTree.com

EnggTree.com

EC3492 – Digital Signal Processing IV Semester

Department of Electronics and Communication Engineering 4

x(n) xq(n)

In most of the applications, infinite precision is assumed i.e.,

Therefore,

i) Truncation error for sign magnitude representation

ii) Truncation error for two’s complement representation

iii) Rounding error for sign magnitude and two’s complement representation

5. What is quantization noise? Derive the expression for quantization noise power.

 (12) [M/J – 12 R08]

What is meant by quantization? Derive the expression for the quantization error.

 [N/D – 12 R08]

Explain the quantization noise and derive the expression for finding quantization

noise power. (8) [N/D – 10 R08]

QUANTIZATION:

In DSP, the continuous time input signals are converted into digital using ADC. The

process of converting analog signal to digital signal is given below.

 The signal () is sampled at regular intervals , where to

create a sequence (). This is done by a sampler. The numeric equivalent of each

sample () is expressed by a finite number of bits giving the sequence (). The

1

Sampler Quantizer x(t)

Downloaded from EnggTree.com

EnggTree.com

EC3492 – Digital Signal Processing IV Semester

Department of Electronics and Communication Engineering 5

difference signal () () () is called quantization noise or A/D conversion

noise.

The common methods of quantization are

1) Truncation

2) Rounding

EXPRESSION FOR QUANTIZATION NOISE POWER:

Input quantization error:

The quantization error is given by

 () () ()

 where

 () = sampled quantization value

 () = sampled unquantized value

 Depending on the way in which () is quantized different distributions of

quantization noise may be obtained . If rounding is used, the error signal satisfies the

relation

 ()

 The other type of quantization can be obtained by truncation. In truncation the signal

is represented by the highest level that is not greater than the signal . In two’s

complement truncation, the error () is always negative and satisfies the inequality,

 ()

 Steady state input noise power:

The quantization error is commonly viewed as an additive noise signal, that is

 () () ()

The A/D converter output is the sum of the input signal () and the error signal ()

as shown below.

Downloaded from EnggTree.com

EnggTree.com

EC3492 – Digital Signal Processing IV Semester

Department of Electronics and Communication Engineering 6

If rounding is used for quantization error () () () is bounded by

 ()

.

The error () has the following properties:

1. The error sequence () is a sample sequence of a stationary random process.

2. The error sequence is uncorrelated with () and other signals in the system.

3. The error is a white noise process with uniform amplitude probability distribution

over the range of quantization error.

The variance of () is given by

 [()] [()]

 where [()] is the average of () and [()] is mean value of ()

For rounding

 ∫ () ()

 [

]

Therefore,

6. Derive the signal to quantization noise ratio of A/D converter. (6) [M/J – 14 R08]

The signal to quantization noise ratio of A/D converter is given by

SNR = 10 log[Px(n)/Pe(n)]

 = 10 log Px(n) – 10 log Pe(n)

 = 10 log Px(n) – 10 log

 = 10 log Px(n) + 10 log + 10 log 12

 = 10 log Px(n) + 20B log 2+ 10.8

 = 10 log Px(n) + 6.02B + 10.8

 SNR = 10 log Px(n) + 6B + 10.8

For every increase in B bits the signal to quantization noise ratio increases by 6 dB.

Downloaded from EnggTree.com

EnggTree.com

EC3492 – Digital Signal Processing IV Semester

Department of Electronics and Communication Engineering 7

7. How is the steady state output noise variance calculated? (8) [N/D – 10 R08]

 Steady state output noise variance (or) power:

 The quantized input to a digital system with impulse response () due to A/D

conversion noise can be represented as shown in figure.

Let () be the output noise due to quantization of the input. Then,

 () () ()

 ∑ () ()

The variance of any term in above sum in equal to ().

 The variance of the sum of independent random variable is the sum of their variances.

If the quantization errors are assumed to be independent at different sampling instances,

then the variance of the output is

 ()()

 ()
 ∑ ()

 To find the steady state variance, extend the limit k up to infinity. Then,

 ∑ ()

 Using Parseval’s theorem the steady state output noise variance due to the

quantization error is given by

 ∑ ()

∮ () ()

 where the closed contour of integration is around the unit circle | | in which case

only the poles that lie inside the unit circle are evaluated using the residue theorem.

