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EC3354 SIGNALSANDSYSTEMS

OBJECTIVES:
e To understand the basic properties of signal &systems
e To know the methods of characterization of LTI systems in timedomain
e To analyze continuous time signals and system in the Fourier and Laplacedomain
o To analyze discrete time signals and system in the Fourier and Z transformdomain

UNITI CLASSIFICATION OF SIGNALSANDSYSTEMS

Standard signals- Step, Ramp, Pulse, Impulse, Real and complex exponentials and
Sinusoids_ Classification of signals — Continuous time (CT) and Discrete Time (DT)
signals, Periodic & Aperiodic signals, Deterministic & Random signals, Energy &
Power signals - Classification of systems- CT systems and DT systems- — Linear &
Nonlinear, Time-variant & Time-invariant, Causal & Non-causal, Stable & Unstable.

UNITII ANALYSIS OF CONTINUOUSTIMESIGNALS
Fourier series for periodic signals - Fourier Transform — properties- Laplace
Transforms and properties

UNITII LINEAR TIME INVARIANT CONTINUOUSTIMESYSTEMS
Impulse response - convolution integrals- Differential Equation- Fourier and Laplace
transforms in Analysis of CT systems - Systems connected in series / parallel.

UNITIV ANALYSIS OF DISCRETETIMESIGNALS
Baseband signal Sampling — Fourier Transform of discrete time signals (DTFT) —
Properties of DTFT- Z Transform &Properties

UNITV LINEAR TIME INVARIANT-DISCRETETIMESYSTEMS

Impulse response — Difference equations-Convolution sum- Discrete Fourier
Transform and Z Transform Analysis of Recursive & Non-Recursive systems-DT
systems connected in series and parallel.
TOTAL: 60
PERIODS
OUTCOMES:
At the end of the course, the student should be able to:
e To be able to determine if a given system islinear/causal/stable
o Capable of determining the frequency components present in a deterministicsignal
o Capable of characterizing LTI systems in the time domain and frequencydomain
e To be able to compute the output of an LTI system in the time and frequencydomains

TEXT BOOK:
1. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, “Signals and Systems”, Pearson,
2015.(Unit 1- V)

REFERENCES
1. B. P. Lathi, “Principles of Linear Systems and Signals”, Second Edition, Oxford,2009.
2. R.E.Zeimer, W.H.Tranter and R.D.Fannin, “Signals & Systems - Continuous
and Discrete”, Pearson,2007.
3. John Alan Stuller, “An Introduction to Signals and Systems”, Thomson,2007.
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CLASSIFICATION OF SIGNALS AND SYSTEMS

1.1  INTRODUCTION:

A signal, as stated before is a function of one or more independent variables. A signal
is a quantitative description of a physical phenomenon, event or process. More precisely, a signal
is a function, usually of one variable in time. However, in general, signals can be functions of
more than one variable, e.g., image signals. Signals are functions of one or more variables.

Systems respond to an input signal by producing an output signal .
Examples of signals include:
1. A voltage signal: voltage across two points varying as a function oftime.
2. A force pattern: force varying as a function of 2-dimensionalspace.
3. A photograph: color and intensity as a function of 2-dimensionalspace.
4. A video signal: color and intensity as a function of 2-dimensional space andtime.

A continuous-time signal is a quantity of interest that depends on an independent
variable, where we usually think of the independent variable as time. Two examples are the
voltage at a particular node in an electrical circuit and the room temperature at a particular spot,
both as functions oftime.

A discrete-time signal is a sequence of values of interest, where the integer index can be
thought of as a time index, and the values in the sequence represent some physical quantity of
interest.

A signal was defined as a mapping from a set of the independent variable (domain) to the
set of the dependent variable (co-domain). A system is also a mapping, but across signals, or
across mappings. That is, the domain set and the co-domain set for a system are both sets of
signals, and corresponding to each signal in the domain set, there exists a unique signal in the co-
domain set.

System description

The system description specifies the transformation of the input signal to the output
signal. In certain cases, a system has a closed form description. E.g. the continuous-time system
with description y (t) = x(t) + x(t-1); where x(t) is the input signal and y(t) is the output signal.

1.2 Continuous-time and discrete-timesystems
e Physically, a system is an interconnection of components, devices, etc., such as a
computer or an aircraft or a powerplant.
e Conceptually, a system can be viewed as a black box which takes in an input signal x(t)
(or x[n]) and as a result generates an output signal y(t) (or(y[n]).

e A system is continuous-time (discrete-time) when its I/O signals are continuous-time
(discrete-time).

1.3 ElementarySignals:

The elementary signals are used for analysis of systems. Such signals are,
Step

Impulse

Ramp

Exponential

Sinusoidal
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1.3.1

1.3.2

1.3.3

1.34

1.3.5
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Unit stepsignal:

Unit Step Sequence: The unit step signal has amplitude of 1 for positive value and
amplitude of 0 for negative value of independentvariable.

It have two different parameter such as CT unit step signal u(t) and DT unit step signal
u(n).
The mathematical representation of CT unit step signal u(t) is givenby,

RampSignal:
The amplitude of every sample is linearly increased with the positive value of
independentvariable.

Mathematical representation of CT unit ramp signal is givenby,
The Ramp function r(t)

r(t)=t-u(t)

v

Unit impulsefunction:

Amplitude of unit impulse approaches 1 as the width approaches zero and it has zero
value at all othervalues.

The mathematical representation of unit impulse signal for CT is givenby,

S(t)— 0.1 20
J- ()(f) ” (1. (>0
a — 4
=== lO. t<0 . »

It is used to determine the impulse response ofsystem.

Sinusoidalsignal:
e A continuous time sinusoidal signal is givenby,

% (t) =Acos (G t+al
Where, A— amplitude - phase angle inradians

Exponentialsignal:
e [t is exponentially growing or decayingsignal.

e Mathematical representation for CT exponential signalis,

;1“(1‘f} - Cf‘ﬂ__ where C,a € C
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14 Classification of CT and DTsignals:

e Periodic and non-periodicSignals
A periodic function is one which has been repeating an exact pattern for an infinite period of
time and will continue to repeat that exact pattern for aninfinite time. That is, a periodic function
x(t) is one for which
X (t) = x(t+nT)

for any integer value of n, where T >0 is the period of the function and — oo <t <oco . The signal
repeats itself every T sec. Of course, it also repeats every 2 T,3T and nT. Therefore, 2T, 3T and
nT are all periods of the function because the function repeats over any of those intervals. The
minimum positive interval over which a function repeats itself is called the fundamental period
TO.TO is the smallest value that satisfies the condition x ( t ) = x ( t+T0). The fundamental
frequency f 0 of a periodic function is the reciprocal of the fundamental period f 0=1/TO. It is
measured in Hertz and is the number of cycles (periods) per second. The fundamental angular
frequency @0 measured in radians per second is @0=2nT0= 2xnf0. A signal that does not satisfy
the condition in (2.1) is said to be a periodic or non-periodic.

e Deterministic and RandomSignals
Deterministic Signals are signals who are completely defined for any instant of time, there is no
uncertainty with respect to their value at any point of time. They can also be described
mathematically, at least approximately. Let a function be defined as

= L—|t], —=l<t <1
trilt) = i
{1, otheririse

trifs)
'y
|

A random signal is one whose values cannot be predicted exactly and cannot be described by
any exact mathematical function, they can be approximately described.

e Energy and PowerSignals:
Consider v(t) to be the voltage across a resistor R producing a current i(t). The
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instantaneous power p(t) per ohm iﬂq@@f‘ﬁ@eT@Wnergy E and average power P on a per-

ohm basis are
e(e)i(e) |
R

p(1) = (1)

For an arbitrary continuous-time signal x (t), the normalized energy content E of x(t) is
defined as,

E=[ i*(t)dt joules

1 .12
P=lim — [ : (o waus

The normalized average power P of x (t) is defined as,
- b
E = j |x(1)] dt
= =

Similarly, for a discrete-time signal x[n], the normalized energy content E of x[n] is defined as,

==}

E= Y |x[n][

n= -0

The normalized average power P of x[n] is defined as,

1.5 CT Systems and DTSystems:
A system is defined as a physical device which contains set of elements or functional
blocks and that generates a response or output signal for a given input.

1.6  Classification ofsystem:

The systems are classified as,

Static & dynamicsystem

Time invariant and variantsystem
Linear and non linearsystem
Causal and non causalsystem
Stable and unstablesystem

1.6.1 Static and dynamic system:
e Static system is said to be a memorylesssystem.
e The output does not depend the past or futureinput.
e [t only depends the present input for anoutput.
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e Dynamic system is said to be as system withmemory.
e [ts output depend the past values of input for anoutput.
Eg. Y(n) =x(n) +x(n-1)
e This static and dynamic systems are otherwise called as memoryless and system with
memory.

1.6.2 Systems with and withoutmemory:

e A system is called memory less if the output at any time t (or n) depends only on the
input at time t (or n); in other words, independent of the input at times before of after t
(or n). Examples of memory lesssystems:

]

y(t) = Rz(t) o  y[n] = (2z[n] — z*[n])°

Examples of systems with memory:

y(t) = %/_ x(T)dT or yn|=zn-—1]

o0

1.6.3 Time invariant and time variantsystem:

e [fthe time shifts in the input signals results in corresponding time shift in the output,
then the system is called as time invariant.

e The input and output characteristics do not change withtime.
e For a continuous timesystem,
flx(tl — t2)] = y(tl — t2)
e For a discrete time system,
F[x(n - k)] = y(n - k)

e [fthe above relation does not satisfy, then the system is said to be a time variantsystem.
e A system is called time-invariant if the way it responds to inputs does not change over

time:
z(t) — y(t) = z(t —to) = y(t — to), for any £q
z|n| — y[n] = x|n — ng| = yln — ng), for any ny.

Examples of time-invariant systems:
e The RC circuit considered earlier provided the values of R or C areconstant.

y[n] = z[n — 1],

Examples of time-varying systems:

e The RC circuit considered earlier if the values of R or C change overtime.
y(t) = x(2t) since
."l-'(’-) — I(QI) but .‘1'(’. == !-”) — l(2! — ’,“).
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1.6.4

1.6.5
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Most physical systems are slowly time-varying due to aging, etc. Hence, they can be
considered time-invariant for certain time periods in which its behavior does not
changesignificantly.

Linear and non linearsystem:
A system is said to be linear if it satisfies the superpositionprinciple.

Superposition principle states that the response to a weighted sum of input signal be
equal to the weighted sum of the output corresponding to each of the individualinput
signal
The continuous system is linearif,

FlalxI(t) + a2x2(t)] = alyl(t) + a2y2(t)
The discrete system is linearif,

Flalx1(n) + a2x2(n)] = alyl(n) + a2y2(n)

Otherwise the system is non linear.

A system is called linear if its I/O behavior satisfies the additivity and homogeneity
properties:

z1(t) = yi(t) (z1(t) + z2(t)) = (1(2) + y=2(t))

ro(t) = ya(t) (axy (L)) — (ay (1))

for any complex constant a.

Equivalently, a system is called linear if its I/O behavior satisfies the superposition
property:

z1(t) = yu(t) 5 (azy(t) + bxza(t)) = (ayy (t) + bya(t))

wa(t) = yal(l)

where any complex constants a and b.

Causal and non causalsystem:
A causal system is one whose output depends upon the present and past inputvalues.

If the system depends the future input values, the system is said to be non causal.
Eg. for causalsystem.

Y(t) = x(t) + x(t- 1)
Y(n)=x(n) + x(n - 3)
Eg. For non causal system,
Y (t) = x(t+3) + x2(t)
Y (n) = x(2n)
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e A system is called causal or non-anticipative if the output at any time t (or n) depends
only on the input at times t or before t (or n or before n); in other words, independent of
the input at times after t (or n). All memory less systems are causal. Physical systems
where the time is the independent variable arecausal.

e Non-causal systems may arise in applications where the independent variable is not
the time such as in the image processingapplications.

Examples of causal systems:

1

y(t) = C’/ z(T)dT or  yln| =z[n—-1]

Examples of non-causal systems:

(r{n — ]] — I[Hl + ;[ﬂ o+ ]])

I'.-\.rll—'

y(t) =a(=t) or  y[n]=

1.6.6 Stable and unstablesystem:
e  When every bounded input produces bounded output then the system is called as
stable system or bounded input bounded output (BIBOstable).
e Otherwise the system is unstable.
e A system is called stable if it produces bounded outputs for all boundedinputs.

e Stability in a physical system generally results from the presence of mechanisms that
dissipate energy, such as the resistors in a circuit, friction in a mechanical system,etc.

Sample Problems:
Problems:

Determine whether the following system is linear or not.
dy
—~ 4+ 30(8) =t 2x(2)

Fc?r (an input x;(t) and for the corresponding output y;(t) the differential equation can be written as,

+31y(t) tzx(t) ........ (1)
dt
Fé)r ?n input x,(t) and for the corresponding output y,(t) the differential equation can be written as,
+ 3ly (1) =t *x (t) -------- (2)
Cdt

(1) xa + (2) xb and rearrranging,

Ay O +07: OV | 3414y (o) +by (0] =t ax (1) +bx (]
dt 1 2 1 2

i[ay 1(l) +by (Zt)]+ 3t[ay ff) +by (21)] =t *[ax (f]) +bx (1)2]

dt weighted sum of output weighted sum of output weighted sum of input
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From the above equation, we can note that the weighted sum of inputs to the system produces an
output which is also equal to weighted sum of outputs corresponding to each of the individual
inputs.

Therefore, the system is linear.

Determine whether the system y(n) = 2x(n) + is linear or not

x(n-1)

y(n) =Tx(n)]=2x(n) +

For an input x;(n), .

Y()=T[x(n)]=2x(n)+ s (1)
: : l x, (n—1)

x(n-1)

For an input x,(n), 1
¥ () =TTx (n)] =2x(n)+ @)
2 2 2
xX,(n—1)
Weighted sum of outputs is given by b
a
ay (n) +by (n) = 2ax (n) + +2bx(n)+ e (3)
1 2 1 2
x(n—1) xy(n—1)
Output due to weighted sum of inputs is

y(n)=Tlax(n)+bx(n)=2[ax(n)+bx(m)+ . 4
3 1 2 ! 2 [ax(n=1)Fbx(n—1)]
1 2

v (n) #ay,(n) +by, (n)
Therefore, the system is non-linear.

Determine whether the following systems are time-invariant or not.
(1) ¥(1) =tx(2)
(@) =Tx(1)] =tx(¥)
The output due to delayed input is
W, T) =Tx(t =T)] =tx(t -T')
If the output is delayed by T, we get
y(t-T)=@-T)x(t-T)
y(&,T) #(t=T)
Therefore, the system is time-variant
(2) y(n) =x(2n)
y(n) =TTx(n)] =x(2n)
If the input is delayed by k units of time then the output is ,
v(n, k) =T[x(n —k)] =x(2n —k)
Outputdelayedbykunitsoftimeis,
y(n—k)=x[2(n—k)]=x[2n—-2k]
y(n, k) #y(n —k ')
Therefore, the system is time —variant.
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Problem
Find whether the signal x(¢)=2cos(10z +1) —sin(4 1) is periodic or not.

Time period of 2cos(10z +1)is T=2Z %
é 10 5
Time period of sin(4r —1)is 7 =="="sec

2

2

T 74}/ 2
The ratio of two periods is 1— 54

Tzﬂ/z 5

The ratio of two periods is a rational number.
Therefore, the sum of two signals are periodic and the period is given by

Vs T
T=2T, =5T, =2% EZSX ?7[ sec

ii) Find thesummation > ¥ &n-2)

An—-2)=1 for n=2
=0 for n#2

e}

Zezn (n-2)=e"&n-2) ,.=€*

n=—oo

iii) Explain the properties of unit impulsefunction.

unit impulse function

-

The impulse function has zero amplitude everywhere except at t = 0.

A)=1 t=0
=0 t#0

At t=0, the amplitude is infinity such that the area under the curve is equal to one.

[ande=1
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iv) Find the fundamental period "Eﬂdaer?%lglag?ﬂs timesignal x(¢ )=20cos 107+~

x(t)=2000s(107zt+@ °
;)

Q=107
2 2r D
Q, 10z 5

Derive the relationship between unit step and delta function.
At) M—)u(t)

u (t) differentiate > &Z)

Nt ) =unit impulse function

u (t ) =unit step function
u(t) =1 t>0

=0 t<0
du() _ 1 t=0
dt
=0 t#0 =1)

Sketch the following signals:

(1) x(1)=r(?)
(2) x(t)=r(~t +2)

F*i"(f'-f't'_D
%
\\\
\\ Q
___B_XJ_____ o e :
T et
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S
PR SIERRREC ——— —\—Tin- S
et = ‘
- g
(3) x(t)=—2r(t) where r(t) is a ramp signal.
e AR e e 2 e R
ey Y T2 5 =
e S N .
el i ¥
A W
— 2 ’_Ii' é\ "‘ = \{:) I»C = ]
\ A

.Determine whether the following systems are time invariant or not.
i) Y (t) =tx(t)
ii) Y(n) =x(2n)

Solution:
1) Y (t) =tx(t)
Y(t) = T[x(t)] = tx(t)
The output due to delayed input is,
Y(t,T)=T[x(t-T)] =tx(t-t)
If the output is delayed by T, we get
Yt-T)=(@-T)x(t-T)
The system does not satisfy the condition, y(t,T) = y(t — T).
Then the system is time invariant.

ii) Y(n) =x(2n)
Y (n) =x(2n)
Y(n) = T[x(n)] = x(2n)

If the input is delayed by K units of time then the output is,
Y(n,k) = T[x(n-k)] = x(2n-k)

The output delayed by k units of time is,
Y(n-k) = x[2(n-k)]

Therefore, y(n,k) is not equal to y(n-k). Then the system is time variant.
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A continuous-time signal x(¢) is shown in Fig.

Sketch and label each of the
following signals.

(a) x(r=2); (b) x(20); (c) x(t/2); (d) x(—1)

x{t)

L1 1

1L
-2-101 23 435

=

xt-2)

| A |
R ] L1 1 L

| 1 Ll
101 23 4567 2101 2 3

x(21)

-.“

. |

(a) (b)

x(t2) x(-1)

=3
llMlll

3 4.32-101 2

il L 1 1 1 1

-10 1 234567289

Sk |

~ ¥

(c) (d)
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A discrete-time signal x[n) is shown in Fig. Sketch and label each of the
following signals.

(@) x[n —2); (b) x[2n]; (¢) x[—n); (d) x[—n + 2)

x[n]

-1 01 2 3 4 5 n

x[n-2) x|2n]

0123 4567 n 101 23

(a) (b)

x|-n] x|-n+2)

—

H”Ir;*__, HH;I._H

5-.4-3-2-101 n 3-2-1 01 2

(c) (d)
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Periodic Signals

Consider the following signals. All of them are periodic:

v(/) o
(a) square 4
wave T o
lc— T—>]
W1)
_ P /‘\ A -
(b) triangle — e
wave I/4 N
& 1'—>l
(c) full-wave )
recified. =/ Y Y IYo Y N\ ‘¥
sine wave Ilf" '_;}' !
(1)
(d) half-wave
rectified /—\ /' _\ . /—\ -
sine wave ' ; t
T
(/)
(e) ramp 14
(sawtooth) - / g /I/I/‘
wave
; , ¢
W) 4
(f) pulse A
train —_ ; : —
-1/2 0 1/2 T T
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A general method for finding the period of a sum of periodic signals:
letx(t) = 1 (t) + ta(t) 4 -+ xy(t) be the sumof periodic signals x,(¢), X3 (£), .., Xy (L)

1. Find the fundamental period of each of the individual signals, for example, denote T" | to'be the
neriod of the -thsignal,

2. Calculatetheratio Ry = T- /T i fori=2,..., N, If any of these ratios is not a rational number,
the composite signal x(£) is not periodic.

3. Simplify the ratios, and let kq be the least comman multiple of the denominators of the K.

8, The fundamental period of x(t) is Ty =&, T .

Determine whether or not each of the following signals is periodic. If a signal is periodic,
determine its fundamental period.

™
{(a) x{rl=cus(2: + E]

(h) x(r)=cos*t

(¢) xlr)=(cos2mtlult)

(d) x(t)=e™

(e) x[n] =g/l
™

(f) J:I[n]=cos(-—8-]

(g) x[n]ams(;)ms(?)

T

(h) r[n]=005( ;)+5in(ﬂ)~2cus[ﬂ]

8

Ans. (a) Periodic, period = 7
(¢) Nonperiodic
(e) Nonperiodic
(g) Nonperiodic

2
(b) Periodic, period = =
(d) Periodic, period = 2
(f) Periodic, period = 16
(h) Periodic, period = 1g
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'
]
]
Multiplier 1
(1) : ¥} = x(f) cos w1
Y -
! '
' '
! t
! 1
i [
! '
1 COs m(l' ]
! '
' '
L o e e e e e e = ]
Consider the system shown in Fig. Determine whether it is (a) memoryless, (b)

causal, (¢) linear, (d) time-invariant, or (e) stable.
(a) From Fig.  we have
(1) =T{x(1)) =x(r) cos ¢
Since the value of the output y(t) depends on only the present values of the input x(t),
the system is memoryless.

