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EC3354                                   SIGNALSANDSYSTEMS    

OBJECTIVES:
 To understand the basic properties of signal &systems
 To know the methods of characterization of LTI systems in timedomain
 To analyze continuous time signals and system in the Fourier and Laplacedomain
 To analyze discrete time signals and system in the Fourier and Z transformdomain

UNITI CLASSIFICATION OF SIGNALSANDSYSTEMS 12
Standard signals- Step, Ramp, Pulse, Impulse, Real and complex exponentials and 
Sinusoids_ Classification of signals – Continuous time (CT) and Discrete Time (DT) 
signals, Periodic & Aperiodic signals, Deterministic & Random signals, Energy & 
Power signals - Classification of systems- CT systems and DT systems- – Linear & 
Nonlinear, Time-variant & Time-invariant, Causal & Non-causal, Stable & Unstable.

UNITII ANALYSIS OF CONTINUOUSTIMESIGNALS 12
Fourier series for periodic signals - Fourier Transform – properties- Laplace 
Transforms and properties

UNITIII LINEAR TIME INVARIANT CONTINUOUSTIMESYSTEMS 12
Impulse response - convolution integrals- Differential Equation- Fourier and Laplace 
transforms in Analysis of CT systems - Systems connected in series / parallel.

UNITIV ANALYSIS OF DISCRETETIMESIGNALS 12
Baseband signal Sampling – Fourier Transform of discrete time signals (DTFT) – 
Properties of DTFT- Z Transform &Properties

UNITV LINEAR TIME INVARIANT-DISCRETETIMESYSTEMS 12
Impulse response – Difference equations-Convolution sum- Discrete Fourier 
Transform and Z Transform Analysis of Recursive & Non-Recursive systems-DT 
systems connected in series and parallel.

TOTAL: 60 
PERIODS

OUTCOMES:
At the end of the course, the student should be able to:

 To be able to determine if a given system islinear/causal/stable
 Capable of determining the frequency components present in a deterministicsignal
 Capable of characterizing LTI systems in the time domain and frequencydomain
 To be able to compute the output of an LTI system in the time and frequencydomains

TEXT BOOK:
1. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, “Signals and Systems”, Pearson, 

2015.(Unit 1- V)
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2. R.E.Zeimer, W.H.Tranter and R.D.Fannin, “Signals & Systems - Continuous 
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EnggTree.com

Downloaded from EnggTree.com



II YEAR/THIRD SEMESTER EC3354-SIGNALS AND SYSTEM

3

Table of Contents

S.No Contents Page.No

Unit I- Classification of Signals and Systems

1.1 Introduction 5

1.2 Continuous time and Discrete time signals 5

1.3 Elementary signals 6

1.3.1 Unit step signal 6

1.3.2 Ramp signal 6

1.3.3 Unit impulse signal 6

1.3.4 Sinusoidal signal 6

1.3.5 Exponential signal 6

1.4 Classification of CT and DT signals 7

1.5 CT and DT systems 8

1.6 Classification of systems 8

1.6.1 Static and Dynamic 8

1.6.2 System with memory and without memory 9

1.6.3 Time variant and time invariant 9

1.6.4 Linear and Non linear 10

1.6.5 Causal and non causal 10

1.6.6 Stable and Unstable 11

Unit II – Analysis of Continuous time signals

2 Fourier series analysis 21

2.1 Fourier transform 22

2.2 Inverse transform 22

2.3 Laplace transform 26

2.5 Properties of ROC of Laplace transform 50

Unit III – Linear Time invariant continuous time s ystem

3.1 System 51

3.2 LTI System 51

3.3 Block diagram representation 52

3.4 Impulse response 52

3.5 Properties of impulse response 53

3.6 Convolution integral 53

3.6.1 Convolution Integral Properties 53
i

EnggTree.com

Downloaded from EnggTree.com



II YEAR/THIRD SEMESTER EC3354-SIGNALS AND SYSTEM

4

3.7 Properties of Laplace transform 53

3.8 Structure realization 55

Unit IV – Analysis of Discrete Time systems

4.1 Sampling Theory 72

4.2 Aliasing 73

4.3 Sampling of Non-bandlimited Signal: Anti-aliasing Filter 76

4.4 Discrete time fourier transform 77

4.5 Inverse transform 78

4.6 Properties 79

4.7 Symmetry properties 80

4.8 Z-transform 82

4.9 Properties 86

Unit V – Linear time invariant discrete time syste m

5.1 Introduction 99

5.2 Block Diagram representation 99

5.3 Convolution Sum 101

5.4 LTI system analysis using DTFT 108
5.5 LTI system analysis using Z transform 112

ii

EnggTree.com

Downloaded from EnggTree.com



II YEAR/THIRD SEMESTER EC3354-SIGNALS AND SYSTEM

5

UNIT – I
CLASSIFICATION OF SIGNALS AND SYSTEMS

1.1 INTRODUCTION:
A signal, as stated before is a function of one or more independent variables. A signal

is a quantitative description of a physical phenomenon, event or process. More precisely, a signal 
is a function, usually of one variable in time. However, in general, signals can be functions of 
more than one variable, e.g., image signals. Signals are functions of one or more variables.