Downloaded from EnggTree.com

EnggTree.com

EC3492 – Digital Signal Processing IV Semester

Department of Electronics and Communication Engineering 8

8. Determine the steady state output noise variance due to quantization of input, for

the first order filter () () (). (16)

Given () () ()

Taking z transform on both sides

 () () ()

 ()
 ()

 ()

 ()

∮ () ()

∮

∮

()()

 [

()()
 ()

()()
 (

)]

Assume a < 1

 [()

()()
|

]

9. Consider a second order IIR filter with ()

() ()
. Explain the

effect of quantization on pole locations of the system when realized in direct form

and in cascade form. Assume b = 3 bits. (10) [N/D – 11 R08]

Solution:

Given: ()

()()

Direct form:

 () can be written as,

Downloaded from EnggTree.com

EnggTree.com

EC3492 – Digital Signal Processing IV Semester

Department of Electronics and Communication Engineering 9

 ()

()

The poles are at and

Let us quantize the co-efficient by truncation.

()

→ ()

→ ()

→ ()

()

→ ()

→ ()

→ ()

Hence,

 ()

()

 ()

 ()

()()

 So, ̅̅̅ and ̅̅ ̅

 Thus the pole locations are shifted from 0.5, 0.45 to 0.695 and 0.18 respectively.

 Cascade Form:

 ()

()()

()

→ ()

→ ()

→ ()

()

→ ()

→ ()

→ ()

 Hence,

 ()

()()

 So, ̅̅̅ and ̅̅ ̅

 There is no change in first pole location and the second pole location is shifted from

0.45 to 0.375.

10. Explain coefficient quantization in IIR filter. (16) [N/D – 12 R08]

The filter coefficients are computed to infinite precision in theory. But, in digital

computation the filter coefficients are represented in binary and are stored in registers. If

b bit register is used, the filter coefficients must be rounded or truncated to b bits, which

produces an error. This error is known as coefficient quantization error.

Downloaded from EnggTree.com

EnggTree.com

EC3492 – Digital Signal Processing IV Semester

Department of Electronics and Communication Engineering 10

Due to quantization of coefficients, the frequency response of the filter may differ

appreciably from the desired response and sometimes the filter may actually fail to meet

the desired specifications. If the poles of desired filter are close to the unit circle, then

those of the filter with quantized coefficients may lie just outside the unit circle, leading

to instability.

Example:

Consider a second order IIR filter with ()

() ()
. Explain the effect

of quantization on pole locations of the system when realized in direct form and in

cascade form. Assume b = 3 bits.

Answer: Refer problem No: 9

11. Draw the product quantization noise model of second order IIR system. (8)

 [M/J – 13 R08]

Downloaded from EnggTree.com

EnggTree.com

EC3492 – Digital Signal Processing IV Semester

Department of Electronics and Communication Engineering 11

12. Determine the output round-off noise power for the system having transfer function

H(z) =

()()
 which is realized in cascade form. Assume word

length is 4 bits. (8)

Solution:

Given:

 ()

()()

∮ () ()

where

∮ () ()

 () is the transfer function seen by the error source ()

 ()

()()

 I = sum of residues at poles within the unit circle

∮

()()

()()

∮

()()

()()

()()

∮

()

()()

()()

The poles z = 0.5 and z = 0.4 are within unit circle.

0.5

z-1

z-1

x(n) y(n)

0.4

𝑒 (𝑛) 𝑒 (𝑛)

Downloaded from EnggTree.com

EnggTree.com

EC3492 – Digital Signal Processing IV Semester

Department of Electronics and Communication Engineering 12

 ()
()

()()

()()
|

 ()
()

()()

()()
|

 ()

()

 ()

()

 ()

∮ () ()

where

∮ () ()

 () is the transfer function seen by the error source ()

 ()

()

 I = sum of residues at poles within the unit circle

∮

()

()

∮

()

()

()

∮

()

()

 The pole z = 0.4 is within unit circle.