(b) Since the output y(t) does not depend on the future values of the input x(¢), the system
is causal.

(¢) Let x(¢)=a,x(1) + a,x(1). Then
y(£) =T{x(1)} = [a,x,(1) + ayx,(1)] cos w1
=a,x,(t)cos w t +a,x,(1)cos w,?
=a,yy(1) +ayy,(1)
Thus, the superposition property is satisfied and the system is linear.

(d) Let y () be the output produced by the shifted input x,(¢#) =x(s+ —¢,). Then
Y1) =T{x(t=15)) =x(1 = to) cos w,t
But
y(t=1ty) =x(t=tg)cosw (t=1ty) #y,(¢)
Hence, the system is not time-invariant.
(e) Since |cos w t| < 1, we have
ly(1)l=lx(1)cos w.t| <x(1)l

Thus, if the input x(t) is bounded, then the output y(¢) is also bounded and the system is
BIBO stable.
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UNIT - 11
ANALYSIS OF CONTINUOUS TIME SIGNALS

2.1Fourier Series representation of CT periodicsignals

Any periodic function of time x(t) can be represented by an infinite series called the Fourier Series.

() Trigonometric FourierSeries
x(t)=a0+2a,,coanot+Z b,sinnQ) t

n=1 n=1

a,,a,, b, are Fourier Coefficients

1
Q=2 7f where  f=fundamental frequency &T = 7
1 T
ay="7 x(t)dt

T
a,= 2 x(t)cos(nQ)d
0

2 T
b= 7 t[x(t)sin(ns)oz)dt

(ii) CosineSeries

o0 o0

x(t)=a0+z ancoanOHZ b,sinnC t

n=1 n=1

a,,a,,b,are FourierCoefficients

o0

x(t)=ao+z (ancoanOansianot)
1

n=

x(t):AO+ZAncos(nQOt+ Hn)
n=1

where A,=a,

A,= Ja?+b?,

(b))
\a@,)

note:Trigonometric identity

6 =— tan

Asin C+BcosC= [ 2,52 COS(C —tan—l((jlg\ﬁ

(iii) Exponential FourierSeries

o0 o0

x(t) = ch o /St

Nn=—0o0
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1
C= x(0)e? ™ dt
= I ()

2.2 Properties of CT FourierSeries
Using exponential Fourier series, a periodic signal x(t) with period T can be expressed as

x(t)=>.C e

n=—o0

1
C= _|x()e?™ dt
) Tl 0)
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1. Linearity

If x,(¢) and x,(f) are two periodic signals with period T with Fourier series coefficients

C,, and C,,then Fourier series coefficient of linear combination of x, (¥) and x, (¢) is given by
FS[Ax,(t)+Bx,(t)]=AC,,+BC,,

Proof:

1 j Ax(0+By, (g gy
1 T

e reran! T g Bx(t)e 7" Mdt=AC  +BC

?J. 1 ?.{ nl n2

T

Fourier seriescoefﬁcientof[Axl(t)+Bx2 (t) is=

2. TimeShifting
If the Fourier series coefficient of x(¢) is C, then the Fourier series coefficient of the time shifted

signal x(t—t,)is e 7" C

Proof:Fourier series coefficient of x(¢ —¢, ) is = ?J'x(t ~t O)ef"'”Q‘)t dt
T
let t —ty=m =t =m +t, &dt =dm

1 —inQ(m+to)
=__ | x(m)e?" """ dm
SR

n

i 1 Q2 —jnQ2
— "Wl _J'x(m)e Qom0 oIl
Ty

3. TimeReversal
If the Fourier series coefficient of x(7) is C, then the Fourier series coefficient of the time reversed

signal x(-t)1s — C

—n

Proof: Fourier series coefficient of x(—¢) is =

1

— | x(=t)e 7 'd
7l

let —t =m =t=—m &dt=—dm

1 :
== x(m)e 7" ™ dm=—C

T —n

T

4. Timescaling
If the Fourier series coefficient of x(¢) is C, then the Fourier series coefficient of the time scaled

. . 1
signal x(f%) is ,_BC"/ 5

Proof:Fourier series coefficient of x(ff) is=

1
.[ x(fr)e 7" >'dTl

let ft=m =t = &dt _d

i B
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dm

:—,Bx T lx(m)e -

1 1 —imQy | (”Ial
:_ﬂx T lx(m)e dm :,B —C,p

5. Conjugation
If the Fourier series coefficient of  x(¢) is C, then the Fourier series coefficient of the complex

conjugate of the signal x*(r) i1s C*
Proof:

x(?) = ZC,, e taking complex conjugate on both sides,

x*(t) = ’Zc;tlefjnﬂot

let [=—n
x*()= S cle’ changing the variable
X (£)= icjna"%’ —FS[x (n]=c
6. Differentiation o
If the Fourier series coefficient of x(z) is C, then the Fourier series coefficient of the signal %
is jnQQ,C,
Proof:

x(1) = ch e’ (differentiatingw.r.t ¢  on both sides,

dx'}(t) = Z Ce"inQ
dx(t) _ = . [dx(d) ]
dt ”;o]'nQOCn e :>F‘S]|_ dt JZ ]nQO Cn

ZIntegration
If the Fourier series coefficient of  x(¢) is C, then the Fourier series coefficient ofthe  signal

t . C’L
Ix(t)dt is inQ,

—00

Proof:

x(1) = ZCn e’ integratingw.rt on both sides,

n=—o0

‘ = 'nQOtil
:[OX(t)dt N n;ocn ¢ Jn€
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jx(t)dt Z S, dngotEnQQEPSf f}@%t =

_ — Jn<2 | ] Jn€d

8. Multiplication

If x (¢) and y(t) are two periodic signals with period T with Fourier series coefficients C,and D,

0

then Fourier series coefficient of product of x(7) and y(t) isgiven by z CD,.y
/=

Proof:

x(?) = ZCn e = x(1) = ZCze d

n=—oo [ =—o0

1
Fourier series coefficient of x(7) y(¢) is= — J‘ x(O)y(t)e 7" 'd
TT

o0

1— .
— C JIQut
.[y(t)e—anofd Z €

=0 4

= C e D0t gy
26T v@e

T

:z CD,

[ =—o0

9.Parseval’s Relation for periodic signal

I

. . . . 2
If the Fourier series coefficient of x(¢) is C, then, . I x(0) “dt = ZCn 2

T n=—owo

1 2
?j|x(t)| dt =average power in the signal
Proof:
F j (@) dt =§ j[x(r)x* (0)de=" 1 Ix(t)[ g }Eh
N
zj(t) Z Cn e Nt Jp — C C—Z C,

n= n=—o0

11—
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23 laplacetransform
The Unilateral Laplace Transform
The Unilateral Laplace Transform is applied to the signals that are causal. The Unilateral Laplace

Transform of a signal x(?) is defined by
L[x(t)]=X(S) =Ix(t)e‘”dt
0

Properties of Unilateral Laplace transform

1 Linearity
Llx,(0)]=X (s)

Lixy(0)]=X(s)
L[Ax,(£)+Bx,(t)|=A X (s)+BX,(s)

Proof:
L[Ax,(t)+Bx, (1)]= T[Axl(t) +Bx ,(f) e~ dt

=A [3 (0 vy 4] %, (e d
0 0

= AX\(s)+BX,(s)

2 Shifting in timedomain
L[x()]=X (s)
- —p—St0
Ll t)]oe X(s)
Proof:

L[x(e ~1,)]= [[x(t—t, e dr

t —ty=p =t=t,+p

o0

let and dt=dp

— x(p) e*S(foJrP) dp
0

0

—=e —stojx(p)e—sp dp:e—stnX(S)
0

3 Shifting in frequencydomain
Llx (7)) £X (s)

L [e“” x(t)]=X (s +a)

Proof: Y
L[e—atx(f)]=I€_”’X(t)€_5tdt =Jx(t)e—(S+a)tdt =X (s +a)
K 0

4 Differentiation in time

L[x()]=xX (s)

o0
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=sX () =x(07) EnggTree.com
L'dt ]

Pooofin] c=ax()
j%_( |:I 7e stdt

| dt | , dt
letu=e>" and  dv=dx(¢)

=Stdt and v =x(t) :>Iudv =uv —Ivdu
T‘d (1 o)== x(0)-sesihie
lae | :

0

0

=—x(0 s [ x(D)edi=sX(s)-x(0"

Note:

Px(t) | (0
L[ o S (9) (0] - 2

dx(0)

=5 X (5) —sx(0 ) = g

3. Integration in time

L[x(0]=X (s)

r 1 X [x(2dr
Luif(r)drlﬂ T

proof:

0~ t

[x(Dde=[x(Dde[x(Dd 7

Mo ] OJ.x( ndt
LUx(z‘)dr e

[ s

LU x(r)dr} - Tj x(D)dre ™ dt

let u =|x(7)d r=du =x(t)dt
0

- st

dv=e 'dt —=v= €

J[x(oazear |Ix(r)dr " ”)| —j|( ) yar

00 00 )

=0 +X(S)

S
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[ 1 x(ndrt
L) Ix(r)df|— _— +—°l
J N S

6.Scaling in Time
[X(f)]—X 1) ()

x(at)]—

2 G
Proof:

L[x(at)] z_[ [x(at) |est dt

let — at=p =t P _ and 9t :di
a
N 1
Lfx(an] =ﬁc( pe vdp _XI(S_\ |
0 a a Ka)

7. Differentiation in s-domain (frequencydifferentiation)
L[x(]=x (s)
L[]

Proof:

X (s) =|x(t)estdt
dX(s) = ( —st
= x(t)

ds

—st

dt _j (e dt

ds
:>L[—tx(t)]=
Notg:

RS dn X (s)
L (1) x(0)

dX (s)
ds

8. Integration in s-domain (frequencyintegration)
LFx(t)%zX (s)

x(¢) o
T F [x (s)ds

Proof:
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X(s)= x(t)e‘“ dt 99

[x (syds = x(t) {[e dsya —jx(lr)e—sfdz

(0] =
:>L|_ P J:J.X (s)ds

9.initial and Final valuetheorem

L[x()]=X (s)
Initial Value theorem:
ll‘ x(H)= It s X(s)

Pro ]} ()—I—s;(s) —x(07)

|
o L
~_rd—e st dt =sX (s) —x(0 )

it [P sty = 0 = It X () —x(0-)

) dt S0

1t sX (s) =x(0)

Final Value theorem:
lt x(f) = lt sX(s)

Proof: J’ dx(?) et dt =sX (s) —x(07)
, dt

It I @, di = lt [SX (s) =x(07 )]
g_‘;a(’)x(t)
#dt = lt [SX (s) —x(0 )]

tlt x(2) —x(0) = lto sX (s)—x(0)

;lt x(7) = ZIOSX(S)
10. Convolution in Time
LLx(0)]=X,(s)
LLx,(0)]=X:(s)
LLx, (6y0x,()]=X () Xo(s)
By definition , x,(0)*x,(t)= I x, (2%, (t—2)dT
Proof: -
Lx @, ©]= [] x(@x, (¢-ddzevar

—00—00

let t—1=p =t=r+p &dt=dp
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—00—00

EC3354-SIGNALS AND SYSTEM

=[x e~z [x, (P)ePdp =X () X (s)
11. Convolution in_wtrequencz(n;ftltiglication2
L[x(0)]=X (s)
L[g(t)]—G(s>
L[x(0)g(1)]= pye L [x(5) *G0s)]

Note:

(D) X(s)*G(s)= IX(u)G(s—u)du =by definition
- -
GLT X(s) =x(f)= —— I X (s)es ds =by definition

27
Proof:

1 .
Inverse Laplace Transform of Y [X (s) *G(s)]ls
Z

‘g_ IX(u)G(s—u)due”ds
27@7 27

let s —u =p =s =u +p and ds =dp

jz_ jX(u)G(p)duewwa 1 .
270 27, =% [ e du o [G@pye 7 dp =x(1g(®

2.4Continuous Time Fourier Transform

X(j=Flx]  and x0)=F[x(jO]

X(jQ)z J‘x(t)e—jﬂtd for all Q
1 -

x(1) = g _L X(Q)e a0 forall t

Properties of CT Fourier
Transforml.Linearity
Flx0]=X,(2)
F[xz(t)]:Xz(fQ)

FAx,(£)+Bx(1)]=4 X, (jQ)+BX,(Q)
Proof:
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FlAx,(t+Bx, ()]= j[Axl(z)+Bx2nggk-;§$t com

0

:Af x,()e7dt +B Ixz (e dt

= AX,(jQ)+BX,(jQ)
2. Shifting in timedomain

Flx(0]=x (jQ)
Flx(t=0)]ze 720 X(7Q2)
Proof:
Flx(e-t)]= [[x(e ~,)le ™ at

let t —ty=p =t =t,+p and dt=dp

0

- ,)SO( p) e /o) dp

0

=e‘f9’°jx(p)e‘jﬂl’ dp=e72X(jQY)

3. Shifting in frequencydomain
Flx(2) [=X (j€2)

Fle72x(n)|=xgQ+Q)
Proof:

F[ Q! (t)]— j -t x(f)e ER .

—00

o0

[x(e 92 dr=x(j7 Q)

—00

4.Scaling in Time

F[[x(t) —Xl( Jq)m
Sl

Proof:
Flx(an]= I[x(at)]e‘/Q’ dt
let ~at=p =t P and dt=dp_
a
w (i), 1 (jQ)
Hytan] - (e 2 = ot
) a a \a)

Q

5. Time

reversalF [x(t)] =X
(jQ) Flx(-n]=x
/2
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EnggIree.com
F[x(_t)]: jx(—l‘)e_jgtdZZ Ix(t)ejgtdt: Lx(t)ef(*jﬁ)t =X(_jQ)

—00

6. Differentiation in time
Flx(0]=x (j2)
ABOL jox o)

lac )
Proof:

1 |

x(0) =__ [X(GQevd forall t
2,

ax() 1 [xge)? [esmnao

dt 27 dt
dx(t) 1=

_5_ (i Q) e/ Xt

7.,
_pldx®l  jox (o)
Ldt]

note:
[ dx(2) ] n
T (s 0
Fl o FUD XU
Z Differentiation in frequency
Flx(n]=x (j
Flx(n]= j‘iég G

dQ
Proof:
X(jQ): Ix(t) e7dt

“:EQ} o lE —th;
o = x(?) dt
> dQ

0

= [t x(t)e 7

Flao]e 7L
8. Duality

Flx(0]=x (j2)

Flx @]=2m (-/Q)

Proof: .

x() = TX(]'Q)@/Q’QQ forall t
2

—0o0
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270(t) =[ X () e/ d©

2x(-t)=[X( ey =FIX ()]
changing t tojQ

2x(—j)=[X(DyeTudr  =FIX(®)]
9. Convolution ;; Time

Flx@0)]=X,G)

Flx,(0]=Xx,09)

Floo (0y»x,0 =X, X,

By definition , x,(2)%x,(1)= .[ x, (%, (t—2)dT

Proof:

Flu@xx, 0]= [ x @ @ -dwer ar

—00—00

let t—1=p =t=r+p &dt=dp

F[xl(t)*xz () ]: _” x,(79)x, (p)dre’jg(””)dp

—00—00

0 0

=|x (De”*dr _[x2 (p)e?rdp=X ,(jX, (jQ)

10. Convolution in frequency(multiplication)
Flx(0]=x (j2)
Fle]=G(j

1
F [x(0g(n)]= oo 6io]
T

Note:

() XGO*GUD= [X@)G(Q-uydu  =>by definition
1

(@) F' X(Q) =x(0)= py. IX(jQ)e 1 dQ=by definition
Proof:

1 ) -
Inverse Fourier Transform of 2—[X (J€) *G(j Q)]1s
T

= U1 [XwGQ-u)duedo

2w 2w,
let s —u =p =s =u +p and ds =dp
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IZ_ f X(u)G(p) due(wp),gnggTreedcom
27?7,00 B jX(u)ew du— jG(p) P dp =x(1)g(t)

Parseval’s Theorem

[x(z)]-X(jQ)
_ch(r) [t = jJY( Q0

Proof:

o bar =[x @ar

x(?) :L TXUQ)efQ’cK) =x* (1) =L TX* Q) e 2O
27, 27,
1° o
[xox (ar=" Jeo)' L~ [x ¢j)erdCr jar
Y ,w 127 |

=1 jX(,Q)| jx(z)efﬂtdt |a’Q—|
2, | ]
=1 jX(,Q)| jxf(t)efﬂfdt |dQ—|
27 | J

J'X(]Q)X(]Q)dQ J.AJY( Q)‘de
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Continuous Time Fourier Transform:

Viewed periodic functions in terms of frequency components ( ier series) as well as
ordinary functions of time

Viewed LTI systems in terms of what they do to frequency components (frequency
response)

Viewed LTI systems in terms of what they do to time--domain signals (convolution with
impulse response)

» View aperiodic functions in terms of frequency components
via:Fouriertransform

The Fourier expansion coefficient A ['{‘] (in O OWN) of a periodic signal is
rr(t) = or(t 4+ T)

1 |
X[k] = ?/;_.rﬂt)e_”‘”fdf (k=0,+1,+2 -

and the Fourier expansion of the signal is:
oo
rt) = 3 X[k
k=+oo

which can also be written as:

]. o0 o0

or(t) = = 3 (TX[R)e* = % Y X(kwp)e*t  (a)

k==co =" k=—pa

where A {kmu) is defined as

X (heoe) 2T X[ = fT rr()e™tds  (b)

When theperiodof IT“) approaches infinity T'— DQ’ the periodic signal IT(-H
becomes a non-periodic signal 2 (ﬂ and the following willresult:

Interval between two neighboring frequency components becomes zero:

T — 00 = wg = 2r/T — 0
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Discrete frequency becomes continuous frequency:

'I':'."L"'D|-;,a.'|:|.—|] — W

Summation of the Fourier expansion in equation (a) becomes an integral:

z(t) £ Iun r7(t) = lim 2, Y X(kwp)e?™twy =

T—oo o L S

the second equal sign is due to the general fact:

llm Z f(kAzx) i\.:.,—fwf(r

J:—-[I

Time mtegral over in equation (b) becomes over the entire time axis:

X (w) = I!u:t] X (kwp) = lim [ zp(t)e ?eidt = f_m r(t)e™ 7 dt

o0 T—oo JT

r(t) = imr_ o7(t
In summary, when the signalisnon-periodic ( ) e T( )
expansion becomes Fourier transform. The forward transform (analysis)is:

X (w) = f_ T z{t)edt or X(f) = f_ T 2(f)e i gy

, the Fourier

and the inverse transform (synthesis) is:

f W) et dy = f (f)e* Ftdf

o }L
X (”‘J) isdenoted by (le') in OWN.

rr(t)

Notethat

Comparing Fourier coefficient of a periodic signal

z(t)

with with Fourier spectrum of a

non-periodicsignal
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1 ; 0o
X[k] = T/;J:Tft}eﬂk“'*tdf, X(w) = f-m r(t)e "t dt

we see that thedimension of . A (w ) is different fromthatof A [;ll :

. . [ X [%]]
(X ()] = [X[KE = S50
[w]
| X [K]|* o .
If represents the energy contained in the kth frequency component of a periodic
signal IT(H , then X ( i’”'j ) represents the energy density of a non-periodic signal

( J distributed along the frequency axis. We can only speak of the energy contained ina

wll ,a_-:; ", {': L"-‘Ij
particular frequencyband
2.5 InverseTransforms

If we have the full sequence of Fourier coefficients for a periodic signal, we can reconstruct it by
multiplying the complex sinusoids of frequency ®Ok by the weights Xk and summing;:

= ="y X"
.1.(”) = Z XkeIkml[IH k:Z—CCI
k=0

We can perform a similar reconstruction for aperiodic signals

4 4 L

x(n) :ii)f”(fa}efim de | x(i) - ﬁ_{n}fl{m)em dw

—a

These are called the inverse transforms.
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2.6 PROBLEMS:
Example0:

Consider the unit impulse function:

Example 1:

z(t)
If the spectrum of a signal is a delta function in frequency domain
X(jw) = 27 §(w)

, the signal can be found to be:

1 e :
2(t) = F X (juw)] = o f_m o d(w)etdw = € = 1
1e.,
Flz(t)] = -/;m e dt = o §(w)
Example 2:
1 |f{<a
() :{ 0 |e1|se
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The spectrum is

a 1 : 2
v i — bt 171, - — .—_fu.lt 8 _— oim
X(jw) /;u e 74 dt = P o —sin (aw)

This is the sinc function withaparameter @, as shown in thefigure.

2
EE

£
A

L gin
. gin

s%H{XE-?'X -

Note that the height of the main peak is 2@ and it gets taller andnarroweras @ gets
larger. Also note

fxl X(jw)dw = Efm minias) dw = 27
-2

—oa W
When approachesinfinity, forall , and the spectrumbecomes

Recall that the Fourier coefficient of is
which represents the energy contained in thesignal at k= D(DC component atzero
X(jw) = X[k /w
frequency), andthespectrum is the energy density or distribution which is infinity at
zerofrequency.