 ()

()

()
|

Downloaded from EnggTree.com

EnggTree.com

EC3492 – Digital Signal Processing IV Semester

Department of Electronics and Communication Engineering 13

 ()

 ()

 Therefore,

13. Determine the dead band of the system () () ()

 (). Assume 8 bits are used for signal representation. (8) [M/J – 13 R08]

Given: () () () ()

Assume

 () {

}

 () ()

 ()

 () () [()] () [()] ()

0 0 0

1 0 0

2

3

4

()

→ ()

→ ()

→ ()

()

→ ()

→ ()

→ ()

()

→ ()

→ ()

→ ()

()

→ ()

→ ()

→ ()

→ ()

→ ()

→ ()

Downloaded from EnggTree.com

EnggTree.com

EC3492 – Digital Signal Processing IV Semester

Department of Electronics and Communication Engineering 14

()

→ ()

→ ()

→ ()

14. Describe the quantization in floating point realization of IIR digital filters.

 (16) [N/D –13 R08]

Refer Page No: 7.37 in Digital Signal Processing by Ramesh Babu

15. Explain the finite word length effects in FIR digital filters. (8)[N/D – 13 R08]

 Explain the round off noise in direct form realization of a linear phase FIR filter

with relevant diagrams. (8) [A/M – 11 R08]

 Explain the effects of coefficient quantization in FIR filters.

 (8)[M/J – 14 R08] [A/M –11 R08]

Refer Page No: 7.41 in Digital Signal Processing by Ramesh Babu

16. Explain the following (8) [M/J – 12 R08]

a) Coefficient quantization error

b) Product quantization error

c) Signal scaling

d) Truncation and Rounding

a) Coefficient quantization error:

The filter coefficients are computed to infinite precision in theory. But, in

digital computation the filter coefficients are represented in binary and are stored in

registers. If b bit register is used, the filter coefficients must be rounded or truncated

to b bits, which produces an error. This error is known as coefficient quantization

error. Due to quantization of coefficients, the frequency response of the filter may

differ appreciably from the desired response and sometimes the filter may actually fail

to meet the desired specifications. If the poles of desired filter are close to the unit

circle, then those of the filter with quantized coefficients may lie just outside the unit

circle, leading to instability.

b) Product quantization error:

Product quantization errors arise at the output of a multiplier. Multiplication of

b bit data with b bit coefficient results in a product having 2b bits. Since b bit register

Downloaded from EnggTree.com

EnggTree.com

EC3492 – Digital Signal Processing IV Semester

Department of Electronics and Communication Engineering 15

is used, the multiplier output must be rounded or truncated to b bits, which produces

an error. This error is known as product quantization error.

c) Signal scaling:

 Saturation arithmetic eliminates limit cycles due to overflow, but it causes

undesirable signal distortion due to the nonlinearity of the clipper. In order to limit the

amount of non-linear distortion, it is important to scale the input signal (scaling factor

S0) and the unit sample response between the input and any internal summing nodes

in the system such that overflow become a rare event.

d) Truncation and Rounding:

Truncation:

Truncation is process of reducing the size of binary number by discarding all

bits less significant than the least significant bit that is retained. In the truncation of a

binary number to b bits all the less significant bits beyond b
th

 bit are discarded.

 Rounding:

 Rounding is the process of reducing the size of a binary number to finite word

size of b bits such that, the rounded b bit number is closest to the original unquantized

number.

17. a) How is signal scaling used to prevent overflow limit cycle in the digital filter

implementation? Explain with an example. (8) (N/D 11 R08) (M/J 13 R08)

Signal Scaling:

 Saturation arithmetic eliminates limit cycles due to overflow, but it causes undesirable

signal distortion due to the nonlinearity of the clipper. In order to limit the amount of

non-linear distortion, it is important to scale the input signal and the unit sample response

between the input and any internal summing nodes in the system such that overflow

become a rare event.

Downloaded from EnggTree.com

EnggTree.com

EC3492 – Digital Signal Processing IV Semester

Department of Electronics and Communication Engineering 16

Consider a second order IIR filter shown in figure. A scale factor is

introduced between the input () and the adder 1, to prevent overflow at the output

adder 1.

Now the overall input-output transfer function is

 ()

 ()
 ()

 ()

From the figure,

 ()
 ()

 ()

 ()

If the instantaneous energy in the output sequence () is less than the finite

energy in the input sequence then, there will not be any overflow.

 ()
 ()

 ()
 () ()

 where,

 ∮ () ()

 ∮

 () ()

where

∮

 () ()

Downloaded from EnggTree.com

EnggTree.com

EC3492 – Digital Signal Processing IV Semester

Department of Electronics and Communication Engineering 17

18. Describe the effects of quantization in IIR filter. Consider a first order filter with

difference equation () () () Assume that the data register

length is three bits plus a sign bit. The input x(n)=0.875δ(n). Explain the limit

cycle oscillations in the above filter, if quantization is performed by means of

rounding and signed magnitude representation. (16)

 Solution:

 Given: () () ()

 () ()

 () {

}

 ()

 ()

 () () [()] ()

0

1

2

3

4

()

→ ()

→ ()

→ ()

()

→ ()

→ ()

→ ()

()

→ ()

→ ()

→ ()

()

→ ()

→ ()

→ ()

Downloaded from EnggTree.com

EnggTree.com

EC3492 – Digital Signal Processing IV Semester

Department of Electronics and Communication Engineering 18

19. Consider all pole second order IIR digital filter described by difference equation

 () () () () Assuming 8-bits to represent a

pole, determine the dead band region governing the limit cycle. (8)

Given: () () () ()

Assume

 () {

}

 () ()

 ()

 () () [()] () [(
)]

 ()

0 0 0

1 0 0

2

3

4

()

→ ()

→ ()

→ ()

()

→ ()

→ ()

→ ()

()

→ ()

→ ()

→ ()

()

→ ()

→ ()

→ ()

→ ()

→ ()

→ ()

Downloaded from EnggTree.com

EnggTree.com

EC3492 – Digital Signal Processing IV Semester

Department of Electronics and Communication Engineering 19

()

→ ()

→ ()

→ ()

Downloaded from EnggTree.com

EnggTree.com

EC 3492 – DIGITAL SIGNAL PROCESSING

UNIT V – DSP APPLICATIONS

1. A signal x(n) is given by () (8)

a) Obtain the decimated signal with a factor of 2.

b) Obtain the interpolated signal with a factor of 2.

Solution:

 Given: ()

a) Decimation with a factor of 2:

 ()

b) Interpolation with a factor of 2:

 ()

2. How does the sampling rate increase by an integer factor I and derive the input-

 output relationship in both time and frequency domains.

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

3. Explain sampling rate reduction by an integer factor ‘D’. Derive the relation

between input and output frequency. (8)

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

4. For the multirate system shown in figure, find the relation between x(n) and y(n).

 (N/D 11 R08)

SOLUTION:

 () ()

 () () () ()

 () () () () () ()

 () () () ()

 () ()

 () () () () ()

 () () () () ()

 () () ()

 () () () () () ()

Therefore,

 () ()

𝑣(𝑛)

𝑤𝑢(𝑛) 𝑤(𝑛)

𝑣𝑢(𝑛)

𝑣𝑢(𝑛)

Downloaded from EnggTree.com

EnggTree.com

5. Explain sampling rate conversion by a rational factor and derive input-output

relation in both time and frequency domain. (10)

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

Downloaded from EnggTree.com

EnggTree.com

UNIT V DIGITAL SIGNAL PROCESSOR

INTRODUCTION

A digital signal processor (DSP) is a specialized microprocessor (or a SIP block), with

its architecture optimized for the operational needs of digital signal processing.

The goal of DSP is usually to measure, filter or compress continuous real-world analog signals.

Most general -purpose microprocessors can also execute digital signal processing algorithms

successfully , but may not be able to keep up with such processing continuously in real-time.

Also , dedicated DSPs usually have better power efficiency , thus they are more suitable in

portable devices such as mobile phones because of power consumption constraints. DSPs often

use special memory architectures that are able to fetch multiple data or instructions at the same

time.

Circular Buffering

Digital Signal Processors are designed to quickly carry out FIR filters and similar techniques .

To understand the hardware , we must first understand the algorithms . In this section we will

make a detailed list of the steps needed to implement an FIR filter. In the next section we will

see how DSPs are designed to perform these steps as efficiently as possible.

To start, we need to distinguish between off-line processing and real-time processing . In off-

line processing, the entire input signal resides in the computer at the same time. For example, a

geophysicist might use a seismometer to record the ground movement during an earthquake .