The integral in the above transform is an important formula to be used frequently later:

fm e~ Mt = 2rd(w) or fm e~ 12 it = §(f)

which can also be wfitten as

,/;:, et ]y — E[oas(mt] + j sin(—jwt)|dt = LZ cos(wt)dt = 4(f)

39
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Switching and in the equation above, we alsohave L

z(t) = sin If_m.jt) = —[“"" —¢
representing a superposition of an infinite number of cosine functionaf all frequencies,
which cancel each other any where along the time axisexcept at £ = Owhere they add up to infinity, an
impulse.

—_T.ll,b'nf]

Example 3:

The spectrum of the cosine function is

The spectrum of the sine function

can be similarly obtained to be

2
A

X(jw) = j—-['ﬁ(w — wp) — §(w + wp)] = —j7[d(w — wo) — §(w + wo)]

Again, these spectra represent the energy density distribution of the sinusoids, while the corresponding
Fourier coefficients

X[k] = Fleos(wpt)] = =[6[k — 1] + 6]k + 1]]

e I

and

X[k] = Flsin(wt)] = %[5[?; — 1] — [k 4+ 1]]

' = g
represent the energy containedat frequency

Continuous Time Fourier Transform-PROBLEMS

X(jQ=F[x®]  and x()=F~'[X(jQ)]

X(jQ)z J‘x(t)e—thc# for all Q)
1

x(0) = pyn _L X(Q)e Sor all t

40
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1. Find the inverse Fourier transformof (i) 4Q) (i) XQ-Q,)

i) x() =1_ TX (jQ) e/ dQ
2

=LI3(Q) ) -
27 2
AD)=1 for Q=0

Since
’ =0 for Q=0

Aol
T

F[2z8Q)]=1
H1le 27289)

(i) x(?) b [x (j@) e/ an
27

=1 [a@-a)ed e
27 2

00

AQ-Q)=1 for Q=Q,
=0for Q#Q,

Since,

iQt
e] 0!

2r
F278Q-Q) |52

F[5©Q-Q, )]

Fle™]= 2z00-0,)
Fourier transform of standard signals:
a) x(1) =cos(Qt)

e J€ot

cos(Qg )= +Ze
5 4? |_F [ef QO[]-FF [e‘/ Qot]—| 1
X Q-
| ) J= 2 [272XQ-Q)+2 X Q+QY) ]
= [7XQ-Q ) +7XQ+Q)] = HQ-Q) +HQ+Q)]

—/Qot

b) x(t) =sin ()
41
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JQot _ —Q0t

) e e
singot— .
R
X Q:? |_ y J 27X Q) 27X Q+Q,))]
-/ :2 ;
) [HQ-0,) —TEO+Q, )] = A HO-Q, ) ~KO+Q )]

c) x(7) :sgn(t)
The given function x(?) =Sgn(t) is known as signum function and is defined as,

Xy

(o]

5

sgn(?) = 1if >0
0if t=0
—1if t<0
The function is not absolutely integrable. The Fourier transform of x(¢) = sgn(t)is

obtained by considering thefunction lfo e sgn(z)

a—

xX(jQ)= 1 to[ J e sgn()e }dr

0 ©
:liaot_ Ie‘” edt +|e e’ dt |
[ = = ’ rd
It + 1 .L I —2,Ql
a—>0||_a HQ  a+HQ'| eld +Q?]
=25 2
Qo

d) x(7) =u(r)
u@® =1 for t>0
0 for t<0
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This signal can be expressedas Y (f ):_"‘ _sgn(?)
2 2
H1l= 27230
F [sgn(t)]: —

Aol [P ”ﬂ
L J

Fluo 1<) Tjg

]

e) Rectangular pulse H(J}

(T

o t

T T
Rectangular pulse ofwidth 7 extending from —_zto_ )

T

x(0) :H((\_|

=1 Tto T
x(1) = —
2 2

= Qotherwise

T

X(jQ) jx(t)e Sudt=[e —fﬂtd
. [ e—th—|2 = ; Fefﬂf , el _| % sin| Zi

RE ) <Y
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r 7( T Qr)
sin 2_l 7sin| L2 J (Q7)
N ): =sinc] |
Qr Q7 \2 )
2
sinx .

Note: —— = sin c(x)

X

(t
DTriangularpulse AL_ J

T
x(r)
/N

o

T T
Triangular pulse of width 4 extending from — /0~ ) and amplitude 1.

x(0) :A(@
)
T
x(t)zl_zi O<t< _
T 2
2t
=1+ — <02
T

X(jQ):‘[x(t)e‘fodt

| =

0

2t
=+ ?t)e i (

T
2

2t 7g2t
= dt
+ )e

O D

:(e_ th\J +zrt e U _ eijt\0| +|[ej§2t\2JT _%YZ‘ eI _ e_th\ZI ‘I
L—jﬂ g r{ - JjO Gy =), r - (R
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| A el
T e 2 o 2 |
= — R SN Uy
L JQ| r( gy  2HQ) (O J k—JQ JjQ J

_2|(Z' eijQTE _ e_jQTE + 1 n
TE_—JQ QR ()P )

21( jor ot
= _|— 2 +e 2+ 2n
TL G (Qr Q)P J
( jof o) (o o) 2
—2|| 2 e 2 o, 7 ‘1:2 le i, i
Tl oy (19)? fL 0 J
( JQI —jQ\I 2 2 Sinl(QT |
_2le e g U4
__; JQ J :EXT\

Downloaded from EnggTree.com

45



EnggTree.com
Il YEAR/THIRD SEMESTER EC3354-SIGNALS AND SYSTEM

2.5  LaplaceTransform

» Lapalcetransform isageneralization oftheFourier transform in the sensethat it allows —complex
frequencyl whereasFourieranalysis can on lyhandle -real frequency!.LikeFourier transform,Lapalce
transform allows us to analyzea-linearcircuitlproblem, no matterhow complicated the circuit is, in the
frequency domain in stead of in he timedomain.

» Mathematically, it produces the benefit of converting a set of differential equations into a
corresponding set of algebraic equations, which are much easier to solve. Physically, it produces more
insight of the circuit and allows us to know the bandwidth, phase, and transfer characteristics important
for circuit analysis and design.

» Most importantly, Laplace transform lifts the limit of Fourier analysis to allow us to find both the
steady-state and —transientlresponses of a linear circuit. Using Fourier transform, one can only deal with

he steady state behavior (i.e. circuit response under indefinite sinusoidal excitation).

» Using Laplace transform, one can find the response under any types of excitation (e.g. switching on
and off at any given time(s), sinusoidal, impulse, square wave excitations, etc.
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i - w . - [ -1 3
LIAN] = Flis) = fitle © dt
3 .
0

flt

e

f)
il + £

Kf (1)
df (1)

dr
d'f()
dr

Jﬁnm
tf(1)
e "f(r)

f(t — a) u(r — a)

Property F(s)
Definition f fle™ dt
(1]
Linearity F () + Fis)
Linearity KF(s)
Differentiation sF(s) — f(0)
3 ; df (0
Differentiation s°F(s) — sf(0) = —Z(f—)
; I
Integration 2 Fis)
< W dF(s)
Complex differentiation -
ds
Complex translation F(s + a)
Real translation e “F(s)

Application of Laplace Transform to Circuit Analysis
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Properties Time Domain | Laplace Transform
; ; ax () +a,x, (1) + aX,(s)+a, X,(s)+
1| Linesrity ..tax, (1) ..ta, X, (s)
2 | Frequency Shifting e "x(1) F(s+a)
3 | Time Delay x(t—a)u(t - a) e “X(s)
: : 1
4 | Time Scaling x(ar) —X (i]
a a
. . _p d ,
5 | Time Differentiation Ex(t) sX(s)=x(07)
6 | Time Integration J‘_: x(r)ydr ng) + éj_o_ x(r)dr
7 | Initial Value Theorem lim _ . x(2) lim___ sX(s)=x(0")
8 | Final Value Theorem m, __ x(7) hm,__, sX(s) = x(*)
9 | Time Convolution x(£)* y(1) X(s)Y(s)

1. Linearity

Assume x(f) = ayx,(t) + a,x,(t) (@ and @, are time independent)
X, (s) = L[x, ()], X,(s)=L[x, (1]
then X(s)=L[x(1)] = a,X,(s) +a,X,(s)

Proof:
L[aix1 1)+ azx(t)] = _[: (alx1 (t)+ azx(t))e"’dr
= j': a,x,(t)e™ +a,x(t)e dt

a, _[: x,(t)e “dt +a, J': x(t)e “dt
= a X (s)+a,X,(s)

2. Complex Frequency shift (s-shift) Theorem

Assume y(t) = x(t)e ™
X (s) = L[x(1)] Y(s) = L[y(®)]

Then Y(s)=X(s+Q)

3. Time Delay Theorem

Assume  L[x(1)] = L[x(H)u(®)] = X(s)
Then Llx(t =t u(t —t,)] = e " X(s) (t, > 0)
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4. Scaling

Assume X(5)=L[x(?)] then L[x(af)] = %X(%)

Restriction: a=0
x(af) < atimes fast (if a=1) orslow (ifa<1) as x(7)

Proof:

L[x(at)] j x(at)e™ dt

lJ‘Jc(r')e-(%)rd T, setT=at
a 0

= 2x¢)

5. Time Dijferentiation

Assume X (s) = L[x(?)]

Then L(%] =sX(s)=x(07)

Proof:

(@) | _tdx(t) i _F oo,
( iti I —r~|= “edl = | e du(t
(1) Definition { () J ! & € .E ¢ du(r)
(2) Integralion by parts:

4 &
[utnd() = utw) 2, = [w(odu()

Make the following substitution:

() =>w1)
e > uin)
I ix’ t)J = j-e_“drfr)
w LY A v
In the ROC of X(s). we must o A [ e
have lim._.[¢"x(1)] =0 ¢ 1(t)‘r=u { l(t"d{g
otherwise the Laplace integral . =
which is the area under e “x(1) = 0-x(07)- (‘-S)I x(t)e™dt
- o ]

from 0 to t=, will become . = aX(s)=x(0")
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ROC for Laplace Transform

o0

Laplace transform of x(t) is X (s) = I x(t)e! dt

The range of values of _s‘ for which the integral in the equation converges is referred to as the region
of convergence(ROC).

2.8 Properties of ROC for LaplaceTransform

1. ROC of X(s) consists of strips parallel to the jQaxis in the s-plane.
2. For rational Laplace Transform, the ROC does not contain anypoles.
N(s)
X (s)= —=general formof rational LT
D(s)

Roots of D(s)=0 are poles

3. Ifx(?) is of finite duration and if there is at least one value of s for which the LT converges, then the
ROC is the entires-plane.

4. If x(?) is right sided and if the line Re{s}zO'Ois in the ROC , then all values of s forwhich
Re{s }>oywill also be in the ROC.

5. Ifx(t) is left sided and if the line Re{s}=0y is in the ROC , then all values of s for which
Re{s } <oywill also be in the ROC.
6. Ifx() is two sided and if the line Re{s}=0y is in the ROC , then the ROC will consist of a strip in

the s-plane which includes the line Re{s }=0q.

50
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UNIT III
LINEAR TIME INVARIANT —-CONTINUOUS TIME SYSTEMS

3.1 System:
A system is an operation that transforms input signal x into output signal y.

el Bluck
wlk] 4 ulk] aGp vkl wik 4

3.2 LTISystems
* Time Invariant
=X(t)  y(t) &x(t-to)  y(t-to)
* Linearity
—alx1(t)+a2x2(t) alyl(t)+a2y2(t)

—alyl(t)+ a2y2(t)=T[alx1(t)+a2x2(t)]
* Meet the description of many physicalsystems
* They can be modeledsystematically
— Non-LTI systems typically have no general mathema tical procedure to obtainsolution

Differential equation:

» This is a linear first order differential equatio n with constant coefficients (assuming a and bare

constants)

f—ﬂ;m ay(t) = be(1)

The general nth order linear DE with constant equations is

. il (¢ = o " 4
| 2 G B (Y e + . —
aoy(t) + a1 -y(1) G 15U () + (1)

— g o
figx(t) + 1 aw{t)+ ...+ by (1 by ——x(t
AL Jln’ff[ ]'I me g rit) + 4 dtm o)

which we can write as:

Tt

Z”#f;”” ZJ,—JH

=il k=0

Linear constant-coefficient differential equations In RC circuit
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- To introduce some of the important ideas concerning systems specified by linearconstant-
coefficient differential equations ,let us consider a first-order differentialequations:

"
FYTRY
L

|

Input signal; wlt) kr. LR Output signal: (1)

gikl) 1T . 1
£ —iii) = =t
@ T o) =gt

=

33 Block diagramrepresentations

Block diagram representations of first-order systems described by differential and
difference equations

with

#a[n]
/1\ an adder
] > ‘\-.'_.J =30 ] + sl %qit) % {1+ ity
() fa)
multiplication
: by a coefficient i
={n] - g it » axit]
) [}
a unit delay/
differentiator
EA|
x[n] > o a~ X[n—1] ) = = r_:#

o =)

34 ImpulseResponse

s — YET " h@=H[5 @]

This impulse response signal can be used to infer properties about the system‘s structure (LHS of
difference equation or unforced solution). The system impulse response, /(f) completely characterises a
linear, time invariant system
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3.5 Properties of System ImpulseResponse

Stable
A system is stable if the impulse response is absolutely summable

Causal
A system is causal if /4(¢#)=0 when <0

Finite/infinite impulse response
The system has a finite impulse response and hence no dynamics in y(¢) if there exists 7>0, such
that: 4(£)=0 when T

3.6 ConvolutionIntegral
* An approach (available tool or operation) to desc ribe the input-output relationship for LTISystems

;{(t):ﬁ{t) —hl LTI System | o y{t):h{t}

*In a LTIsystem )
—d(t) h(t)

— Remember h(t) isT[d(t)]

— Unitimpulsefunction the impulseresponse

« It is possible to use h(t) to solve for any input -outputrelationship
* Any input can be expressed using the unit impulsefunction

3.6.1 Convolution Integral —Properties

*  Commutative .\‘(f) i /I(T) — /l(f) " .\‘(f)
- Associative  [x(f)* b (0)]* by (£) = X(1)*[Iy (1) * 1y (1))

Distributive  x(f) *[A, (1) + i, (O] =[x(2) * I ()] +[x(2) * b, ()]

Thus, using commutative property:

x(f) = Ix(r)h(!— r)dr= Ih(r)\'(.r -nydr

- -
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y(n)=- j‘)_l‘ a; vin-k) + AE by x(n-k) 10
k=1

ErfggTree.com
yinj)=-a1y(n—1)—ayyn—-2)—azy(n—-3)-.........—anayn—N+1)—any(n-N)
+hix(n—1)+bxmn-2)+bs(n-3)-.........+tbvax(n—M + 1) + by x(n — M)

IIR FILTER STRUCTURE REALIZATION
DIRECT FORM 1

A linear time invariant discrete-time systems characterized by the general linear constant
coefficient difference equation

N M
y(n)=- 3% ayn-k)+ ¥ bgx(n-k) 10

k=1 k=0
vin)=-a1y(n—1)—-axy(n—-2)—azy(n—-3)-.........—anayn—N+1)—any(n-N)
+hix(n—-1)+bhxmn-2)+bs(n—-3)-......... tbmax(n —M + 1) + by x(n — M)
Let
yo)=-a3yn-1)-ayn-2)-a3yn-3)-.........—aq; ym—N+1)-ayy(n—N)
+ w(n)
wh)=bix(n-1)+bax(n-2)+bsx(n—-3)-......... +byax(n-—M+1)+byx(n-—
M)

The structure realization of above equations

we get

oo

() s()]e)=| Tl )oli=r, o, |+

—a0

1.3 Distributivity Property

Convolution is also distributive,

x(e)#[ by (1) # by () = x(e) by (1) + x(r) by (2).
x(f)*[hl(,)+h2(,)]=_];x(f)[hl(t_r)mz(t_r)]df

w
—
~
—
*
[
=
—
.
S—
+
=

[
—
~.
~—
| I—
Il
} t—g

x(1)h, (f_f)mix(z)hz(,_ )dr

x(e) e[ (1) # by (1) ] = x(e) # by (1) + x(¢) # b, ¢)
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3.7 BLOCK DIAGRAM REPRESENTATION-STRUCTUREREALIZATION

IIR Systems are represented in four different
ways Direct Form Structures Form I and Form II
Cascade Form Structure

Parallel Form Structure
Lattice and Lattice-Ladder structure.

DIRECT FORM STRUCTURE FOR IIR SYSTEMS

IIR systems can be described by a generalized equations as

N M
y(n)=-)_ ak y(n—k)+Y_ bk x(n—k)
k=1 k=0
Z transform is given as
M N
H(z)=Y bk z*/ 1+ akz *
K=0 k=1
M N
Here Hi(z) =Y bk z* And H2(z) = 1+ Y akz *
K=0 k=0 ¢

Overall IIR system can be realized as cascade of two function H1(z) and H2(z). Here H1(z) represents zeros
of H(z) and H2(z) represents all poles of H(z).

1. Direct form I realization of H(z) can be obtained by cascading the realization of H1(z)
which is all zero system first and then H2(z) which is all pole system.

There are M+N-1 unit delay blocks. One unit delay block requires one memory location.
Hence direct form structure requires M+N-1 memorylocations.

3. Direct Form I realization requires M+N+1 number of multiplications and M+N number
of additions and M+N+1 number of memory locations.

55
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DIRECT FORM -I

x(n)

v

DIRECT FORM - 11

1. Direct form realization of H(z) can be obtained by cascading the realization of H1(z)
which is all pole system and H2(z) which is all zero system.

Two delay elements of all pole and all zero system can be merged into single delayelement.

Direct Form II structure has reduced memory requirement compared to Direct form I
structure. Hence it is called canonicform.

The direct form II requires same number of multiplications(M+N+1) andadditions
(M+N) as that of direct forml.
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X(n) b0
y(n)
&
7-1
-al bl
+
4 * — —
z-1
-a2 b2
+ " i | "
A K 3
-aN-1 bN-1 |
_; —— == o T
z-1
-alN bN
{::l f—t

FIG - DIRECT FORMII REALIZATION OFIIR SYSTEM

CASCADE FORM STRUCTURE FOR IIR SYSTEMS

In cascade form, stages are cascaded (connected) in series. The output of one system is input to
another. Thus total K number of stages are cascaded. The total system function
'H' is given by

H=HI1(2).H2(2)... ceoeeereeeeerererreenene. Hk(z) (1)
H=Y 1(2)/X1(2).Y2(2)/X2(Z). covvverrerrerrrar. Yk(z)/Xk(z) ()
k
H(z)=n Hk(z) 3)
k=1

57
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x(n)=x1(n) y1(n)=x2(n) y2(n)=x3(n) yk(n)=y(n)
H1(z) | H2(2) Hk(z) | |

>

FIG - CASCADE FORM REALIZATION OF IIR SYSTEM

Each H1(z), H2(z)... etc is a second order section and it is realized by direct form 2.

PARALLEL FORM STRUCTURE FOR IIR SYSTEMS

Swystem function for IIR systems is given as

M N
Hiz)=3 bz 5/ 1+ Saz " (1)
E=0 k=1
=bgt+brz +brzi+ bz 1 +a 2 a2t tag (2)

The above system function can be expanded in partial fraction as follows

Hz=C+Hi(z)+Hxz)......................THyz) (3)
Where Cis constant and Hk(z) is given as
Hk(z) =bw+baz' /1+anz +amz’ (4)
C
—

Hi(z) | —

w

w

Hy(z) {——

X(n) ki(z)

|

FIG - PARALLEL FORM REALIZATION OF IIR SYSTEM
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3.8 PROBLEMS

1. Determine the output response of RC Low pass network shown in figure due toinput
t

x(?) =tekC by convolution.

l><(t) ) CTT—IY(O

For the circuit shown in figure,

x(¢) =Ri(f) +_1J;i(t)dt (1)

W0 =—ld i(f)dt (2)

Taking LT of the equations and rearranging,

X(s) =RI (5)+" ) M
sC

re- L @

X(5)=sRCY(s)+Y(s)
Y (s)
X (s)

H(s)=

__ I RC
H(S)_(SRCH)_( I

s+ﬁ

t
x(f) =te *¢

X(s)z]1

(s +$2
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$(t) =x(D)*h(7)
1
Y(s)=X(s)H(s)=—BC

(s+$3
-t

(@)=L (Y(s))= 2—; Ctze K

2. The Input and Output of a causal LTI system are related by the differentialequation
d 2y(?) A0
dr? dt +
(1) Find the Impulse response of thesystem
(ii) Find the response of the systemif x(7) =eu(z)

8y(1)=2x(t). Using Fourier Transform

SOLUTION:
(1) Impulse response of thesystem:

d (1)
+

dr?
Applying Fourier Transform to the given Differential Eq.