After the shaking is over, the information may be read into a computer and analyzed in some

way. Another example of off-line processing is medical imaging, such as computed tomography

and MRI . The data set is acquired while the patient is inside the machine , but the image

reconstruction may be delayed until a later time. The key point is that all of the information is

simultaneously available to the processing program. This is common in scientific research and

engineering , but not in consumer products . Off-line processing is the realm of personal

computers and mainframes.

In real-time processing , the output signal is produced at the same time that the input signal is

being acquired. For example, this is needed in telephone communication, hearing aids, and radar

. These applications must have the information immediately available , although it can be

delayed by a short amount . For instance , a 10 millisecond delay in a telephone call cannot be

detected by the speaker or listener. Likewise, it makes no difference if a radar signal is delayed

by a few seconds before being displayed to the operator. Real-time applications input a sample,

perform the algorithm , and output a sample , over-and-over . Alternatively , they may input a

group

Downloaded from EnggTree.com

EnggTree.com

of samples, perform the algorithm, and output a group of samples. This is the world of Digital

Signal Processors.

Now look at Fig. 28-2 and imagine that this is an FIR filter being implemented in real-time. To

calculate the output sample, we must have access to a certain number of the most recent samples

from the input. For example, suppose we use eight coefficients in this filter, a0, a1, … a7. This

means we must know the value of the eight most recent samples from the input signal, x[n], x[n-

1], … x[n-7]. These eight samples must be stored in memory and continually updated as new

samples are acquired. What is the best way to manage these stored samples? The answer

is circular buffering.

Downloaded from EnggTree.com

EnggTree.com

Figure 28-3 illustrates an eight sample circular buffer. We have placed this circular buffer in

eight consecutive memory locations, 20041 to 20048. Figure (a) shows how the eight samples

from the input might be stored at one particular instant in time, while (b) shows the changes after

the next sample is acquired. The idea of circular buffering is that the end of this linear array is

connected to its beginning; memory location 20041 is viewed as being next to 20048, just as

20044 is next to 20045. You keep track of the array by a pointer (a variable whose value is

an address) that indicates where the most recent sample resides.

For instance, in (a) the pointer contains the address 20044, while in (b) it contains 20045. When

a new sample is acquired, it replaces the oldest sample in the array, and the pointer is moved one

address ahead. Circular buffers are efficient because only one value needs to be changed when a

new sample is acquired.

Four parameters are needed to manage a circular buffer. First, there must be a pointer that

indicates the start of the circular buffer in memory (in this example, 20041). Second, there must

be a pointer indicating the end of the array (e.g., 20048), or a variable that holds its length (e.g.,

8). Third, the step size of the memory addressing must be specified. In Fig. 28-3 the step size

is one, for example: address 20043 contains one sample, address 20044 contains the next sample,

and so on. This is frequently not the case. For instance, the addressing may refer to bytes, and

each sample may require two or four bytes to hold its value. In these cases, the step size would

need to be two or four, respectively.

These three values define the size and configuration of the circular buffer, and will not change

during the program operation. The fourth value, the pointer to the most recent sample, must be

Downloaded from EnggTree.com

EnggTree.com

modified as each new sample is acquired. In other words, there must be program logic that

controls how this fourth value is updated based on the value of the first three values. While this

logic is quite simple, it must be very fast. This is the whole point of this discussion; DSPs should

be optimized at managing circular buffers to achieve the highest possible execution speed.

As an aside, circular buffering is also useful in off-line processing. Consider a program where

both the input and the output signals are completely contained in memory. Circular buffering

isn't needed for a convolution calculation, because every sample can be immediately accessed.

However, many algorithms are implemented in stages, with an intermediate signal being created

between each stage. For instance, a recursive filter carried out as a series of biquads operates in

this way. The brute force method is to store the entire length of each intermediate signal in

memory. Circular buffering provides another option: store only those intermediate samples

needed for the calculation at hand. This reduces the required amount of memory, at the expense

of a more complicated algorithm. The important idea is that circular buffers are useful for off-

line processing, but critical for real-time applications.

Now we can look at the steps needed to implement an FIR filter using circular buffers for both

the input signal and the coefficients. This list may seem trivial and overexamined- it's not! The

efficient handling of these individual tasks is what separates a DSP from a traditional

microprocessor. For each new sample, all the following steps need to be taken:

The goal is to make these steps execute quickly. Since steps 6-12 will be repeated many times

(once for each coefficient in the filter), special attention must be given to these operations.

Traditional microprocessors must generally carry out these 14 steps in serial (one after another),

while DSPs are designed to perform them in parallel. In some cases, all of the operations within

the loop (steps 6-12) can be completed in a single clock cycle. Let's look at the internal

architecture that allows this magnificent performance.

Downloaded from EnggTree.com

EnggTree.com

ARCHITECTURE OF THE DIGITAL SIGNAL PROCESSOR

One of the biggest bottlenecks in executing DSP algorithms is transferring information to and

from memory . This includes data , such as samples from the input signal and the filter

coefficients , as well as program instructions , the binary codes that go into the program

sequencer . For example , suppose we need to multiply two numbers that reside somewhere in

memory . To do this , we must fetch three binary values from memory , the numbers to be

multiplied, plus the program instruction describing what to do.

Figure 28-4a shows how this seemingly simple task is done in a traditional microprocessor . This

is often called a Von Neumann architecture , after the brilliant American mathematician John

Von Neumann (1903 -1957). Von Neumann guided the mathematics of many important

discoveries of the early twentieth century . His many achievements include : developing the

concept of a stored program computer, formalizing the mathematics of quantum mechanics, and

work on the atomic bomb. If it was new and exciting, Von Neumann was there!

As shown in (a), a Von Neumann architecture contains a single memory and a single bus for

transferring data into and out of the central processing unit (CPU). Multiplying two numbers

requires at least three clock cycles, one to transfer each of the three numbers over the bus from

the memory to the CPU. We don't count the time to transfer the result back to memory, because

we assume that it remains in the CPU for additional manipulation (such as the sum of products in

an FIR filter). The Von Neumann design is quite satisfactory when you are content to execute all

of the required tasks in serial. In fact, most computers today are of the Von Neumann design. We

only need other architectures when very fast processing is required, and we are willing to pay the

price of increased complexity.

This leads us to the Harvard architecture , shown in (b). This is named for the work done at

Harvard University in the 1940s under the leadership of Howard Aiken (1900-1973). As shown

in this illustration , Aiken insisted on separate memories for data and program instructions , with

separate buses for each. Since the buses operate independently, program instructions and data can

be fetched at the same time, improving the speed over the single bus design . Most present day

DSPs use this dual bus architecture.

Figure (c) illustrates the next level of sophistication, the Super Harvard Architecture. This term

was coined by Analog Devices to describe the internal operation of their ADSP-2106x and new

ADSP -211 xx families of Digital Signal Processors . These are called SHARC ® DSPs , a

contraction of the longer term, Super Harvard ARChitecture . The idea is to build upon the

Harvard architecture by adding features to improve the throughput. While the SHARC DSPs are

optimized in dozens of ways , two areas are important enough to be included in Fig. 28-4c: an

 instruction cache, and an I/O controller.

Downloaded from EnggTree.com

EnggTree.com

First , let's look at how the instruction cache improves the performance of the Harvard

architecture . A handicap of the basic Harvard design is that the data memory bus is busier than

the program memory bus. When two numbers are multiplied , two binary values (the numbers)

must be passed over the data memory bus, while only one binary value (the program instruction)

is passed over the program memory bus. To improve upon this situation, we start by relocating

part of the "data" to program memory . For instance , we might place the filter coefficients in

program memory, while keeping the input signal in data memory. (This relocated data is called "

secondary data" in the illustration). At first glance, this doesn't seem to help the situation; now

we must transfer one value over the data memory bus (the input signal sample), but two values

over the program memory bus (the program instruction and the coefficient). In fact, if we were

executing random instructions, this situation would be no better at all.