JO2Y(j Q)+ Q6 Y(7Q)+8Y(7Q) =2 X (jQ) Y ()

(1Q2+6/Q+8)=2X(jQ2)

. 2x(Q)
Q)= (JO*+ 6 jQ+8) 2

Here x(¢) =Xt)and X (jQ) = 1
using partial fraction expansion

d
6 );(;) +8Y(H)=2x(f) ~  —mmmmmmmemee- (D

YO = o+l
JjO+2  jO+ 4
Set jQ =-2then AGQ+2)+B(jQ+4)=2, gives B=1
Set jQ =-4 then A( jO+2)+B(jQQ+4)=2, gives A =1
Y=y ]
Jj+2  jO+4

By taking inverse FT , y(¢) =e~*u(t) —e~?u(¢)
1
JO+ 3
2
J+3

(i) f x(¢) =e>u(z) then X (jQ)=

Y(jQ)(jQ2+jQ6+8)=

1) ——— =
(Q+3)(jQ2+6jQ+8)

using partial fraction expansion

V(= vy €
JO+2  jO+4 O+ 3
Solving for A,B & C, we get A=1, B=I and C=-2
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Then by taking Inverse FT, weget

y(t) =e?u(t) +e *u(t) —2e->u(r)

3. Realize the system described by the differential equation

&y (t)+ 4 (1) +7 (1) +8y(1)=5 &x(1) +4 dx(?) +7x(t) in Direct FormlIl.
dr dr? dt dr? dt

SOLUTION:
Apply Laplace transform for the given differential equation with assuming zero initial conditions.

s3Y(S)+452Y(S)+7s Y(S)+8Y(S)=552X(S)+4sX(S)+7X(S) /(1)

Y(s) 55%+4s +7
H(s)= =
X(s) s3+45%+7s +8
552+4s+7 _Y(s) ><W(s)

§s3+452+75+8 X(s) W(s)

W(s) 1
let =

X(s)  s>+4s52+7s +8
let V) Zsoiag 47 )

W (s)
from (1)
(s3+452+Ts+8)W(s)=X(5s) —3)
from (2)
Y(s)=(5s*+4s+)W(s) ~ ————— €))
from (3)
SSW () + 45> W (s) + TsW (s) + 8W (s) =X (s)
SSW(8)=X(5)—-4s>*W(s)-Ts W(s)—8W(s) —(5)
from (4)
Y(s)=5*W(s)+4sW(s)+TW(s) ~ ———— (6)
Equations (5) and (6) are used for implementing the system.

s'sw (o
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Find the convolution of the followingsignals.
x (1) =e~u(?) ; x (f) =e"u(r)
1 2

SOLUTION:

Lxi(t) xx2(6)]=X1(s)Xx(s)
xi(t)=e?u(t) ; Xi(s)=Le*u(t)]= o

1

1

xi(=e*u(t) ;Xao(s)=LlePu®]= —

s +b
Y =X@®X(@)=_4 |
1 2 sta s+b
A= SF | s =—a ,then A= 1
(s +a)(s +b) (b —a)
s +b 1
A= — — | g= =
G ra)sap) | ST b then B=rm
1 1
_(b-a) (b-a)

Y(s)

s +a s +b
1
y(©) :_(e_m - e‘b’)u(t)
b-a

5.Find the convolution of the followingsignals:

x(1) =e~?'u(t)

h(t) =u(t + 2).
SOLUTION:
Lx(t) x x2(t)]=X1(8)Xa(s)

xj(t)=e?u(t) and X;(s)=L[e?u(t)] = ——
s

28

xo(=L[u(t+2)]= =

2

mexmmkgézﬁ

e?S A B
=+
s(s + 2) s 842

|s=0

Y(s) =

A =sx

s(s+2)
B=(s+2)x

s(s+2)

|s==2;

1
+2

[Using time shiftingproperty,L[u(t)]= —]

62
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/72 1/2
Y () =2 -
s (s+2)
ve=esd -1 )
2s  2(s+2)
B e’ — 25
YO=37 2s12)
1 1
y®) = _u(t+2)- _ o2At2 )u(t+2)
2 2

6.1) Using Laplace transform , find the impulse response of an LTI system

& - dv(1)_ O— x()
described by thedifferentialequation dt Y dt
SOLUTION:
Apply Laplace transform for the given differential equation with assuming zero initial conditions
s2Y(8)—sY(S)-21(S)=x(s)r(s
ey

X(S{ §s—s—2
1
[(s+D)(s-2) ]
_4 B
(S S+
S B U
T3(5-2) 3S+1

h(t )=1_eZ‘ u(?) —l_e*’u(t)
3 3

i) Explain the properties of Convolutionintegral.
(1) Commutativeproperty

x,(2) #x, (2) =x, (¢) *x,(?)
(2) Associative property
[ (@0 ] 0 (0)=0 @) [rea( )2 (0)]
(3) Distributiveproperty
x (1) [0+ (O] =[x () o (D *x(0)]
(4) shift property
ifx, (1) *x,(t) =z(t) then
X0yt~ T)=2(~T)
(5) Convolution with animpulse
x(£) * K1) =x(2)

(6) Convolution with unitstep
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x(H)*u(t) = Ix( ddr

t—ty

And  x()*u(t—t)) = Ix(r)dr

(7) Width property
Let the duration of x,(¢) beT;
Let the durationof x,(#) beT,

Then the duration of the signal obtained by convolving x,(¢) and x, (¢) is 7, +7,

8.i) Solve the differential equation:

d2 dy(t)
7J’(f)+4 dé(f)+ 59(1)= 5x() with ¥(0°) =land g 0 2 andx(t)= u(t)
t
SOLUTION:

To solve the given differential equation we can use LT method.
APFIymg LT to the given dlfferentlal Eq. Wlth given initial conditions.

(07)
sYS sy(OTy (4ss (0) 5Ys 5Xs

s2Y (S )—s -2+ 4(sY(s) 1)+ 5Y (s)=5x(s)
s2Y (S )+ 4sY (s) + SY(S) " 45+ 6
A
(s*+4s +5)Y (s) :5_+s +6
S
Yy — > 4 S 6
s(s>+4s+5)  (s+4s+5)  (s2+4s+5)
Applying Partial fraction to the first term in Y(s)

5 A, Bs+C
s(s>+ 4s + 5) 5 (s*+4s +5)

5 _A(s*+ 4s + 5) + (Bs +C)s
s(s2+4s+5) s(s*+ 4s + 5)

5 CA((s +2)*+ 1) + (Bs +C)s
s(s>+4s+5) s(s*+4s +5)

By solving this Eq. We can get the values of A, B and C
A=1, B=-1 and C=-4

By substituting the values in Eq. (1) and rearranging the terms we have

Y (s) :1_— il _ 4 + 6 + S

s ((s+24D)  ((5+2+D)  ((s+2+ 1) ((s+2)*+1)
= + 2

s ((s+2)*+1)

By taking inverse LT we can get y(t)

W(t) =u(t) + 2e~?'sint
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d? () dylt ( = +
— * 3yt
ii) The system is described by the input output relation , JV t dt dt

Find the system transfer function, frequency response aﬁ’é impulse response.
System Transfer function:
Applying Laplace Transform to the given differential equation with zero initial conditions,

s2Y (S )+s¥(S )37 (S )=sX (s)+ 2X (s)
¥ (5)=E—x(s)
r(s) (5579

X(s)  (s24s-3)

=H(s)=systemtranferfunction

Frequence response of the System :
Applying FOURIER Transform to the given differential equation.

JY(jQ)HQY(Q)-3Y(Q)= (1) +2X(jQ) Y(Q)(
Qz+jQ—3):(jQ+2)X(jQ)
1) ——y (o)

Yf/ﬁ:j&_i&z)

X(Q)  (jOHQ-3)

Impulse response of the system:
SZY(S )+SY(S )— 3Y(S )st (s)+ 2X (s)
¥ (5)=EF2—x(5)

(s>+s — 3)
Y (s) (s+2)
X(s)  (s24s-3)
Impulse response of the systemh(t)
h(t) = inverse LT of H(s),
Y (s) (s+2)

X(s)_ (s%+s —3)

H(GOQ)= =Frequencyresponse

=H(s)

=H(s)

9. Draw the direct form I and II implementations of the system describedby

dy( ¢
A1) 5 ) a(r)
dt
Applying LT to the given differential Eq.
sY(s) + 5Y(S)= 3X (s)
(s +5)Y (5)=3X (s)
Y3y
X(s) (s+5)
Direct form I
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3
v (s e
X (s)= (s +5)—_?/_s 1;—5—3— ( 5)

KR X=X (1)
S S
ot S X (5) =W (5) ————— @)
S
from (1) and (2)

Y(s)=M(s)-" o))

Using (2) and (3) the system is implemented asfollows:

w s ~ s 2D

-,Crs*)

O rrecel i‘lﬂh L=
Direct form I
H(s) = Y(s) 3 Y(S) W(s)
TX(s)  (s+5)  X(s)  W(s)
let, W)l (1)
X(s) (s+5)
PR AC @
W (s)
from (1)
SW(s)+5W (s) =X (s)
sW(s)=X(s)-5M(s)——— 3)
from (2)
Y (5)=3Ms) e 4)
Using (3) and (4) the system is implemented as follows:
w (8D sw(sD
=4
s 3 Y (sD
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10. The input and the output gf a causal CTI system are related by thedifferential

dy(t), = O+ = ()

equation Jr 6 Jr Yt 8y(f) 2xt Findimpulse response of the
system. 2
SOLUTION:

Apply Laplace transform for the given differential equation with assuming zero initial conditions .

s2Y(S)+6sY(S)+8Y(S)—2X(S)
H(s)= X((E)) |s2+6s+8|

x(1) =Xt) and X (s) =1

2
H(S)= [mX( )

H(s) = A N B _ 2
(s+2)  (s+4) (s+2)(s+4)

A=(s+2)x ;| §=—2 S A=1
(s +4)(s+2)

B=(s+4)x 2z | s =—4 ~B=1
(s +4)(s+2)

] 11

~H )= s+2 s+4

Taking inverse Laplace transform to get impulse response
h(t) =e2u(t) —e=* u(r)

3.9 Convolution integralexamples

To find the output of the system with impulse response
ht)=e™, t=0
to the input
J’D, t<0 (sectionl)
f(th)=41, 0=t=1 (section22)
0, 1<t (section3)

we will use the convolution integral
y(t) = [ F(1h(t-2)dn

Because the input function has three distinct regions t<0, 0<t<1 and 1<t, we will need to split up the
integral into three parts.

Section 1: t<0
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For t<0 the argument of the impulse function (t-A) is always negative. Since h(t-1)=0 for (t-1)<0,
the result of the integral is zero for t<0.
This situation is depicted graphically below (t=-0.2):

Section 1: t<0
For t<0 the argument of the impulse function (t-1) is always negative. Since h(t-A)=0 for (t-1)<0,
the result of the integral is zero for t<0.
This situation is depicted graphically below (t=-0.2):
f(A), hit-A) vs. A and product, t=-0.2

1 S =
= E -i zero ref
i I flAh(t-2) | |
osf  F1 -
HER N h{t-A)
0.6 [ :: ; i ! L ,
EE !
04t & G I -
. i !
I I
0.2 i ! n
¥ i
0 -l-l-l‘.:'.l' T : | ;
-1 0 1 2 3 4 a
A
The result for the first part of our solution is the integral of the yellow line (which is always zero),
y(t) =0, t=0

Section 2: 0<t<1
For 0<t<1 we need to evaluate the integral only from A=0 to A=t, since f(A)=0 when A<0, and h(t-
A)=0 when (t-A)<0 (or, equivalently t<A). So the integral becomes, in effect:

y(t) = j'f(l]-h(t ~3)du

This situation is depicted graphically below (t=0.5):
f(A), h(t-A) vs. A and product, t=0.5

1 F J—
E [ | -E zero ref
A | | . f{ AM{t=A)
- ]| I .
08 NI ====1{3)
i N hit-A)
06 i - ; i &
ifF
04f ¥ i 1
4 1
I
: [
D - ll ‘ 1 "
1 1] 1 2 3 4 5
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We can now evaluate the integral of the yellow line:

y(t) = | F3)-h(t-2)dn

= [f(1)-h(t-2)dn = [1-e2Mdy
o

) Py,

£ r’
— E—Ztl’ ez;.dl — g2t lemr]
5 kz 0
., .
—e™ l[ne2t —1]}
- 1[1 _e—2t‘]
2 . J

Thus, the result for the second part of the solution is

y(t}:%[:l—e‘zt:], D<t=<l

Section 3: 1<t

For 1<t we need to evaluate the integral only from 2=0 to A=1, since f(1)=0 when A<0 and when

A>1. So the integral becomes, in effect:
i
y(t) = [f(l} -h(t - 2)da
0

This situation is depicted graphically below (t=1.2):
f(A), h{t-A) vs. A and product, t=1.2

1 = 'I' ______ —-I
E i :! zero ref
0.8 ] B faphita)|
i K —e=ef(A)
i i ()
asir i A t |
! /1
0.4r - I : J
! f ]
1 J :
021 i 5 -
l"'l"' g
D “al-l-l; I[‘- , I

We can now evaluate the integral:
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y(t) = [ F)-h(t-n)dn

1 1
= [f(2)-h(t-2)da = j 1.e2tHdy,
u]

1 ] 1
_ E—Et[ eEr.d;_u _ E—Zt; |
0 \ JI
R
=g 1[e 1] e —[1 e?)|
L2 )

Thus, the result for the third part of the solutlon is:
e )
B=e="" Z(1-e2)|, 1<t
y(t) LEL J}

The Complete Answer
We can get the results for all time by combining the solutions from the three parts.

y(t)=0, t=0
’f(t)zé[l—e‘zt_‘], O<t=<1
ol 1, )
B=e"" Z(1-e?)|, 1<t
y(t) 2 | ) )
This result is shown below. Click on 1mage to go to an animation of the procedure.
flc-n'm ution '3 |[t] ant] hit)
04t
03+
0.2t
01r
D 1 1 1 1
-2 -1 0 1 2 3
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Continuous-time convolution

Here is a convolution integral example employing semi-infinite extent signals. Consider the convolution
of x(#) = u(?) (a unit step function) and
h(t)=e *u(t)

(a real exponential decay starting from ¢ = 0). The figure provides a plot of the waveforms.

At} hit)
A
-'-“:' AE‘““}H[ﬂ
(a)
t t
Increasing t x(A)
—_—
h(t-2) (A —m
Ae=My(t — )
(b}
T t 0

Consider various overlap cases as fincreases

The output support interval is

[0+0,0+ ) = [0,
You need two cases (steps) to form the analytical solution valid over the entire time axis.
. Case 1: Using Figure b, you can clearly see that for # < 0, it follows thaty(¢) =0.

. Case 2: Again looking at Figure b, you see that for > 0, some overlap always occurs betweenthe

two signals of the integrand. The convolution integral outputis

AL
y(t)= j;Ae'“f‘-*L'l A= Aa'“'-—_fx L = g[1 -e™]

Putting the two pieces together, the analytical solution for y(7)
5 s A —at
y(t)-E[1—e Ju(t)

71
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UNIT IV
ANALYSIS OF DISCRETE TIME SIGNALS
4.1 Samplingtheory

Let x(#) be a continuous signal which is to be sampled, and that sampling is performed by
measuring the value of the continuous signal every T seconds, which is called the sampling interval.
Thus, the sampled signal x[n] given by: x[n] =x(nT), withn=0, 1, 2, 3, ...

The sampling frequency or sampling rate fs is defined as the number of samples obtained in one
second, or fs = 1/T. The sampling rate is measured in hertz or in samples per second.

The frequency equal to one-half of the sampling rate is therefore a bound on the highest
frequency that can be unambiguously represented by the sampled signal. This frequency (half the
sampling rate) is called the Nyquist frequency of the sampling system. Frequencies above the Nyquist
frequency fN can be observed in the sampled signal, but their frequency is ambiguous. That is, a
frequency component with frequency f cannot be distinguished from other components with frequencies
NfN + fand NfN — f for nonzero integers N. This ambiguity is called aliasing. To handle this problem as
gracefully as possible, most analog signals are filtered with an anti-aliasing filter (usually a low-pass
filter with cutoff near the Nyquist frequency) before conversion to the sampled discrete representation.

» The theory of taking discrete sample values (grid of color pixels) from functions defined over
continuous domains (incident radiance defined over the film plane) and then using those samples to
reconstruct new functions that are similar to the original(reconstruction).

» Sampler: selects sample points on the imageplane
» Filter: blends multiple samplestogether

» Samplingtheory
Sampling Theorem: bandlimited signal can be reconstructed exactly if it is sampled at a rate
atleast twice the maximum frequencycomponent in it."
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Consider a signal g(t) that is bandlimited.

> Sampling theory
Mixi=" dix—nT) Mis) = EJ—:&—nSﬂﬁ-

—

o HIfs}

LI [T

The maximum frequency component of g(t) is fm. To recover the signal g(t) exactly from its
samples it has to be sampled ata rate fs _ 2fm. The minimum required sampling rate fs = 2fm is called

nyquist rate

A continuous time signal can be processed by processing its samples through a discrete time
system. For reconstructing the continuous time signal from its discrete time samples without any error,
the signal should be sampled at a sufficient rate that is determined by the sampling theorem.

4.2 Aliasing

Aliasing is a phenomenon where the high frequency components of the sampled signal interfere
with each other because of inadequate sampling ®s < 2om. Aliasing

i o Aliasing
o 7 AAA AP AR
X ' WA ' 5
% =
4
\/\_/_x 5
4 4

Aliasing leads to distortion in recovered signal. This is the reason why sampling frequency should be
atleast twice the bandwidth of the signal.

73
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SAMPLING THEOREM
It is the process of converting continuous time signal into a discrete time signal by taking samples of the
continuous time signal at discrete time instants.

X[n]= Xa(t) where t= nTs=n/Fs ..(D

When sampling at a rate of fs samples/sec, if k is any positive or negative integer, we cannot distinguish
between the samples values of fa Hz and a sine wave of (fa+ kfs) Hz. Thus (fa + kfs) wave is alias or
image of fa wave.

Thus Sampling Theorem states that if the highest frequency in an analog signal is Fmax and the
signal is sampled at the rate fs > 2Fmax then x(t) can be exactly recovered from its sample values. This
sampling rate is called Nyquist rate of sampling. The imaging or aliasing starts after Fs/2 hence folding
frequency is fs/2. If the frequency is less than or equal to 1/2 it will be represented properly.

Example:
Casel: X1(t) =cos 2T1(10) t Fs=40 Hz i.e t=n/Fs
x1[n]= cos 2TT(n/4)= cos(TT/2)n
Case2: X1(t) = cos 2T1(50) t Fs=40 Hz iLet=
n/Fs x1[n]= cos 2TT(5n/4)= cos 2TT( 1+%)n
= cos
(TT/2)n

Thus the frequency 50 Hz, 90 Hz , 130 Hz ... are alias of the frequency 10 Hz at the sampling rate of 40
samples/sec

QUANTIZATION

The process of converting a discrete time continuous amplitude signal into a digital signal by
expressing each sample value as a finite number of digits is called quantization. The error
introducedin

representing the continuous values signal by a finite set of discrete value levels is called
quantization error or quantization noise.

Example: x[n] =5(0.9)"u(n) where (0 <n<oo & fs=1Hz
N | [n] X4 [n] Rounding X4 [n] Truncating eq [n]

0 |5 5.0 5.0 0

1 4.5 4.5 4.5 0

2 | 4.05 4.0 4.0 -0.05

3 3.645 3.6 3.6 -0.045

4 | 3.2805 3.2 33 0.0195

Quantization Step/Resolution : The difference between the two quantization levels is called
quantization step. Itis given by A = Xyax — Xmin / L-1 where L indicates Number of quantizationlevels.
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.CODING/ENCODING

Each quantization level is assigned a unique binary code. In the encoding operation, the
quantization

sample value is converted to the binary equivalent of that quantization level. If 16 quantization levels
are present, 4 bits are required. Thus bits required in the coder is the smallest integer greater than or

equal toLog,L. i.e b= Log,L
Thus Sampling frequency is calculated as fs=Bit rate /
b.

ANTI-ALIASING FILTER
When processing the analog signal using DSP system, it is sampled at some rate depending upon
the
bandwidth. For example if speech signal is to be processed the frequencies upon 3khz can be
used. Hence the sampling rate of 6khz can be used. But the speech signal also contains some frequency
components more than 3khz. Hence a sampling rate of 6khz will introduce aliasing. Hence signal
should be band limited to avoidaliasing.

The signal can be band limited by passing it through a filter (LPF) which blocks or attenuates
all the frequency components outside the specific bandwidth. Hence called as Anti aliasing filter or
pre- filter. (BlockDiagram).

SAMPLE-AND-HOLD CIRCUIT:
The sampling of an analogue continuous-time signal is normally implemented using a device called
an
analogue-to-digitalconverter(A/D).Thecontinuous-timesignalisfirstpassedthroughadevicecalled a
sample-and-hold (S/H) whose function is to measure the input signal value at the clock instant and
hold
itfixedforatimeintervallongenoughforthe A/Doperationtocomplete. Analogue-to-digitalconversion
ispotentiallyaslowoperation,andavariationoftheinputvoltageduringtheconversionmaydisruptthe
operationoftheconverter. TheS/Hpreventssuchdisruptionbykeepingtheinputvoltageconstantduring the
conversion. This is schematically illustrated byFigure.