However , DSP algorithms generally spend most of their execution time in loops, such as

instructions 6-12 of Table 28-1. This means that the same set of program instructions will

continually pass from program memory to the CPU. The Super Harvard architecture takes

advantage of this situation by including an instruction cache in the CPU. This is a small

memory that contains about 32 of the most recent program instructions. The first time through a

loop, the program instructions must be passed over the program memory bus. This results in

slower operation because of the conflict with the coefficients that must also be fetched along this

path. However, on additional executions of the loop, the program instructions can be pulled from

the instruction cache. This means that all of the memory to CPU information transfers can be

accomplished in a single cycle: the sample from the input signal comes over the data memory

bus, the coefficient comes over the program memory bus, and the program instruction comes

from the instruction cache. In the jargon of the field, this efficient transfer of data is called a high

memory-access bandwidth.

Figure 28-5 presents a more detailed view of the SHARC architecture , showing the I/O

controller connected to data memory . This is how the signals enter and exit the system . For

instance , the SHARC DSPs provides both serial and parallel communications ports. These are

extremely high speed connections . For example , at a 40 MHz clock speed, there are two serial

ports that operate at 40 Mbits /second each , while six parallel ports each provide a 40

Mbytes/second data transfer. When all six parallel ports are used together, the data transfer rate

is an incredible 240 Mbytes/second.

Downloaded from EnggTree.com

EnggTree.com

This is fast enough to transfer the entire text of this book in only 2 milliseconds! Just as

important, dedicated hardware allows these data streams to be transferred directly into memory

(Direct Memory Access, or DMA), without having to pass through the CPU's registers. In other

words, tasks 1 & 14 on our list happen independently and simultaneously with the other tasks; no

cycles are stolen from the CPU. The main buses (program memory bus and data memory bus)

are also accessible from outside the chip, providing an additional interface to off-chip memory

and peripherals. This allows the SHARC DSPs to use a four Gigaword (16 Gbyte) memory,

accessible at 40 Mwords/second (160 Mbytes/second), for 32 bit data. Wow!

This type of high speed I/O is a key characteristic of DSPs. The overriding goal is to move the

data in, perform the math, and move the data out before the next sample is available. Everything

else is secondary. Some DSPs have on-board analog-to-digital and digital-to-analog converters, a

feature called mixed signal. However, all DSPs can interface with external converters through

serial or parallel ports.

Now let's look inside the CPU. At the top of the diagram are two blocks labeled Data Address

Generator (DAG), one for each of the two memories. These control the addresses sent to the

program and data memories, specifying where the information is to be read from or written to. In

simpler microprocessors this task is handled as an inherent part of the program sequencer, and is

quite transparent to the programmer. However, DSPs are designed to operate with circular

buffers, and benefit from the extra hardware to manage them efficiently. This avoids needing to

use precious CPU clock cycles to keep track of how the data are stored. For instance, in the

Downloaded from EnggTree.com

EnggTree.com

SHARC DSPs, each of the two DAGs can control eight circular buffers. This means that each

DAG holds 32 variables (4 per buffer), plus the required logic.

Why so many circular buffers? Some DSP algorithms are best carried out in stages. For instance,

IIR filters are more stable if implemented as a cascade of biquads (a stage containing two poles

and up to two zeros). Multiple stages require multiple circular buffers for the fastest operation.

The DAGs in the SHARC DSPs are also designed to efficiently carry out the Fast Fourier

transform. In this mode, the DAGs are configured to generate bit-reversed addresses into the

circular buffers, a necessary part of the FFT algorithm. In addition, an abundance of circular

buffers greatly simplifies DSP code generation- both for the human programmer as well as high-

level language compilers, such as C.

The data register section of the CPU is used in the same way as in traditional microprocessors. In

the ADSP-2106x SHARC DSPs, there are 16 general purpose registers of 40 bits each. These

can hold intermediate calculations, prepare data for the math processor, serve as a buffer for data

transfer, hold flags for program control, and so on. If needed, these registers can also be used to

control loops and counters; however, the SHARC DSPs have extra hardware registers to carry

out many of these functions.

The math processing is broken into three sections, a multiplier, an arithmetic logic unit (ALU),

and a barrel shifter. The multiplier takes the values from two registers, multiplies them, and

places the result into another register. The ALU performs addition, subtraction, absolute value,

logical operations (AND, OR, XOR, NOT), conversion between fixed and floating point formats,

and similar functions. Elementary binary operations are carried out by the barrel shifter, such as

shifting, rotating, extracting and depositing segments, and so on. A powerful feature of the

SHARC family is that the multiplier and the ALU can be accessed in parallel. In a single clock

cycle, data from registers 0-7 can be passed to the multiplier, data from registers 8-15 can be

passed to the ALU, and the two results returned to any of the 16 registers.

There are also many important features of the SHARC family architecture that aren't shown in

this simplified illustration. For instance, an 80 bit accumulator is built into the multiplier to

reduce the round-off error associated with multiple fixed-point math operations. Another

interesting

Downloaded from EnggTree.com

EnggTree.com

feature is the use of shadow registers for all the CPU's key registers. These are duplicate

registers that can be switched with their counterparts in a single clock cycle. They are used

for fast context switching, the ability to handle interrupts quickly. When an interrupt occurs in

traditional microprocessors, all the internal data must be saved before the interrupt can be

handled. This usually involves pushing all of the occupied registers onto the stack, one at a time.

In comparison, an interrupt in the SHARC family is handled by moving the internal data into the

shadow registers in a single clock cycle. When the interrupt routine is completed, the registers

are just as quickly restored. This feature allows step 4 on our list (managing the sample-ready

interrupt) to be handled very quickly and efficiently.

Now we come to the critical performance of the architecture, how many of the operations within

the loop (steps 6-12 of Table 28-1) can be carried out at the same time. Because of its highly

parallel nature, the SHARC DSP can simultaneously carry out all of these tasks. Specifically,

within a single clock cycle, it can perform a multiply (step 11), an addition (step 12), two data

moves (steps 7 and 9), update two circular buffer pointers (steps 8 and 10), and control the loop

(step 6). There will be extra clock cycles associated with beginning and ending the loop (steps 3,

4, 5 and 13, plus moving initial values into place); however, these tasks are also handled very

efficiently. If the loop is executed more than a few times, this overhead will be negligible. As an

example, suppose you write an efficient FIR filter program using 100 coefficients. You can

Downloaded from EnggTree.com

EnggTree.com

expect it to require about 105 to 110 clock cycles per sample to execute (i.e., 100 coefficient

loops plus overhead). This is very impressive; a traditional microprocessor requires many

thousands of clock cycles for this algorithm.

FIXED VERSUS FLOATING POINT

Digital Signal Processing can be divided into two categories, fixed point and floating point.

These refer to the format used to store and manipulate numbers within the devices.

Fixed point DSPs usually represent each number with a minimum of 16 bits, although a different

length can be used. For instance, Motorola manufactures a family of fixed point DSPs that use 24

bits. There are four common ways that these 2
16

 = 65536 possible bit patterns can represent a

number.

In unsigned integer, the stored number can take on any integer value from 0 to 65,535.

Similarly, signed integer uses two's complement to make the range include negative numbers,

from -32,768 to 32,767. With unsigned fraction notation, the 65,536 levels are spread uniformly

between 0 and 1. Lastly, the signed fraction format allows negative numbers, equally spaced

between -1 and 1.

In comparison, floating point DSPs typically use a minimum of 32 bits to store each value. This

results in many more bit patterns than for fixed point, 2
32

 = 4,294,967,296 to be exact. A key

feature of floating point notation is that the represented numbers are not uniformly spaced. In the

most common format (ANSI/IEEE Std. 754-1985), the largest and smallest numbers are

±3.4×10
38

 and �1.2�10
-38

, respectively.

The represented values are unequally spaced between these two extremes, such that the gap

between any two numbers is about ten-million times smaller than the value of the numbers. This

is important because it places large gaps between large numbers, but small gaps between small

numbers. Floating point notation is discussed in more detail in Chapter 4.

All floating point DSPs can also handle fixed point numbers, a necessity to implement counters,

loops, and signals coming from the ADC and going to the DAC. However, this doesn't mean that

fixed point math will be carried out as quickly as the floating point operations; it depends on the

internal architecture. For instance, the SHARC DSPs are optimized for both floating point and

fixed point operations, and executes them with equal efficiency. For this reason, the SHARC

devices are often referred to as "32-bit DSPs," rather than just "Floating Point."

Figure 28-6 illustrates the primary trade-offs between fixed and floating point DSPs. In Chapter

3 we stressed that fixed point arithmetic is much

Downloaded from EnggTree.com

EnggTree.com