Clock
(T l
Sample AT
A ﬂ E'-II'Il.j ﬁ t.--l."'l:'l"'\.l.f'l'[L"'l- _'\-_||'||
Hold

After a continuous-time signal has been through the A/D converter, the quantized output may differ from
the input value. Themaximum possible output value after the quantization process could be up to half the
quantization level q above or q below the ideal output value. This deviation from the ideal output value is
called the quantization error. In order to reduce this effect, we increases the number ofbits.

75
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A

Quanhsaton level

4.3 Sampling of Non-bandlimited Signal: Anti-aliasingFilter
Anti aliasing filter is a filter which is used before a signal sampler, to restrict the
bandwidth of a signal to approximately satisfy the sampling theorem.

The potential defectors are all the frequency components beyond f;/2 Hz.
We should have to eliminate these components from x(?) before sampling x(?).

As a result of this we lose only the components beyond the folding frequency f;/2 Hz.

These frequency components cannot reappear to corrupt the components with frequencies below the
folding frequency.

This suppression of higher frequencies can be accomplished by an ideal filter of bandwidth f;/2 Hz. This
filter is called the anti-aliasing filter.

The anti aliasing operation must be performed before the signal is sampled. The anti aliasing filter,
being an ideal filter isunrealizable.

In practice, we use a steep cutoff filter, which leaves a sharply attenuated residual spectrum beyond the

folding frequency f,/2.
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4.4 DISCRETE TIME FOURIERTRANSFORM

In mathematics, the discrete-time Fourier transform (DTFT) is one of the specific
forms of Fourier analysis. As such, it transforms one function into another, which is called the frequency
domain representation, or simply the "DTFT", of the original function (which is often a function in the
time-domain). But the DTFT requires an input function that is discrete. Such inputs are often created by
sampling a continuous function, like a person's voice.

zln|, n €L

Given a discrete set of real or complex numbers: (integers),the

discrete-time Fourier transform (or DTFT) of fg [us]ually written:
=

X(w)= Y z[n]e ™.

n==0o0

Often the - {"'}sequens:e represents the values (aka samples) of a continuous-time
function. :F{ t ] at discrete moments in time: f = 1T, where Tis the sampling mterval

(mn seconds), and I/T = fSE the sampling rate (samples per second). Then the DTFT
provides an approximation of the contmuous-tune Fourier transform:

X(f)= [: a(t) -e "t dt,

To understand this, consider the Poisson summation formmla. which indicates that a
periodic summation of function X (.f ) can be constructed from the samples of function
Z(t). The result is:

= ’F(f) dé{ Z }f (f —_ ﬂ,fqlll = T Z I(ﬂ-ﬂ f_—iﬂfranl 3
The nght-hand sides of Eq.2 and Eq.1 are identical with these associations:
z[n| =T - z(nT)

w=2fT =27 (%)

X(w) = i z[n] e7m.

n=—00

Often the ¥ [n']scqm:nce represents the values (aka samples) of a continuous-tume
function. (t) at discrete moments in time: { = nT, where T is the sampling mterval

(mn seconds), and 1 / T= f s1s the sampling rate (samples per second). Then the DTFT
provides an approximation of the continuous-time Founer transform:

o0

X(f) =j a(t) -e ™ qt.

—00

To understand this, consider me%@o?%%%%%%%gg' ! énéh‘c:act)er% that a
pertodic summation of function can be constructed from the saniples of function

f s\
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4.5 Inversetransform

The following inverse transforms recover the discrete-time sequence:
|
an]= — f X(w) - ™" dw
27 —

1
— T]E: Z_T(f} . Ei?:rfﬂi"‘ df
T

The integrals span one full period of the DTFT, which means that the x[n] samples are also the
coefficients of a Fourier series expansion of the DTFT.

Infinite limits of integration change the transform into a continuous-time Fourier transform
[inverse], which produces a sequence of Dirac impulses. That is:

/OG XT{JC) . Ei?ﬂf! df — /DG § 5 Z I(HT} E—t'?i'ran . Ei?i‘:_f! df

- n=—o0

_ Z T 'I(?ET}[ E—ﬂ:ran ) Eéﬂ?rfi df

N=—=00
o0

= Y z[n]-&(t —al).

N=—0u

4.6 Properties

s is the convolution between two signals
*
.« [ﬂ] 1= the complex conjugate of the function x/m]
o Prplll esents the comrelation between x/n/] and y/7].

¥l
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Property Time domain * \_ﬂ-]

Linearity  ax[n] + by[n|
Shift in time T[n — K]
Shift 1n
5 du
(modulation Z[1€"”"
)
T
el
Time *

° o 201
conjugation
Time .
reversal & .r[-n.]
conjugation
Derivative
m frequency 7 :I:[n]
Integralin !
frequency EI[H]
S;révolvem .I[n.] . y[n]
Multiply in
- z[n] - y[n]

Correlation ), |7 [ ] = I[—n]* * y[' ]Rmy(‘-‘-’) =

. o0
Parseval's

theorem
n=—00

4.7 SYMMETRYPROPERTIES

The Fourier Transform can be decomposed into a real and imaginary part or into an even and odd

EnggTree.com
EC3354-SIGNALS AND SYSTEM

Frequency domain X (“"“)
aX (e™) + bY (™)
X(eiw)e—iwk

X(eiiw—a))
X (e ™)
X (e™*)*

X(eiw)*

X (e:’w)
dw

/ “ X(e?)dv

X(eiu) . Y(e'iw)

l Twh iw

Q—WX(E ) * Y(.e' ) -
(elu‘)* . }’(el(o)

E= Y zfnly'lr] E=— f'X (€)Y* () du

part.

X (™) = Xg(e™) +iX;(e™)
or
X(E'ﬁ.ui) = ‘XE(E'IW) + "X‘D(Eiﬁf)

Time Domain Frequency Domain

z[n] X( "‘“)
x"[n] X*(e PF'“‘} 79
I*i:—rt] _}{*(Eﬁp)
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4.8 Z-transforms

» Definition: The Z — transform of a discrete-time signal x(n) is defined as the powerseries:

o

Xl=)= z x(m)z7F

k=—mo

Alz)=2Z| xtn)]

where z is a complex variable. The above given relations are sometimes called the direct Z - transform
because they transform the time-domain signal x(#) into its complex-plane representation X(z). Since Z —
transform is an infinite power series, it exists only for those values of z for which this series converges.

The region of convergence of X(z) is the set of all values of z for which X{z) attains a finite
value.

» For discrete-time systems, z-transforms play the same role of Laplace transforms do in continuous-
timesystems
Bilateral forward Z transform

. H[z]=Y hn]z
Bilateral nvergesZ transform

1

= —

fx Hlz]z""dz

Z-transform Pairs
» h[n] =d[n]
Region of convergence: entire z-plane
oo ¢]
Hlz]= zc?[n] Z = Zﬁ[n}:_” =1

n=- n={

> h[n]=d[n-1]
Region of convergence: entire z-plane

W[n-1] & 2 H[z] Hz]= Y ofn—1]=" =

L]

14-
i

1]z =27

1l
LA

> Inverse z-transform

cj: " F [z ]:"_1 dz

o P
-? f—jﬁ\:

7lnl=
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ADVANTAGES OF Z TRANSFORM
1. The DFT can be determined by evaluating ztransform.
2. Z transform is widely used for analysis and synthesis of digitalfilter.
3. Z transform is used for linear filtering. z transform is also used for finding Linear convolution,
cross-correlation and auto-correlations of sequences.
4. In z transform user can characterize LTI system(stable/unstable,causal/anti- causal) and its

response to various signals by placements of pole and zeroplot.

ADVANTAGES OF ROC(REGION OF CONVERGENCE

1. ROC is going to decide whether system is stable orunstable.
2. ROC decides the type of sequences causal oranti-causal.
3. ROC also decides finite or infinite durationsequences.
Z TRANSFORM PLOT
Imaginary Part of z
Im (z)
Z-Plane b

|z|>a

A

|

\/ Re (z) Real part of z
N

4

A

Fig show the plot of z transforms. The z transform has real and imaginary parts. Thus a plot of
imaginarypartversusrealpartiscalledcomplexz-plane. Theradiusofcircleis 1 calledasunitcircle.

This complex z plane is used to show ROC, poles and zeros. Complex variable z is also expressed

in polar form as Z= re®where r is radius of circle is given by |z| and W is the frequency of the
sequence in radians and given byl_z.
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S.No Time Domain Property z Transform ROC
Sequence
1 O(n) (Unit sample) 1 complete z plane
2 O(n-k) Time shifting z¥ except z=0
3 O(n+k) Time shifting zt exceptz=00
4 u(n) (Unit step) 1/1-z' = z/z-1 |z| > 1
5 u(-n) Time reversal 1/1-z |z <1
6 -u(-n-1) Time reversal z/z- 1 |z| <1
7 n u(n) (Unit ramp) Differentiation z'/(1-z1)y? |z| > 1
8 a" u(n) Scaling 1/1- (az!) |z| > |a]
9 -a"  u(-n-1)(Left side 1/1- (az’!) |z| < |a
exponentialsequence)
10 | na"u(n) Differentiation az'/(1-az1)? |z] > ]
11 | -na”u(-n-1) Differentiation az'/(l-az’1)? |z| <|a
12 | a"for 0 <n<N-1 1- (azHhN/ 1-az'l laz'1| <oco
except z=0
13 | 1 for 0<n<N-1 or Linearity 1-zN1-z71 |z] > 1
u(n) —u(n-N) Shifting
14 | cos(won) u(n) 1- z'cosw, |z| > 1
1- 2z 'coswytz2
15 | sin(wgn) u(n) z1sinw, |z| > 1
1- 2z 'coswyt+z2
16 | a" cos(won) u(n) Time scaling 1- (z/a)'coswy |z| > |a
1- 2(z/a) 'coswot(z/a)?
17 | a" sin(won) u(n) Time scaling (z/a)'sinw, |z| > |a]

1- 2(z/a) 'coswg+(z/a)?

Properties of z- transform

1. Linearity

x(n)<~->X ,(2)

x,(n)«<—=—>X,(2)

4.9-Properties Of Z transform

Z- Transform of a signal x(n) is defined by

X(@)= ix(n)z

-
n=—x0
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Ax(n)+Bx(n)«~<—>AX(z)+BX(z)
Proof:
z- transform of Ax, (n) +Bx, (n) = Z[Axl(”)+Bx2 (n)]z -
:z [Ax ((t)]z ‘”+Z [Bx 5 (n)]z =4 Z[x (p)]z +B Z[x ) (n)]z o

=AX, (2) +BX, (2)

2. Shifting in timedomain

x(n)«—=>X(2)
x(n—k)<—=—z"%X(2)
Proof:
z- transformofx(n—k)zz [x(:—k)]z‘”
let n —k =m _
n=m+k
2 Lx(n=hJzr=) [xm) |z e 0=z4Y [x(m) ] m=zkx g
3.Time reversal
x(n)«<—=>X(2)
x(—n)«—=—>X(z")
Proof:
z- transform of x(—n)=i[x(—n)]z*"
let —n =m :
n=—m
2 [xem ]z 7= [x(m) ]z =3 [x(m) ]z ) =X (= *

4.scaling in 7-domain
(multiplication by an exponential sequence)
z)
a

x(n)<—=>X(2)
a ”x(n)(%X( L J

z- transform of a"x(n):z ’ [a”x(n)]z -

Proof:

n=—00

Z[x(n)](a ’lz) 7"=X(Cl 712) = X{?U
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5. Differentiation in z-domain
x(n)«<—=>X(2)
dX(z)

dz

nx(n)<~=—>—z

Proof:

z- transform of x(n)= X (2) = ix(n) z

-
n=—o0

differentiating the z-transform, we have,

) 5 -z
& £

=z ‘1f(nx(n))z -

n=—00

-z d)fiz(z) =nz.;(nx(n))z‘”

6.Convolution
x(n)«~=—X(z)
xgn)«—>X(z)

x(m)*x(n)<«——X(2)X(z) ,

Proof:
By definition,

xy(n)*xy(n)=p _x,(k)x,(n—k)
Z — transform of x (n) * x(n)= i[xl(n) *x(n)lz ™

=SS nmn —kz

n=—ook =—o0

let n—k=p
n=p +k
=D > x(bx p)z " . w
p=—ook = :sz (p)z o le (k)z 7k =X,(2) X, (2)
p=—00 k =—o0

7.Correlation
x(n)<<->X (2)
xgn)<—=—>X(z)

Y, X)Xz

Proof:
By definition,
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Correlation between two signals  x,(n)&x,(n) 1s given by
Y., =x()*xzn)

Z — transform of x,(n)*x, (—n)zz [x(n)*x, (m)]z™"

=X@XE™
Using convolution and time reversal property of z- transform

Note:

Convolution property:

My x(me—=sX(D)X()
Time reversal property:
x(—n)<—=—X(z")

8.Conjugation

x(n)«<—=—>X(z)

x*(n)«<=—>X*(z")

Proof:

z- transform of x'(n)= i [x*(n)]z -
- 3 b e

9.1nitial value theorem
For causal signal x(n)

x(0) =it X ()

Where, x(n)«=—>X(z)
Proof:
For causal signal x(n)

X(z):Zo;(n)m:o
X (2) =x(0) +x(1)z 4+x(2)z 24+x(3)z +........
It X (z) =x(0)

10Final value theorem
For causal signal, x(n)

x(n)(Z—+>X+(z)
If poles of X *(z) are within the unit circle in z-plane, then
x(0) =1lim(z —-1) X * (2)

z—1

Proof:
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k

Z{x(n+1)y—x(n)}=lim Z [x(n +1)—x(n) %_"k

n=0
k

zX(2)—zx(0)—X *(z)=lim Z [x(n +1) —x(n) % n

k —w b

(z—DX *(z)—zx(0)=lim Zk: [x(n +1) —x(n) ﬁ n

n=0

lim{(z — 1) X * (z) ~2x(0)} = limlim> [x(z + 1) ~x(n)]z

z—1 z—>1 k>
n=0

=limllikm{ [x(1)=x(0) ]+ [x(2)—x(1) ]+ x(3)—x(2) ]+ 1+ [ x (k- 1)—x(h) ] }

=[x(0) =x(0)]
lim(z — 1) X * (z) —x(0) =[x(c0) —x(0)]

z—1

x(0)=lim(z—-1) X+ (2)

4.10-Properties of DISCRETE TIME FOURIER TRANSFORM (DTFT)
x(n)<«LLEL 5 X(/ @)

X(ef “’): i x(n)e~n =Analysisequation

n=—00

1 N
x(n)= 5 J'X(e/ w)e] “dw —>synthesis equation
7[2

Properties of DTFT:

1.Linearity:
x(n)( DTFT_)Xl(ef“’)

)}n){ DTFT _, X(ezjw)
x;(n) +B x, (n)¢——F774 X 1 (ef“’)JrBX 2 (efw)

Where A , B are constants.

Proof: 3
DTFT of Ax,(n) +Bx, (n) = Z[Axl(n)+Bx2 (n)]eijw"
=2 Lax]erms Y By m]evm=aY [xmfer By [x L m]e””

=4 X (e’/?) +BX (¢/?)

2.Periodicity
DTFT is periodic with period 2 &t
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x(n)<«—DIET_ X (i
) where _k* is an integer.

X(ej(u)+2krc)) =X(ejm)

proof : X(ef(wz”k))z ix(n) o (@2mkn

n=—o0
o0 o0
:z x(n)e™ ™" ok x(n)e /"= X(ef‘”)
= =Y.
since e”7*"*"=1

n = int eger

3.Time shiftingproperty

proof -
x(n)<—RIET 5 Xo jw) DTFT of x(n—k)is=zic(n—k)ef/“’”
x(n—k)«-LLEL 5 e~7 “’kX(e/ “’)e n—k=pn
=k +p

o0 o0
ZZ x(p)e ok +p) _ e—j(uk Z x(p)e —jop_ e—j(uk X(e j(u)
p=—0

p=—0
4.Time Reversalproperty
x(n)<«-LLEL —)X(ef “’)x(—n)
¢ DIFT_ X(efja))
proof -

DTFT of x(—n)is=fx(_n)e—jw

let —n=p
n=-—p

=i x(p)e —ffo(—w:z;oi x(p)e Y= Xe _jw)

p=—o°

5.Conjugation

x(1)«—DILET _>X(eja))

x*(n)(—DTFT—>X*(e‘fa’)
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proof

DTFTof x(n)iszzwx(n)e*jw _

0

DTFTof x*(n)is=) x*(n)e?“-—
For

0

#éﬁ(”)ejm | |

= { S x(ne ) f =x(e)

n=—o0

6. Frequency shifting
x(n)«LLEL —>X(efa’)

eja)o”x(n)( DTFT_ ej(a)—a)o))

proof :

DTFT of x(n) is =Zojc(n)e‘f on

Nn=—0o0

DTFTofe “”"x(n)iS:Z &' x(n)e7"

n=—oo

:Z x( n\e*j(“%”")”:X( e"("*“’“))

n=—00
7.Differentiation in frequency

x(n)<«—RLET e/’(o)

n x(n) < DT >/ dX(ed'“’)
dw

proof :
DTFTofx(n)iS=Zx(2)€_j “’”=X(€’ ”)

d)(;l(@’w _ ] inx(n)e—ja)n
ax (o) 7
I =Snx(n)e

=DTFT of nx(n)=j M
do

—jon
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8. Convolution in time
x(m) LI X(¢')
X)L X(ef)

X, (n)* %, (NI 5X ()X, (e7?)

Proof:
By definition,

0

x1 (1) * x, (m) =D _x, (k )xy (n —k )

DTFT of x,(m)*x, ()= [x,(n)*x, (M’

n=—00

=D D x(kx,  (n—k)e7

n=—ook =—o0

let n—k=pn
=p +k
=SS xkx,  (p)e?
p=—wk =—0

o0

Sx e " 2m (P)eTr=X (@K ()

p=>

9. Convolution in frequency (Multiplication)

x{n) L5 X(g/)

)an)( DTFT_)X(%/(U)
1
xy (o, (DD (62X, ()
i
Proof:
X(d“’): Zx(n)e‘/“’” =Analysisequation
l - 10] jon
x(n)= I X(‘d )ef do —>synthesisequation
275
1 -
x,(n) = X, (e)e’"da
(= [

x, (n) 227% J'Xz (e""")e”’"da)
2z

let  x,(n) ZZL JX 5 (eﬂ)eﬂ”d/l changing var iable wto A
4 2
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DTFT Of xy (n)x (n) = Z:[xl(n)x2 (n)]e””
i <n> X(H)e dze
2

P 27 5,

= J‘Xi ’ﬂ x(n)e_j("”)”d/l

n=—00

zli”z'fi)(z(e )X, (€ P)d = 2~1[X (e0)ex (e)]
T
10 .Parseval’s relation for DT signals

x(n)<«LLEL 5 X(&/ @)

) 1
Syt =5, (e

Proof:

2do

X(e’“’) Zx(n) e/ =DTFT of x(n)
x(m)=> Ix(efw) dde

x*(n):_ X*(e’“’)e‘f nd @
2r,”

St Tatnwn
:zw x(n) I X (e"" e’dw

n=-© 2 T

J‘X (ef“’){ Zx(n)e_’“’" tdw

—jX*(efw)X(:JZ da):_IX(er") do
21, 21, |

RELATIONSHIP BETWEEN FOURIER TRANSFORM AND Z TRANSFORM.
There is a close relationship between Z transform and Fourier transform. If we replace the complex
variable z by e 7%, then z transform is reduced to Fourier transform.
Z transform of sequence x(n) is given by
oo

X(@z)=2 x(n)z™ (Definition ofz-Transform)
n=-00
Fourier transform of sequence x(n) is given by
90
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co

X(w) =2 x (n)edon (Definition of FourierTransform)
n=-00

Complex variable z is expressed in polar form as Z= re/®where r= |z| and @ is L_z. Thus we can be
written as
(o)

X(z) =2 [ x (n) r™] edon
n=-00

(00)

X(2) Lejw =2 x(n) e

n=-00

X(2) | =d"=x(w) at |z| = unitcircle.

Thus, X(z) can be interpreted as Fourier Transform of signal sequence (x(n) r™). Here r grows with n if

r<l and decays with n if r>1. X(z) converges for |r|= 1. hence Fourier transform may be viewed as Z

transform of the sequence evaluated on unit circle. Thus The relationship between DFT and Z transform

is given by
X(2z) M r=x(k)

The frequency w=0 is along the positive Re(z) axis and the frequency TI/2 is

along the positive Im(z)

axis. Frequency TT is along the negative Re(z) axis and 3[1/2 is along the

negative Im(z) axis.
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Frequency scale on unit circle X(z)= X(®) on unit circle

1miz)
w=T]/2
z(0.19)

jw

w=[] w=0
z(-1.0) z(1.0) Re(z)

F 3
v

Z transform properties

Z-transform Properties
Properties of z - transform
1. Linearity

Z(xy(nT)+xy,(nT))=Z(xy(nT)) + Z(x,(nT))

Initial Value ¥(0) =Im X(2)
X(2)=x(0)+x(D)z"" +--

3. Final value ¥(%0) = m(1 -z )X(2)

¥(2) = lim. X (5)

[ ]
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s—>0 < z—1
1 1
— C> 3
) 1-:
S S 1-z"1
sX(s) © (A-zNHX()
im sX(s) < Im(1-z"")X(2)
5s—0 z—1
1. Periodicity:
X(etwt2)) — X ()

2. Linearity:
axy|n| + bra[n| «+— aXi(e™) + bXa(%)

3. Time Shift:

rin — ng| +— ANTImAXTE LIE

4. Phase Shaft:

eF" rln| +— X (edle0l)

5. Conjugacy:
*[n| «— X*(e™™)

6. Time Reversal
z|-n} +— X(e™¥)

7. Differentiation

" dX(e™)
n.Ilﬂl =3 jT
8. Parseval Equality
! SN wyi12 g
"=E_m|1:§n!| i /;r]X(e-’ ) dew

9. Convolution

yln] = zln) * hin] «— Y () = X (™) H(e™)

10. Multiplication

93
y[n| = z1|n|rajn] «— Y (&™) = ;1- Xi(e) Xo(ed==9)dp
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4.11 INVERSE Z TRANSFORM (I7ZT)

The signal can be converted from time domain into z domain with the help of z transform (ZT). Similar

way the signal can be converted from z domain to time domain with the help of
inverse z transform(IZT). The inverse z transform can be obtained by using two
different methods.
1) Partial fraction expansion Method (PFE) / Application of residuetheorem
2) Power series expansion Method(PSE)

1. PARTIAL FRACTION EXPANSIONMETHOD

In this method X(z) is first expanded into sum of simple partial fraction.

agz™+a 2™+ +ag
Xiz)= form =n
by +brm™+ . + by
First find the roots of the denominator polvnomial
ag 2% a 2= +an,

X(z) =

(z- p1)(z- p2)...... (z- pn)

The above equation can be written in partial fraction expansion form and find the coefficient Ag and
take IZT.

SOLVE USING PARTIAL FRACTION EXPANSION METHOD (PFE)
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S.N Function (ZT) Time domain sequence Comment
0

1 a"u(n) for |z| > a causal sequence
1 | -a" u(-n-1) for |z| <a anti-causal sequence
az
1
1 (- u(n) for |z| > 1 causal sequence
1
2
+ -(-)*u(-n-1) for |z| < a anti-causal sequence
-
1
-2(3)" u(-n-1) + (0.5)* u(n) stable system
3- for 0.5<|z|<3
412 2(3)* u(n) + (0.5)" u(n) causal system
3 for |z]>3
1-3.52 -2(3)" u(-n-1) - (0.5)" u(-n-1) for |z|<0.5 | anti-causal system
1+1.522
-2(1) u(-n-1) + (0.5)" u(n) stable system
for 0.5<|z|<1
4 1 2(1)* u(n) + (0.5)" u(n) causal system
] for |z]>1
1-1.5z -2(1)* u(-n-1) - (0.5)" u(-n-1) for |z|<0.5 | anti-causal system
14+0.5z2
5 142 z1+ 272 20(n)+8(1)" u(n)- 9(0.5)" u(n) causal system
for |z|>1
1-3/2 z'4+0.5z
1+ z! (1/2-j3/2) (1/2+j1/2)» u(n)+ causal system
6 (1/2+33/2) (1/2+j1/2) u(n)
1-z' +0.5z2
1 -0.5) z"! 4(-1/2)" u(n) — 3 (-1/4)> u(n) for [z|>1/2 | causal system
! 13/4 71+1/8 72
1- 127! (-1/2)*u(n) for |z|>1/2 causal system
8 1- 1/4z2
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z+1 O(n)+ u(n) — 2(1/3)" u(n) causal system
9 for |z|>1
3722-4z+1
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5z 5(20-1) causal system
10 for |z|>2
(z-1) (z-2)
z’ 4-(n+3)(1/2)" causal system
11 for |z|>1
(z-1) (z-1/2)?

RESIDUE THEOREM METHOD

In this method, first find G(z)= z™! X(Z) and find the residue of G(z) at various poles of X(z).

S. No Function (ZT) Time domain Sequence
1 z For causal sequence (a)" u(n)
z—a
2 z (2"-1) u(n)
(z-1)(z-2)
3 7’ +z (2n+1) u(n)
(z-1)
4 z 4 — (n+3)(0.5)"u(n)
(z-1) (z-0.5)?

3. POWER-SERIES EXPANSION METHOD
The z transform of a discrete time signal x(n) is given as
(¢

X(@Z)=2xm)z™
n=-00
Expanding the above terms we have
X(z) = ... tx(-2)Z*+ x(-1)Z+ x(0)+ x(1) Z + x(2)Z*+..... )
This is the expansion of z transform in power series form. Thus sequence x(n)is

given as x(n) {o0iX(-2),x(-1),x(0),X(1),X(2),. c e veeerreeennen. }.
Power series can be obtained directly or by long division method.

Downloaded from EnggTree.com

(1)

97




EnggTree.com

1l YEAR/THIRD SEMESTER

EC3354-SIGNALS AND SYSTEM

SOLVE USING —POWER SERIES EXPANSION— METHOD

S.No Function (ZT) Time domain Sequence

1 z For causal sequence a" u(n)

For Anti-causal sequence -a® u(-n-1)
z-a

2 1 {1,3/2,7/4,158,............ } For |z| >1

{...14,6,2,0,0} For|z| <0.5
1- 1.5 z1+0.52°2
3 7>z {0,1,4,9,.....} For|z| > 3
73 -37243z -1
2 1 1 1
4 z*(1-0.5z Y (1+z!) (1-z1) X(n) ={1,-0.5,-1,0.5}
5 log(1+az™")

(-1)*'a"/n for n=1 and |z[>|a|
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Sample Problem:

1. Obtain the z transformof,

1
X0= a5 "03)
We expand X(z)/z into simple fractions as
X(z) 1 . A o U K
Z z3(z—0.5) .Z3+Z_1+?+z—05
where
N _3X(2]| - 1 o
Kl = Z 5 Iz — 0.5|2 0= 2
1 d 3X(z) d 1 -1
i =S S [ o SRR e [
8 = 0% 7 P - pigaed (z—o:ﬁ]ﬁ"” *
1 d* 4x(z) id <4 1 (—1)(=2)
B = =i 20 = =~ — )= s r———F 0 =—8
3 T Al e ey v e o A
Xz 1
Ky = (z-05) ijh05=z—3lz{aj=8
Thus, X(z) is expanded as
X(z)=-2""—4z '8
) 05t

2. Find the inverse z transformof,

by use of the partial-fraction expansion method.

With complex conjugate poles (z33 = 0.5+ 70.866 with |z33| = 1) in the quadratic factor 2 z41, we
expand X(z) in simple partial fractions as

-1 —1 -2
4 3z+4+2 4z 3+ 2z
)= z—1 m S 1—z7! " 1—zl4z2

Recalling that the z transform of damped cosine and sine functions are given by
: 1—e~ -1 cozr
PO Y — e
e cos ] 1—2e 4z 1coswT - ¢l 71
gz tsinwl
1-2¢~% 7~ cosT g~ 72

Zle T sinwikT)|

we observe that the second expanded term in the expression of X(z) above can be viewed as the z
transform of a damped sinusoid. Actually, X(z) can be rewritten as

471 z7l 0572 0.5272

1—z1 s 1—z-14z-2

1 4 1—05z70  § 05z
—r —3z

X(z)

L

1—z-1 472 1—z-t 4772
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UNITV
LINEAR TIME INVARIANT DISCRETE TIME SYSTEMS

5.1 Introduction

A discrete-time system is anything that takes a discrete-time signal as input and generates a
discrete-time signal as output.1 The concept of a system is very general. It may be used to model the
response of an audio equalizer . In electrical engineering, continuous-time signals are usually processed
by electrical circuits described by differentialequations.

For example, any circuit of resistors, capacitors and inductors can be analyzed using mesh analysis
to yield a system of differential equations. The voltages and currents in the circuit may then be computed
by solving the equations. The processing of discrete-time signals is performed by discrete-time systems.
Similar to the continuous-time case, we may represent a discrete-time system either by a set of difference
equations or by a block diagram of its implementation.

For example, consider the following difference equation. y(n) = y(n-1)+x(n)+x(n-1)+x(n-2) This

equation represents a discrete-time system. It operates on the input signal x(n)x(n) to produce the output
signal y(n).

5.2 BLOCK DIAGRAMREPRESENTATION

Block diagram representation of

_1‘[11] = al_\'[n - 1] - a:y[n - 3]-+-|ng[n]

by,
- o=
x|[n] + vn]
-
a |
@4 = i v[n—1]
e
>
LTI systems with rational system fun¢ itdd 4scohstant-coefficient difference

equation
* The implementation of difference equations requires delayed values ofthe

— input
— output
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— intermediateresults
* The requirement of delayed elements implies need forstorage

X2 [#]

::,,‘%:;/||I fox
gl ] (a) A [n] + xaln]
a

o

: : o
A X
] b [7]

* We also need meansof #[n]
— addition
— multiplication

Direct Form I

General form of difference equation

Alternative equivalent form x[n-2) :

¥ |n—M]

Direct Form I

ay ] by
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e (Cascadeform

General form for cascade implementation

M, M,
H(l—ﬁz“l)n(l—gkz_lll—g;:_l }
H(z)=4 k:: I‘«.:l
H(l—r_‘k:_l)l__[[] —dlz_lll - a’;z_l]
k=1 k=1
wyln] yila] wa|n] yaln| wa|n] yaln|

Parallel form

P Represent system function using partial fractionexpansion

53 CONVOLUTIO NSUM

The convolution sum provides a concise, mathematical way to express the output of
an LTI system based on an arbitrary discrete-time input signal and the system's response. The convolution
sum is expressed as, ©

y[n]= Z x[k] h[n—k]

k=—x

- a -

+ Convolution 1s conmutative

x[n] * h[n] = h[n] * x[n]

*  Convolution 1s distributive

x[n] * (hi[n] + hy[n]) = x[n] = hi[n] + x[n] * hy[n]
* (Cascade connection:

y[n] = hi[n] * [ ha[n] * x[n] ] = [hi[n] = hy[n] ] = x[n]

« Parallel connection

y[n] = hi[n] * x[n] + hy[n] * x[n] ] = [ hi[n] + hy[n] ] * x[n]
« LTI systems are stable iff

Dgﬁ(gglgdﬁrom EnggTree.com
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For the case of discrete-time convolution, here are two convolution sum examples. The first employs finite
extent sequences (signals) and the second employs semi-infinite extent signals. You encounter both types of
sequences in problem solving, but finite extent sequences are the usual starting point when you‘re first

working with the convolution sum.

Two finite length sequences

Consider the convolution sum of the two sequences x[n] and A[n], shown here, along with the convolution

sum setup.
x[n]
2 ’
(a)
““““““ 0
2  Increasing n | hlkl
x[n -4l —_—>
1
(b) |
AR o ) () o Rt W ) PR Sl o Ao Rk e e M 21 k
G
— -0.5 R

Consider various overlap cases as nincreases

When convolving finite duration sequences, you can do the analytical solution almost by inspection or
perhaps by using a table (even a spreadsheet) to organize the sequence values for each value of n, which

produces a nonzero overlap between A[k] and x[n — k].

The support interval for the output follows the rule given for the continuous-time domain. The output y[x]
starts at the sum of the two input sequence starting points and ends at the sum of input sequence ending

points. For the problem at hand this corresponds to y[#] starting at [0 + —1] =—1 and ending at [3 + 1] =4.

Looking at Figure b, you can see that as n increases from n < —1, first overlap occurs when n =—1. The last
point of overlap occurs when n — 3 =1 or n = 4. You can set up a spreadsheet table to evaluate the six sum-

of-products related to the output support interval.

102
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Spreadsheet/Table
hk]
n -05 1 -05 y[n]
-1 | xl-1-k] 2l 2 2l o of o o -1
0 | x[0-k] |\ 2l 2 2 2 1| | The
1 | =01k i R p| | Output
2 | xi2-kl . 2l 2| o 2 o [ Vs
3 | x3K] 7 A o 2 2 1R
4 | x[4k] "4 = A 2 2 2 -1
Tl —_— sum of products
M- K] values as Active sum of where sequences
nincreases products interval overlap

One finite and one semi-infinite sequence

As a second example of working with the convolution consider a finite duration pulse sequence of 2M + 1
points convolved with the semi-infinite exponential sequence a” u[n] (a real exponential decay starting

from n = 0). A plot of the waveforms is given here.

x[n] hln]
2 | 1 a"uln]
(a) ‘ l l
are wen o T ' N
7 M 7 0 e 4
Increasing n
e
xn-K 2
(b)
{;M n+M

Consider various overlap cases as nincreases

With the help of Figure b, you have three cases to consider in the evaluation of the convolution for all values
of n. The support interval for the convolution is

[-M + 0, M + o) = [-M, co)
Here are the steps for each case:

. Case 1: From Figure b, you see that for n + M <0 or n <—M no overlap occurs between thetwo
sequences of the sum, so y[n] = 0.

103
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. Case 2: Partial overlap between the two sequences occurs whenn+ M >0and n— M <0 or —
M <n <M. The sum limits start at k = 0 and end at k =n + M. Using the finite geometric seriessum

formula, the convolution sum evaluatesto

n+M M+1
1-a™
y[n]= Z 2a"=2-5"——
. Case 3: Full overlap occurs when n — M > 0 or n >M. The sum limits under this case run from k = n—

M to k=n+ M. Again, using the finite geometric series sum formula, the convolution sum evaluates to

n+M n-M n++1
£ ak _nd —d
y[n]_k_E_M2a =

Putting the pieces together, the complete analytical solution for this problem is

0, n<-M
1 IE.'1+l.-'F+‘E
P[”1=* 2—'1-5—, -M=n<M
n—M n+M+1
28 =8 n>M

Graphically understanding convolution

Convolution can be seen as a graphical process:

1. Plot x[m]x[m] with dependent variablemm

2. Plot h[-m]h[—m] with dependent variable mm (hh reflected aroundm=0m=0).

3. Plot h[n—m]h[n—m] with dependent variable mm (nn can shift hjn—m]h[n—m] from —co—o0 (all the
way to the left) to oo (all the way to theright).

4. For each shift (i.e. nn), compute y[n]=) com=—cox[m]h[n—m] y[n]=Y m=—cocox[m]h[n—m](i.e.,
multiply x[m]h[n—m]x[m]h[n—m] and then sum the result ).

104

Downloaded from EnggTree.com



EnggTree.com

1l YEAR/THIRD SEMESTER EC3354-SIGNALS AND SYSTEM
I.
The input, z[n], and output, y[n|, of a discrete-time LTI system are related by the convolution sum
yln] = > zlklhln—k] = 3 h[k|z[n - K] (1)
k=—mc k=—mc

where h[n] is the impulse response of the system. Consider a system with impulse response and
input shown in Fig. 1 and given by
hln] = o™uln] (2)
z[n] = uln], (3)

where « is some constant such that 0 < o < 1. Using (1), the output of the system will be

o0 o0

yln] = 3 zlklhln =k = 3 ukla"Fun—k = a" i o ulk]uln — k] (4)

ke=—na k=—mo k=—noc

To help evaluate (4), the flipped and shifted version of the impulse response is shown in Fig. 2 for
2 cases. When n < 0, Fig. 2a, the curves do not overlap so z[k]h[n — k] = 0 for all values of k.
Therefore,

yn] = a™ Y 0 =10 n <0 (5)
B

When n > 0, Fig. 2b, the curves overlap from & = 0 to k = n. Therefore, the product is only
nonzero in this range, and (4) reduces to

yln] = mﬂk:‘;:i: a~*u[Kuln = K

105

Downloaded from EnggTree.com



EnggTree.com

Il YEAR/THIRD SEMESTER EC3354-SIGNALS AND SYSTEM
When n > 0, Fig. 2b, the curves overlap from k = 0 to & = n. Therefore, the product is only
nonzero in this range, and (4) reduces to

ylp] = o® Z a " u[k|un — K

fe=—mo

= " Z ﬂ—.k
k=0

" {lflrn';]ﬂ-i-l

1=(1/a)
| ﬂ'“+|
— A =0 i
y[n] - nz= (6)
Putting (5) and (6) together we have
b= n+1
= n > 0
y[n] = l1—a
0 n <0

which can be combined as
n:ﬂ+1
y[n] = (ﬁ) u[n] (7)

Sample plots of z[n], h[n|, and y[nr] for & = 0.75 are shown in Fig. 3.

x[n] h(n]
e
—e oo eseee
~B—?—EE—4~3—21G123456?" 8-76543-2-101234567 0N
Figure 1: Input signal and system impulse response.
106
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x[k] x[K]
k k
hin-k] h[n-k]

,:':mr'.r.mm;

n k n k

x{k] h[n-k] x[k] hin-k]

0 n k
(a) (b)
Figure 2: (a) Case 1: n < (), curves do not overlap and (b) Case 2: n > (), curves overlap between
0 and n.
107
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LTI systems are causal if

h[n]=0n<0

5.4 LTI System analysis usingDTFT

LTISYSTEMS ANALYSIS USING DTFT]

— Jon | e Je J=E(e'™)
» Consider e = |‘TL ke )|€ and H(e'") = ‘H{QJW)|€J'£H(B’W}
. then
— magnitude
I’(e“’""’)‘ = X(eu"ﬁ’)HH(ef@)

— phase

LY (e°) = £X(e®) + LH (')
Frequency response at H( m]: H(= j 15 valid if ROC includes
' =1

¥(e™)= X(e (™)

5.5 LTI SYSTEMS ANALYSIS USINGZ-TRANSFORM

* The z-transform of impulse response 1s called transfer or system function H{(z).

Y(z)=X(z)H(z)

s (reneral form of TCCTE

System Function: Pole/zero Factorization
*  Stability requirement can be verified.

* Choice of ROC defermunes causality.
* Location of zeros and poles determines the frequency response and phase

b H(l_ Ci:_lj

H()=2 &

fa Q (1 - d,r:_l}

A=
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POLE —ZERO PLOT

L.

X(z) is a rational function, that is a ratio of two polynomials in z! orz.

The roots of the denominator or the value of z for which X(z) becomes infinite, defines locations
of the poles. The roots of the numerator or the value of z for which X(z) becomes zero, defines
locations of the zeros.

ROC dos not contain any poles of X(z). This is because x(z) becomes infiniteat
the locations of the poles. Only poles affect the causality and stability of the system.

CASUALTY CRITERIA FOR LSISYSTEM
LSI system is causal if and only if the ROC the system function is exterior to

the circle. 1. e |z| > r. This is the condition for causality of the LSI system in terms of z transform.

(The condition for LSI system to be causal is h(n) =0 ..... n<0)

STABILITY CRITERIA FOR LSISYSTEM
Bounded input x(n) produces bounded output y(n) in the LSI system only if
oo
2 |h(n)| <co
=-00

With this condition satisfied, the system will be stable. The above equation states that the LSI
system is stable if its unit sample response is absolutely summable. This is necessary and
sufficient condition for the stability of LSI system.

oo

H(z)= 2 h (n)z™ Z-Transform....... (1)

n=-co
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Taking magnitude of both the sides
o0

|H(Z)|: z h(l’l)an ................................................................................... (2)

n=-00

Magnitudes of overall sum is less than the sum of magnitudes of individual sums.

EC3354-SIGNALS AND SYSTEM

00
H(z)|= 2 h(n) z*
n=-00
00
H(z)|< 2 |h(n)| |z
n=-00
5. If H(z) is evaluated on the unit circle |z"=|z|=1.

Hence LSI system is stable if and only if the ROC the system function includes the unit circle. i.e

r < 1. This is the condition for stability of the LSI system in terms of z transform. Thus

For stable system |z| < 1
For unstable system |z| > 1
Marginally stable system |z| = 1

z-Plane

Im(z)

A

F-3

p
-

N
o
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Poles inside unit circle gives stable system. Poles outside unit circle gives
unstable system. Poles on unit circle give marginally stable system.
6. A causal and stable system must have a system function that convergesfor

|z| >r<1.

STANDARD INVERSE TRANSFORMS

S. No Function (ZT) Causal Sequence Anti-causal sequence
|z] > |a| |z] <|a
z ()" u(n) -(a)" u(-n-1)
Z—a
z u(n) u(-n-1)
z—1
z (n+1)a" (nt+1)a"
(z-a)
A 1/(k-D)! (n+1) (n+2)......a" “/(&-D! (n+1) (n+2)......... an
(z-a)
1 d(n) S(n)
VA d(n+k) O(n+k)
A d(n-k) d(n-k)

S.No

z Transform (Bilateral)

One sided z Transform (Unilateral)

z transform is an infinite power series
because summation index varies from 00
to -00. Thus Z transform are given by

(o)

X(z)=2 x(n)z™
n=-0o0

One sided z transform summation index varies from 0 to
00. Thus One sided z transform are given by
o'}

X(@2Z)=2xm)z™

n=0

2 | z transform is applicable for relaxed One sided z transform is applicable for those systems
systems (having zero initial condition). which are described by differential equations with non zero
initial conditions.
3 | z transform is also applicable for non- One sided z transform is applicable for causal systems
causal systems. only.
4 | ROC of x(z) is exterior or interior to ROC of x(z) is always exterior to circle hence need not to

circle hence need to specify with z
transform of signals.

be specified.
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5.6Sample Problems:

Unilateral z-transform

e Unilateral z-transform is used in the analysis of non-relaxed DTsystems.
e Non-relaxed DT systems are systems with non zero initialconditions.

e Unilateral Z- Transform of a signal x(n) is definedby

X(Z):zo;c(n)z‘”nzo

time shifting property

x(n)«=>X(z)

Case 1:

R ] 1
x(n—k)«—z LZx(—n)Z +X(2) | |
X(Z)zzjc(n)z‘”n:o

Proof:
Unilateralz-transformofx(n—k)zz [x(n—k)]z‘”
n=0

letn—k=mn

=m +k

o0

i;[xm—k)]z-":Z [x(m) |z D=2y [x(m):

=k

= {Zl[x(m) ~m) +Z x(m)]z }

m=—k
k

= r x(=m) |z x(m ('")—I
LZ[() +Z (m)]z |

m=1

k

= Xy, Lomle (mj

:Z"‘r ﬁ x(—n)z"+X (Z)—| J

Note:

Unilateral z- transform of y(n —3) is,
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|' 3
n=1

=2 3Y (2) +9(=1)z 249(=2)z ~+(=3)

=273

ynz'+Y (Z)1 J

Case2:

z+ kl_ k-1 —n—|
x(n+k)«——z {X(z)—Zx(n)z J

n=0

X(Z)=ch(n)z‘"n:o

Proof:

Unilateralz—transformofx(n+k)zz [x(n+k)]z*”
n=0
let n +k=m

n=m-k

0

Z[x<n+k>]z-"=2[§<m>]z-<m-k)=zk2[x(;e)]zm

n=0

=z {f [xm)]=" = 3 Tx(m)]="" }

m=0 m=0

Discrete time systems has one more type ofclassification.

1. RecursiveSystems
2. Non-RecursiveSystems
S. No | Recursive Systems Non-Recursive systems
1 In Recursive systems, the output depends upon past, | In Non-Recursive systems, the

present, future value of inputs as well as past output. | output depends only upon past,
present or future values of inputs.

2 Recursive Systems has feedback from output to No Feedback.
input.
3 Examples y(n) = x(n) + y(n-2) Y(n) =x(n) + x(n-1)
Example:

Find the step response of the system described by the difference equation
y(n)+y(n—1)-2y(n-2)=x(n—1)+2x(n-2) given the initialconditions
y(=1)=0.5;y(-2)=0.25
Solution:
y(n) +y(n—-1)—-2y(n—-2)=x(n—-1) + 2x(n — 2)

Taking unilateral z- transform
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Y (@) +[z Y @ D]-2[2 27 @) +2 (1) -2) =]z X @) (-1 ]
+2[z 2X (@) 42 x(=1) +x(-2) ]

Y@ +z Y@ +05]-2[z2Y @)+ 10.5) + 025 ]=[z X ) ]+ 2]z 2x ()]
since x(n)=u(n) &x(-1)=0;x(-2)=0
Y(2)—2z22Y(2)+z 'Y (2) —z *1=[z X (z)]+ 2[2 *ZX(Z)]

Y(Z)[l —2z 74z _1]—2 ‘1=X(Z)[Z -4 2z ‘2]

2_
vol22e] (el
z? z?  z

since  x(n) =u(n) &X ()= —

z —

Y (2) [22—2-;-2]: z x[Z i 2]+1 -
z-1) 22 z
Y ()= z(z+2) N z _2z+2)+2(z-1) (z
Z+2)z-D(Ez-1) (E2)(=z=1) +2)z-DE-1)
_ 2z 24z
z+2)z-D(E-1
Y(2) _ 2z+1 _ 4 B VN C
z z+2)z-D(z=1)  (z+2) (z-1) (z—-1)?
A:—l_;B:1  C=1
3 3
1 1
-z z
3 A

Y(z)=2—3
(z4+2)  (z=1) (z-1)?
y(n) =inversez—transformofY(z)

y(n>=1%(n>—1(—gz)wn)mu(n)

Example:

Find the difference equation description for the system with transfer function

5Z+2

HZ.)= ———
@ Z4+37Z+2

Ans:

H(Z)= 57+2 Xz _ 5Z 142772
Z2+3Z+2 X(Z) 1+3Z7'+27Z7
(1+3Z742Z2)Y(Z)=05Z"'+2Z2)X(Z)
Taking inverse z transform,
y(n)+3y(n-1)+2y(n—2)=5x(n-1)+2x(n - 2)
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System analysis using DTEFT
For LTI DT system
y(n) =x(n) *h(n)
y(n) =output
x(n) =input

h(n) =impulseresponse

In frequency domain,
v(ev)=x(e)H(e)
¥(e@)=DTFTofy(n)
X (¢7)=DTFT of x(n)
H(e®)=DTFTofh(n)

H (ef “)= % = frequency Re sposeof the system

Frequency response of the system

e Plot of magnitudeof H(e"“’) Vs frequency wis magnitude response of the system
e Plot of phase angleof H(ef“’ Vs frequency wis phase response of the system

Example:

Determine and sketch the magnitude response of the system described by the difference

equation y(n):ljl:—x(n)+x(n—l)+x(n—2)]3

Y( ""”) ! [X(e’“' +e ’”X(e’”)+e ’Z”JX(e’”)]
o —jo
O e o
xe) 3 -

magnitudeof H(ejw)zs x[1+2 cos()]

o Compute magnitudeof H (e-/‘”)for values of frequency @ranging from —7nto +7

o Plot of magnitudeof H(@f“’) Vs frequency wis magnitude response of the system

Example:
Consider a system consisting of the cascade of two LTI systems with frequency responses
ja 2 _e_jw jw)—D 1 . . .
H, (e’)= —F+—— and H,(e '~ 1 1 . Find the difference equation
I+ e - _e7o+ _g2e

2 4
describing the overall system.

Frequency response of the overall system is H (e/®) =H, (e /*)H ,(e/®)
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2 -7 _Y(e/?)

Lo X(@¥)

H (e’ =
1+

Y(e?)+ ! eBeY(e?)=2X(e/*)—e7°X(e™B
taking inverseDTFT ,

y(n) +1_y(n —3)=2x(n) —x(n—-1)
8

Example:

Determine the frequency response of the system

(1) (1)

described by the difference equation, (1) — 1)’(” -D- | _r(n -2)=x(n—-1).
@ %)
taking DTFT , and rearranging,

Y(e?) e’
X(ej“’) 1 _Le—jw_l
6

frequency response=H (e ') =
&—j 20

1. Consider the system described by the differenceequation.

¥l =x[n] + - I[H—1]+ Mn—1]- 1}'[ﬂ—l]—1ﬁ}'[ﬂ—3]

Here =3, M =1. Order3 hnmogeneuus equation:

I
b2

M- 231+ 3= 2= 0n=31=0

)

The characteristic equation:
{2 g Eiky
4 2 16

The roots of this third order polynomial is: a; =a, =1/2 &, =1/4 and

—n
4

a?=0

Yl =M= 4 G)" + 4nC)" + A5 ()", n22

Let us assume y[-1]=0 then (3.52) for this case becomes:

R [ RN [ I B A e

with these we have the impulse response of this system:
4 1

Hd=— ) =) <1 6) 20
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2. Compute the impulse response of the system describedby,

y[n] :lgy[n 1] = z[n].

Solution: if x[n] = 8[n], then y[n] = h[n] is the
impulse response.

y[n] = %J[n — 1] + x[n]
s il %h[n Y

h0] = ;h[f 1) + 8[0]

If we assume condition of initial rest h[-1] = 0,
then
hj0] =1

h{1] = _lh[(}] 481 = ;+n - l

1 1.
h(2] = 5h|1| +48[2) = (5}2

Lo :
hn|] = (5)".101' n=>0
hin] =0, forn <0

= h|n| = (%)"uhn]

e The response of the system is not limited to a

finite time interval. This is called an infinite

impulse response (IIR) system.
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4. Obtain the structures realization of LTI system

y[n] = —ay yln — 1] +bo x[n] +by z[n — 1]

yln] = —aryln—1]+v[n]

v[n| bo z[n] +by z[n — 1]

wln] = —aywn—1]+z[n|

ylnl = bown|+b win — 1]
Direct Form |

x[n]

Direct Form 11

Generalizes to higher order systems described by difference equations.

N M

yln] = — Z agyln — k| + E by z[n — k|
k-0

k=1

Il

v[n]

M
Z by z[n — k|
k=0

N
- Zak yln — k| + v[n|
k-1

y[n|
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The first system v[n] — ... is nonrecursive, where as the second system is recursive.
Darect Form |
xn] y[n]

(]

i
El

=

3
Elj_»/l

M
Figure 2.3: General Direct Form 1.
N
wln] = Z ak wln — k| + z[n|
k1
M
yln] = Zb“ w(n— k)
k-0
[ w|n| ]
zin — yin
~bo ;-—@H Y

=]

]

f
T

—aN

Darect Form 1l

Example: M=N+1
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Find the convolution of x(n)=[1,1,1,1,2,2,2,2] with h(n)=[3,3,0,0,0,0,3,3] by using
matrix method.

Solution: By using matrix method, N=8

[y(O)] [O) WT) h6) h(5) h(4) h(3) h2) h(1)][x(0)]
y(l) h(1) h(0) W(T) W6) AS) M4) h3) h(2)||x(1)
¥(2) 2) k() RO) A(T) h(6) h(5) h(4) h(3)||x(2)
v(3) h(3) h(2) h(l) hO0) h(7) h(6) h(5) h(4)]||x(3)
y(4) h(4) h3) h2) A hO) A(T) W6) h(5)||x(4)
¥(5) h(5) h4) h(3) h(2) h(l) h(0) A7) h(6) || x(5)
y(6) 6) h(S) ) h(3) h2) A KOy h(T)||x(6)
| (7)) (7) h(6) h(5) h(4) Rh(3) M2) A1) hO)][x(7)]
Substituting the values, we get

y»] [3 33000 0 3][1

y(l) 3333000 0]{1

¥(2) 0 3 3 3 3 000]|!

y(3) 00 3 3 3 300||1

y#| "o o0 3333 0|]2

ys| 0000333 3|]|2

¥(6) 30000 3 3 3[1)2

v (330000 3 3|2
(y(0)] [3x1+3x1+3x1+0x1+0x2+0x2+0x2+3x2] [15]

¥(1) Ix1+3x1+3x1+3x1+0x24+0x2+0x2+0x2 12
y(2) OxX1+3x1+3x1+3x1+3x2+0x2+0x2+0x2 15
v(3) Ox1+0x1+3x14+3x1+3x24+3x2+0x2+0x2 18
y(4) Ox14+0x1+0x1+3x1+3x24+3x24+3x24+0x2 21
v(5) Ox1+0x1+0x1+0x1+3x2+3x2+3x2+3x2 24
v(6) IXI+0xX14+0xX14+0x1+0x24+3x2+3%x2+3x%x2 21
[ v(7)]  [3X1+3x1+0x1+0Xx1+0X2+0x2+3x2+3Xx2] 18

Therefore, the convoluted sum is y(n) = [15, 12, 15, 18, 21, 24, 21, 18].
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REALIZATION

A linear time invariant discrete-time systems characterized by the general linear constant coefficient
difference equation

| ., T
yin)=- 3 axyn-k)+ ¥ byx(n-k) 1
k=1 k=0
Take Z-Transfomr,
3 N L M w
Y(E)=-¥ aY(Z)Z "+ ¥y WX(Z)}Z
k=0

k=1
The transfer function

M b Z_k
Z O
¥z =H(Z)= k=0 " 5
X(Z N -
Z) Ty akz_k
k=1

There are various forms to implement above equation either in hardware or in software. For each set
of equation, we can construct a block diagram consisting of an interconnection of delay elements,
multipliers and adders. We referred to such a block diagram as a realization of the system.

The computational complexity refers to the number of operations (like multiplication, addition etc.,)
required to compute an output value of the system

STRUCTURE FOR FIR FILTER
In general the FIR filter is described by the differénce equation.
M-1
v(in)= ¥ bxx(n-k) 3
k=0
Take Z-Transfomr,

B M- _ N
YZ)= ¥ X(Z)Z

k=0
The transfer function
M-1 ’
1D _n@z)- "3 wx@z* 4
X(Z) k=0

The unit sample response of the FIR system 1s identical to the coefficient by ie..

(b, 0<n<M -1
hin) = k "

|0.elsewhere
where. M = length of the FIR filter

L
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Tapped Delay Line (TDL) or Transversal System (TS)

Direct form is one of the simplest structures. The direct realization can be obtained from the non-
recursive difference equation given in equation

vin)= - by x(n-k) ]
oy 77 71 71
h(0)y h(l)w h(2)
7
—» T > T >
AN NG

The structure has M-1 memory location for storing M-1 previous inputs. The structure has M
complex multiplication and M-1 additions. The output is the weighted linear combination of M-1
past input and the weighted current value of the input.

Direct Form (N = odd)

When the FIR system has linear phase, the unit sample response of the system satisfies either the
symmetry or asymmetry condition

h(n)=+h(M—-1-n)7

for such system, the number of multiplication is reduced from M to M/2 for even M and M to (M-
1)/2 for odd M.
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x(n) 7! A T____T 7
) ' > i) £\
S EE 2N
A o

. \ N
[ + ] [0
2
" z' - = v
Y 1 £ i A A (2 A J _1Y/7
. 5\11(0; /‘! (1) % -h(2) Y BIM-3)/2]
| + g [ + ) Ve —m—m ] Tt
\I,/ Va k_..x“' \___/’L‘
y(n)
For M = odd.
. : (M1}
M=y (M G R, e
HZ)=— ¥  hnjZx"+ 3 h(n) Z*+h|——|Z ' '
n=0 n=(M+1)/2 g 8l
(M—-3)/2 o
H(Z)= ¥ h@m[Z" Lzﬂ‘”’”]ﬂ - 1|Z' -
n=>0 J

T - (N +1)
The number of multiplier required are | — ‘
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Direct Form (N = even)
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x(n; 71 » 71 T————T y A
[ :\‘l () o ()
1 4% N O —L = -1
Yo 3 J g z
™ z' ™ 7' -
/""\\lll(ﬂ} I/'-.\%l[l) l '—«l\l]f' -l/-'—!\\h[(N':) l]
| + fg— | + ) + e ]
See - %o 2 W
y(n)
For M = even.
(N-2)/2 e (N-1) -
HZ)= 3 hn)Z + 3 hmh)Z
n=0 n=N/1
(N-2)/2 [l
HZ)= ¥ h@m[z"+z%™ 9
n=0
The number of multiplier required are | N:_ ! ‘
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PROBLEMS: ON CONVOLUTION

x(nT)

Mol g

h(nT)

EC3354-SIGNALS AND SYSTEM
EnggTree.com

.

(a) Input and unit pulse response

A

n—2n—1ln

m

(b) Functions for computing convolution sum

(D) FPUncClONS 107 COMPULLNE CUNYUILLILIL UL

Samples x(mT) h(-—fﬂ)

o alil2l2l1l1]o J
w=o tgl2lalolaloln]o h(1-m) S (nT)
a=1|o|lalzl3lolo]ojo 4/ i
n=2lo0lojrl2l3lajalo 91
s=3|0fl0j0f1]2]3[0]10 s 7
n=4 | 00|00} 1]2]3}0
n=5|o|lolof|o|ojul2al3 3 3‘
amelolalololnjell2] ! 'l6 .

{c) Table for evaluating summation

5
{d) Qutput

D-T Convolution Examples

x|n]= (%)nu[n]

hln|=u|n|—uln—4]

y ]
« s e ® e “{“‘H“‘.“ i-
-F2-1 ¥l 23534 50T 8 %
y Xl
———o—o ITT.:::H::: I:-
-3-2-1+123456789
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Choose to flip and slide A[n] This shows A[n-i| for n =0
h|0—1i]

111

32-1 4123456789

Forn=20 p hl=i]x[7]

[1
2

-3-2-1+1

Forn =1 1 An—il=H1-0]

2-1%12345678
= ()=1+%=3/2
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Now forn=4.n=35, .

n = 4 case ) x[f]

EC3354-SIGNALS AND SYSTEM
EnggTree.com

ITTt I

———8—8

—8—80—8—8—8—»

-3-2-14123456789

s B[n—i] = h[4—i]

_ ;

-3-2-1+123456789

i=n—-3=1

n =5 case

s+ hln—1i]

o 11|

i=n=4

= h[5—1]

-3-2-1y 123456789

i=n—3=2;

i=n=>5
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Notice that: forn=4,5.6, ...

i=n=-3

-)

y[n]:Z(/ for n=45.6,..

then simplify!

Then we can write out the solution as:

Then we can write out the solution as:

0

e}

yinl=12f1-(/2y"] n=0,1,2.3

2072y~ (72y"] n=4as6..

n<(

24

1

—————0

||[ E,..L .

-3-2-1.

1 2 34
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PROBLEMS

1. The input and output of an LTI system are relatedby

yln] — %y[n — 1] = z[n| + %I[n —1]

Note that without further information such as the initial condition, this equation does not

yln] z[n]
uniquelyspecify when is given. Taking z-transform of this equation and using the
time shifting property, weget

Y(z) — %2_1]"(2] = X(z)+ %z_l,‘{[z]

and the transfer function can be obtained

Yi(z) 14 L2710 1 1
H — — 3 e - ]_ — 1
A (E RS T = R e e L e S

Note that the causality and stability of the system is not provided by this equation, unlessthe
H{(z)
ROCof this is specified. Consider these two possible ROCs:

|z| > 1/2 z, =1/2
o IfROCis , it is outsidethepole and includes the unit circle. The
system is causal andstable:

hin] = G) uln] + % G) 1]

o

z| < 1/2 z, =1/2
e IfROCis , 1t 1s inside thepole and does not include the unit
circle. The system is anti-causal andunstable:

hin] = — G) ul—n — 1] — % G) " alen]
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First order system

The first order discrete system is described by
yln] —ay[n — 1] = z[n]

hin]

Theimpulse response can be found by solving thefollowing

hin| —ahln — 1] = d[n|

to be

hl[n] = a™u|n]

Alternatively, we can take z-transform of the DE and get

Y(z)—az 'Y(z) = (1 —az )Y (2) = X(z)

and the transfer function of the system (assumed causal)

O e e L

H(z) 7, =a 2] > |al
has azeroat .z =0 and apole and its ROC istheregion outside
la| <1 |z| =r=1
thepole.If , then theunitcircle can be included in the ROC, the Fourier
transform exists and the system is stable. The impulse response (unit sample response) of the
systemis

hln] = Z7'H(z)] = a™u|n]

hin|
Although seems to have a form different from the typical impulse response incontinuous
hit) = e "u(t) h(t)

case they are essentially thesame as can be rewrittenas

h(t) = e VT u(t) = (e ) u(t) = atult)
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where
FAN -
a=e?
_ H(z)

Letting2 — € in , we get the frequency response function of thesystem

1 el e —0 u

H(e™) = — = — — — - —

l—age v egw—qg e“—a 1

where L and L are two vectors in z-plane definedas

112

e — 0= v=e"—a

— T L w<T .
Foranyfrequency represented byapoint £ =€’ on the unit circle, the
magnitude and phase angle of the frequency response function can be represented in the z-plane
as

|

A (i
() =
o]

and

;L’H(Ej‘") — fu— fv

which can be evaluated graphically in the z-plane asthe frequency L changes in the
< wsT 0<a-<1
range . Ifweassume , then when &__— D, the denominator reaches
l —a | H (e7)] 1/(1 —a)
itsminimumof ,and ———__ is maximizedto be ; andwhen & — T the
(—1—a)|=1+a [H(EY)
denominator reaches its maximumof ,and — 1S minimized to
1/(1+a) H(e™) = /u— /v
be . Thephaseangle of. is zerowhen W =0 orw =

W T .. T < W
0<w<m and positive for " T~ = 0.

and isnegativefor

Downloaded from EnggTree.com 131



1l YEAR/THIRD SEMESTER

EnggTree.com

System Algebra and Block Diagram

EC3354-SIGNALS AND SYSTEM

Z-transform converts time-domain operations such as difference and convolution into algebraic

operations in z-domain. Moreover, the behavior of complex systems composed of a set of
interconnected LTI systems can also be easily analyzed in z-domain. Some simple

interconnections of LTI systems are listed below.

Parallel systems: If the system is composed of two LTI systems
hy|n| ho(n]

with and connected in parallel, its impulse response is

hin] = hin| + ha[n]

or in s-domain

H(z) = Hy(z) + Hy(z)

Serial or cascade system: If the system is composed of two LTIsystems
hy|n| ho(n]

with and connected in series, its impulse responseis

hin] = hy[n] * han] = ha|n] = k]

or in s-domain

H(z) = H(z)Hy(z) = Hy(2)H,(z)
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X(z) Y(z)

—{ H(z) [—={ Hy(@) |—

—{ Hi(2)

X(2) Y(2)

— Hy(2)

X@_ o E6) > ¥(z)

H,(z) |=—

hy|n]
e Feedback system: If the system is composed of an LTIsystemwith in aforward
haln] y[n]
path and anotherLTIsystem in a feedback path,its output can be implicitly
found in timedomain

y[n| = hy[n] = e[n] = hy[n] * [z[n] + haln| * y[n]]

or in s-domain

Y(z)=Hy(2)E(z) = H(z)[X(z) + Hy(2)Y (2)]

While it is difficult to solve the equation in time domain to find an explicit expressionfor
y[n| = h[n] * z[n|
output , it is easy to solve the algebraic equation in z-domain to
Y(z)
find

Y(z)[1— H(z)Hs(z)] = Hi(2)X(z)
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and the transfer function can be obtained

Y(z) Hy(z)

) = X0 " Tomeme

The feedback could be either positive or negative. For the latter, there will be anegative

ha(t) Hz(ﬁj

sign infront of and of the feedback pathso
eln] = x[n| — han| * y[n]
that and
Y H-
Hes - Y0 1(2)

Example 0: The transfer function of a first order LTI system

1S

1 ‘ 1, .
y[n| — Ey[n — 1] ==z[n|, Y(z)[1—- Ez_ | = X{(z)

1
H(z) = 1
_ 1.1
l— 3z
H{z)
Comparingthis with the transfer function of the feedback system, we see that a first
order system can be represented as a feedbacksystemwith in the forward path,
Hy(z) 1/4 . r[n]
and for theproduct of and = (a delay elementwithinput and
y[n] = z[n -1
output ) in the negative feedbackpath.
* -
x[n] y[n]
z '1
1/4 t+—— yln-1]
Example 1:
. Yz 1—-2z71
e - Y@ 12
X(z) — 3%
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This equation can be rewritten as:

, ‘ 1 ,
Viz) = (1—-2:"")—5—X(2) = (1 - 2z"")1W(z)
: 1 — IZ_L ’
where
. 1 i
W(2) = == X(2)
4
Wiz) Wiz)zt
can be obtained the same way as in previous example. Once and are
Y(2)
available, we can easily obtain
w(n]
F 7 o
x[n] y[n]
7 -1

. I - _
VAT Sty L2

Example 2: Consider a second order system with transfer function

. 1 1 2/3 1/3
H(z,]: 1 Ll ..—1 | - — 1 1.—1 1 | — - 1 Illl —1 1 IllJ. —1
H{z)
These three expressions of this correspond to three different block diagram

representations of the system. The last two expressions are, respectively, the cascade and the
parallel representations (same as the corresponding cases in Laplace transform), while the first
one is the direct representation, as shown below. We first consider a general 2nd order system

Y(z)+asY(2)z ' 4bY(2)z2 7 = X(2), or Y(z)=X(z)—aY(z)z '=bY(z)z"

Y(2)
Weseethat is the linear combination of the delayed versions of itself and the
X(z)
input which can be represented as a feedback system with two feedback paths

—nz ! —bz7? a=—1/4 b=1/8
of and . In thisparticular system, and .
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+ =)
il Y ¥
71 z 1
_1/2 f—1 1/4 t—
—= 1/3 - [T | ——— -
o] | T Y
7 -1
1/4
Ll 2/3 i ;
71
1/ te—

Example 3: A second order system with transfer function

) 14+ ezt 4 dz2 K ) .
H(z)=K — = : 1+ez b +dz7 %)
\2) : 14+ az"t+bz2 1l +az"1+bz2 \ ¢ /

This system can be represented as a cascade of two systems

. e K )
Wiz)=H(z)X(z) = Ep—— bz_z_‘([xzj

and

Yiz)= Ha(z)W(z) =(1+ ezt 4 d::_jjﬁr[:zj
Downloaded from EnggTree.com
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H(z)
Thefirstsystem can be implemented by two delay elements with proper feedback paths
as shown in the previous example, and the second system is a linearcombination
Wiz) H'[z:]z_L H'[z:]z_z
of , and , all of which are available along the feedback path of
the first system. The over all system can therefore be represented as shown. Obviously theblock

diagram of this example can be generalized to represent any system with a rational transfer
function

it b_z—.ﬂc
H(z) = L”:Lﬁk (M < N)
Z}.;:D Qpz
—w K —_—
x[n] i y[n]
z _1
-4 t———1—
¥
7 -1
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EXAMPLES OF DT CONVOLUTION

Say we are given the following signal r(n) and system impulse response h(n).

em)=uln) and hn) = (3) uln)

x(n) = u(n) 'f h{n]=(%)r:4{n}

9 0.5

[ [ i i ] i ] i 0.25
was 125- LR
—— n — S ————8— n

We wish to find the step response s(n) of the system (i.e. the response of the
system to the unit step input x(n) = u(n). This is shown below.

oo

s(n) = x(n) * hin) = Z x(k)h(n = k)

k=—oc

Thus the step response 1s as follows, found by substituting our actual signals into
the general convolution sum.

s(n) = D) G) aln — &)

bk=—mc

Let’s look at this step response in smaller ranges to see what happens.

o First, consider the case where n < ().

Here, s(n) = 0. This is because u(n — k) (and the associated exponential)
will be starting at a point less than () in the & domain, and will extend to
—20, whereas u(k) starts at 0 and extends to +o0c. We can visualize this,
say for a value of n = =2,

x(k) = u(k)
1]
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Notice that there is no non-zero overlap of x(k) and h(n — k). Since they
are multiplied together, the zero part of one signal cancels out the non-zero
part of the other, and vice versa. Thus, s(n) =0 for n < 0.

# The more interesting case is when n = (.

Recall the convolution sum we are using to determin s(n).

o n—k
s(n) = z u(k) (%) u(n — k)

jt'= —

Note that u(k) means we know the summation will be 0 for all values of
k < 0, so we can change the lower limit of the summation to (. Similarly,
the u(n — k) term means that the summation for all values of & > n will
be 0, since that unit step is flipped and extends toward —oo. So, we can
change the upper limit of the summation to n. In the range 0 < k < n,
both of the unit steps will have a value of 1. This is shown below.

= 3w (3) wn=r

ke

n 1 n—k
_ Y. (E) 1
k=0

We can pull out any terms only in n

since that is not the summation variable.

- 266

k=0

Now we have a form consistent with a geometric series. We can use that to

solve,

n 1= 2ﬂ+1
Recall Y 2" = =5 = ot _
k=0

So we have s(n) as follows.
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We can visualize this, say for n = 2, as shown below. Note how the system
output comes from the overlap of the input signal and the shifted and Hipped
impulse response.

x(k) = u(k)
1}

Tﬁﬂﬂ Qo o

n=2

So. overall, we have the following step response.

=[]0

1 s(n) = [ 2-(0.5)" u(n)

1¢

- e LN

—5—5—5—o—5— n

The u(n) comes from our first case above since s(n) = 0 for n < 0, and obviously the other part
comes from the expression found in the second case above.
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3. In the convolution sum, the impulse response is written as h(n—k), meaning that in the k
domain, the impulse response is shifted by n and flipped around thatpoint

We can visualize the convolution operation as that shifted-and-flipped impulse response
sliding along the k axis from —o to oo as the summation occurs.

Whenever there is some non-zero overlap between this shifted-and-flipped impulse

response and the input signal, the system output will be non-zero (unless the non-zero
overlaps cancel each other).

We are given the impulse response shown below.

0 for n<0

h(n) = 1 l:m' 0<n<3j
-2 for 4d<mn<5h
0 for n>h

S SN

— =

Let z(n) = u(n = 4).

We want to determine

y(n) =x(n)*hin) = z(k)h(n — k)

u(k — 4)h(n — k)

P
1l

—od
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We can use u(k —4) to change the summation

limits, but it doesn’t help much.

(]

1-h(n=F)

=
II

but we have no convenient functional representation of h(n) to allow us to solve.

Consider the solution in a piece-wise fashion.

For n < 4, y(n) = 0 since there is only zero overlap between the two signals.
This is illustrated below.

Foralln<4

For n > 4, we need to visualize what is happening in order to determine the

value of y(n). In the figure below, we can see how h(n — k) slides along the k
axis and overlaps with x(k).

h(n-k) x(k) = u(k)

T TTTTTTTT

h(n-k) is sliding along k-axis

—

_2°

W

So we have to determine the value of y(n) for specific values of n. We start at
the first point of non-zero overlap, when n = 4.

When n = 4, y(4) = 1 since only one point of the two signals overlaps, and
1-1=1. This is shown in the figure below.

Hﬂ ri) x(k) = u(k

)
TTT“TTI"T:k

Forn=4

-2

W
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When n = 5, y(5) = 2 since it is the sum of the two overlapping points. This is
shown in the figure below.

X(k) = u(k)
TTTTTTTT:k

Forn=25
1-2

Similarly, y(6) = 3 and y(7) = 4.

Note that when n = 8, we have a negative overlap, and so y(8) = 2. This is
shown below.

x(K) = u(k)

ol oMttty

-2
! Forn=28

For the case where n = 9, y(n) = 1 since it is summing over the entire length of
the impulse response. This is shown in the figure below.

i

x(k) = u(k)

L 1110917

-2
} Forn=9

F
1]
W
a
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Thus, we can plot our overall y(n) as shown here.

3

=
ra @
w
O [r—)
wip
=0

PO

W

=

2 -1

Thus, we have evaulated the convolution some graphically by taking advantage
of this shifting and Hipping behaviour.

4. Finding the impulse response of a diffeq system. Find the impulse response of thesystem
described by the followingdiffeq:

y[n]=43y[n—1]-712y[n—2]+1 12 y[n— 3] +x[n] - x[n - 3] .

Step 0: Find the system function. (linearity, shift property)

4 7 1
Y(2)==2'Y(2)——z2Y () +—=23Y(2)+ X(2)-273X
(z) =327 Y(9) =57 V(&) 45527 V(@) + X(2) —2 7 X(2)
4,,—l | —2 1 -3 a .—3 ,
L g At~ 2 Y(z) =[1-27%] X(2)
so (by convolution property):
F o _ .—3
H[z} =S ;(Z) = 1 .5 1 TH_U_E s
[Z) — EE + 13~ — 13% A

Step 1: Decompose system function into proper form + polynomial.

In this case we can see by comparing the coefficients of the ™ terms that the coefficient
for the Oth-order term will be 1/(1/12) = 12.

] —z 3
H(z) =12+ - —12| =12+ P
(2) ll - j—,}:—i == 1—122—3 (2)
where
159
Pz} = = - 12
(2) 1-— %z‘i + ﬁ:_z - %:_3
= 273 -12 [1 - :'—iz_l - %3_2 - %z_ﬂ]
1—2zt4 L2 — L3

116t =T

4,14 T -0 1_3°
1 3 +12" 12
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Note that P(z) is a proper rational function.
Since H(z) = 12 + P(z), we see that h[n] = 12 §[n] + p[n].
We now focus on finding p[n] from P(z) by PFE.

Step 2: Find poles (roots of denominator).

The MATLAB command roots ([1 -4/3 7/12 -1/12])returns0.5 0.5 0.33,
so we check and verify that the denominator can be factored:

so in factored form:

Step 3: Find PFE

Since there is one repeated root, the PFE form is

For a single pole at z = p;, we find the residue using this formula:

re=(1—ppz"") P(2)

=]
Thus for the single pole at 2 = 1/3:
1 —11 4 1627 = 7272
ry = {1_§z—1)P{;}| - S — —104.
X —1)-
z=1/3 ( - 327 2=1/3
For a double pole at 2 = py., the residues are given by
1 d 142 142
Tkl = —— _lfl —prz)? P(2) and o= (1 —pp2™')? P(2) .
—pidz — r=py
Thus for the double pole at z = 1/2:
rg o= —m ol =527 ) P(z) =—2-— 1,—
—1/2 dz-1 2 2=1/2 dz1 1— 3z 2=1/2
L= L2716 — 14271 — (=11 + 16271 = 727%) (=1
_ U6 -1 - (114 16 (] I
(I—327) 2=1/2
and . i
1 _ =114 162" =Tz""
rio=(1— 5° 1)2 P(:;}| = — = —21.
z=1/2 (1—327) 2=1/2
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Substituting in these residues into equation (3-2):
114 =21 —104
B -

Plz) =

Step 4: Inverse z-transform (using table lookup)

Bl (é) o] =21 0) e) ufn] —104 (%) silil.

Substituting into proper form decomposition above yields our final answer:

il = 15 81l + l(m _21(n+1)) G) — 104 (%ﬂ il

L3

Response of systems with rational system functions

Xiz) — — ¥[z). Goal: characterize y[n]

Assume
e H(z)is apole-zero system, fe., H(z)= Biz)/ Al=z).
« Input signal has a rational z-transform of the form X [=2) = N [z)/(2(=).

Then ( (
EBiz)N(z)
Yiz)=H(z)X[z2) = ————.
2) () X(2) Alz)Qd(z)
So the output signal also has a rational z-transform.

How do we find y[n]? Since ¥7[z) is rational, we use PFE to find y[r|.

Assume
& Poles of system p, ... .py are unigue
# Poles of input signal 4. ... .q; are unique

# Poles of system and input signal are all different

& Zeros of system and input signal differ from all poles {(so no pole-zero cancellation)
= Proper form

« Causal input sequence and cansal LTI system

Then
2 o T i re i e
X(2)=Y ——— Y@ =) ——+ ——
ol o LT Pe2 et Z
so (assuming a causal system) the response is:
N L
y[n] = Z ripp uln] + Z sy ufn] .
k=1 k=1
natural forced

The output signal for a causal pole-zero system with input signal having rational z-transform
is a weighted combination of geometric progression signals.

If there are repeated poles, then of course the PFE has terms of the form np™ u[n] etc.

The output signal has two parts
 The . terms are the natural response i, [n] of the system. (The input signal affects only the residues r).
Each term of the form pf u[n] is called a mode of the system.
# The g;. terms are the forced response g [n] of the system. (The system affects “only” the residues s.)
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Transient and steady-state response

Define 1y, [n] to be the natural response of the system, Le., yu:[n] = E:=1 ripy ufn] .
# [f all the poles have magnitude less than unity, then this response decays to zero as n — oo,
# In such cases we also call the natural response the transient response.
« Smaller magnitude poles lead to faster signal decay. So the closer the pole is to the unit circle, the longer the transient response.

The forced response has the form yg [n] = ELI srqlt uln] .
# [f all of the input signal poles are within the unit circle, then the forced response will decay towards zero as n — oo,
# If the input signal has a pole on the unit circle then there is a persistent sinusoidal component of the input signal. The forced
response to such a sinusoid is also a persistent sinusoid.
# [n this case, the forced response is also called the steady-state response.

Imiz)

Example. System (initially relaxed) described by diffeq: y[n] = 3 y[n — 1] +z[n] .

What are the poles of the system? Atp = 0.5. H(z) = ;]_] Re(z)

1 - EZ
1
Signal: z[n] = (-1)" .Poleatg=-1. X(z) = !
ignal: z[n] = (—1)" u[n]. Pole at g (z) e
, 1 1 1/3 2/3
Yiz)=H(z) X(z) = = _ = +
B =1 = o Tar ~THm 7 1ok 14

where [ found the PFE using [r p k] = residuez {1, [1 1/2 -1/2]). %0

o= 3(3) el + S
e

[
natural / transient  forced / steady state

Causality and stability

We previously described six system properties: linearity, invertibility, stability, causality, memory, time-invariance.
» We first described these properties in general.
o We then characterized these properties in terms of the impulse response hfn] of an LTI system,
because any LTI system is described completely by its impulse response fi[n).
o causality: hjn] =0¥n < 0.
o stability: 5 |h[n]| < .
& Now we characterize these properties in the z-domain.
If it exists, the system function H{z) (including its ROC) also describes completely an LTI system, since we can find h[n] from

H(z), i.e., we can determine the output y[n] for any input signal x[n] if we know H(z) and its ROC.
Skill: Examine conditions for causality, stability, invertibility, memory in the z-domain.

Why Are Z Transforms Used?

You should know that Laplace transform methods are widely used for analysis in linear
systems. Laplace transform methods are used when a system is described by a linear differential
equation, with constant coefficients. However:

e There are numerous systems that are described by difference equations - notdifferential
equations - and those systems are common and different from those described by
differentialequations.

o Systems that satisfy difference equations include thingslike:

o Computer controlled systems - systems that take measurements with digital I/O
boards or GPIB instruments, calculate an output voltage and output thatvoltage
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digitally. Frequently these systems run a program loop that executes in a fixed
interval of time.

o Other systems that satisfy difference equations are those systems with Digital Filters -
which are found anywhere digital signal processing - digital filtering is done. That
includes:

o Digital signal transmission systems like the telephonesystem.

o Systems that process audio signals. For example, a CD contains digital signal
information, and when it is read off the CD, it is initially a digital signal thatcan
be processed with a digitalfilter.

At this point, there are an incredible number of systems we use every day that have digital
components which satisfy difference equations.

In continuous systems Laplace transforms play a unique role. They allow system and
circuit designers to analyze systems and predict performance, and to think in different terms -
like frequency responses - to help understand linear continuous systems. They are a very
powerful tool that shapes how engineers think about those systems. Z-transforms play the rolein
sampled systems that Laplace transforms play in continuoussystems.

o In continuous systems, inputs and outputs are related by differential equations and
Laplace transform techniques are used to solve those differentialequations.

o In sampled systems, inputs and outputs are related by difference equations and Z-
transform techniques are used to solve those differentialequations.

In continuous systems, Laplace transforms are used to represent systems withtransfer
functions, while in sampled systems, Z-transforms are used to represent systems with
transfer functions.

There are numerous sampled systems that look like the one shown below.

e An analog signal is converted to a digital form in anA/D.
o The digital signal is processedsomehow.
e The processed digital signal is converted to an analog signal for use in the analogworld.

The processing can take many forms.

e In a voice transmission situation, the processing might be to band-limit the signal and
filter noise from thesignal.

e Ina control situation, a measurement might be processed to calculate a signal to controla
system.

e And there are many othersituations.

Goals

In sampled systems you will deal with sequences of samples, and you will need to learn Z-
transform techniques to deal with those signals. In this lesson many of your goals relate to basic
understanding and use of Z-transform techniques. In particular, work toward these goals.

e Given a sequence of samples intime,
o Be able to calculate the Z-transform of the sequence for simplesequences.
e Given a Z-transform,
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o Be able to determine the poles and zeroes of theZ-transform.
o Be able to locate and plot the poles and zeroes in thez-plane.

Later you will need to learn about transfer functions in the realm of sampled systems. As you
move through this lesson, there are other things you should learn.

e Given a Z-transform of a signal, and the pole locations,
o Be able to relate distance from the origin to decayrate.
o Be able to relate angle off the horizontal to the number of samples in a cycleof
signaloscillation.

What Is A ZTransform?

You will be dealing with sequences of sampled signals. Let us assume that we have a
sequence, yi. The subscript "k" indicates a sampled time interval and that yyis the value of y(t)
at the k*hsampleinstant.

e ykeould be generated from a sample of a time function. Forexample:
o yix=y(kT), where y(t) is a continuous time function, and T is the sampling
interval.
o We will focus on the index variable, k, rather than the exact time, kT, in allthat
we do in thislesson.

It's easy to get a sequence of this sort if a computer is running an A/D board, and measuring
some physical variable like temperature or pressure at some prescribed interval, T seconds. A
sampled sequence like this plays the same role that a continuous signal plays in a continuous
system. It carries information just like a continuous signal.

The Z transform, Y[z], of a sequence, yjis defined as:

We will use the following notation. A large "z" denotes the operation of taking a Z-transform
(i.e., performing the sum above) and the result is usually denoted with an upper-case version of
the variable used for the sampled time function, y.

o Z[y] =Yl[z]

The definition is simple. Take the sequence, and multiply each term in the sequence by a
negative power of z. Then sum all of the terms to infinity. That's it.
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HINTS

Some important examples of systems include filters, encryption and control. ¢

Time domain vs. frequency domain: We are used to viewing signals in the time domain — that
is, as a function of time. however, there is another domain — namely, the frequency domain, that
is critically important in understanding, analyzing and transforming signals. In lecture, we
introduced the concept of frequency, and the frequency domain. . The process of sampling a
continuous-time signal changes the signal, and it is important to understand how exactly the
sampling process changes the information content of that signal. In due time, we will carefully
look at the implications of sampling, and how choosing an appropriate sampling rate is critically
important to preserving the information contained in a signal.

The frequency domain tells us the relative contribution of sinusoids of different frequencies to
the overall signal. Consider the figure below, which illustrates a simple example of the
transformation between the time and frequency domains. On the left, we plot the function :

Once we understand that we can represent any time-varying signal in the frequency domain, the concept of an
equalizer, as present in many audio systems and mp3 players begins to make sense. Consider for example the
equalizer of the iTunes mp3 player pictured below:

T e T A T

Note the numbers at the bottom of each of the slider bars (e.g. 32, 64, 125, etc...). These represent frequency
bands centered around 32Hz, 64Hz, 125Hz, ... respectively. By increasing the slider value comresponding to one
of the frequency bands, we are essentially saying. “transform the signal to amplify those frequency components
of the signal (i.e. mp3 file).” Different combinations of gains achieve different effects, such as “Bass Boosting”
{amplifying low-frequency values) or “Treble Boosting” (amplifying high-frequency values). This kind of signal
maodification would be very difficult to achieve if the designers of the equalizer did not have a very good under-
standing of the frequency domain. and the frequency representation of time=varying signals. (Note that the equal-
1zer above is a very familiar example of a system. )
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