Systems respond to an input signal by producing an output signal . 
Examples of signals include:

1. A voltage signal: voltage across two points varying as a function oftime.
2. A force pattern: force varying as a function of 2-dimensionalspace.
3. A photograph: color and intensity as a function of 2-dimensionalspace.
4. A video signal: color and intensity as a function of 2-dimensional space andtime.

A continuous-time signal is a quantity of interest that depends on an independent 
variable, where we usually think of the independent variable as time. Two examples are the 
voltage at a particular node in an electrical circuit and the room temperature at a particular spot, 
both as functions oftime.

A discrete-time signal is a sequence of values of interest, where the integer index can be 
thought of as a time index, and the values in the sequence represent some physical quantity of 
interest.

A signal was defined as a mapping from a set of the independent variable (domain) to the 
set of the dependent variable (co-domain). A system is also a mapping, but across signals, or 
across mappings. That is, the domain set and the co-domain set for a system are both sets of 
signals, and corresponding to each signal in the domain set, there exists a unique signal in the co- 
domain set.
System description

The system description specifies the transformation of the input signal to the output 
signal. In certain cases, a system has a closed form description. E.g. the continuous-time system 
with description y (t) = x(t) + x(t-1); where x(t) is the input signal and y(t) is the output signal.

1.2 Continuous-time and discrete-timesystems
 Physically, a system is an interconnection of components, devices, etc., such as a 

computer or an aircraft or a powerplant.
 Conceptually, a system can be viewed as a black box which takes in an input signal x(t) 

(or x[n]) and as a result generates an output signal y(t) (or(y[n]).
 A system is continuous-time (discrete-time) when its I/O signals are continuous-time 

(discrete-time).

1.3 ElementarySignals:
The elementary signals are used for analysis of systems. Such signals are,

 Step
 Impulse
 Ramp
 Exponential
 Sinusoidal

EnggTree.com

Downloaded from EnggTree.com



II YEAR/THIRD SEMESTER EC3354-SIGNALS AND SYSTEM

6

1.3.1 Unit stepsignal:
 Unit Step Sequence: The unit step signal has amplitude of 1 for positive value and 

amplitude of 0 for negative value of independentvariable.
 It have two different parameter such as CT unit step signal u(t) and DT unit step signal 

u(n).
 The mathematical representation of CT unit step signal u(t) is givenby,

1.3.2 RampSignal:
 The amplitude of every sample is linearly increased with the positive value of 

independentvariable.
 Mathematical representation of CT unit ramp signal is givenby,

1.3.3 Unit impulsefunction:
 Amplitude of unit impulse approaches 1 as the width approaches zero and it has zero 

value at all othervalues.
 The mathematical representation of unit impulse signal for CT is givenby,

 It is used to determine the impulse response ofsystem.

1.3.4 Sinusoidalsignal:
 A continuous time sinusoidal signal is givenby,

Where, A– amplitude - phase angle inradians

1.3.5 Exponentialsignal:
 It is exponentially growing or decayingsignal.
 Mathematical representation for CT exponential signalis,
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1.4 Classification of CT and DTsignals:

 Periodic and non-periodicSignals
A periodic function is one which has been repeating an exact pattern for an infinite period of 
time and will continue to repeat that exact pattern for aninfinite time. That is, a periodic function 
x(t) is one for which

x (t) = x(t+nT)
for any integer value of n, where T >0 is the period of the function and − ∞ < t <∞ . The signal 
repeats itself every T sec. Of course, it also repeats every 2 T,3T and nT. Therefore, 2T, 3T and 
nT are all periods of the function because the function repeats over any of those intervals. The 
minimum positive interval over which a function repeats itself is called the fundamental period 
T0.T0 is the smallest value that satisfies the condition x ( t ) = x ( t+T0). The fundamental 
frequency f 0 of a periodic function is the reciprocal of the fundamental period f 0=1/T0. It is 
measured in Hertz and is the number of cycles (periods) per second. The fundamental angular 
frequency ω0 measured in radians per second is ω0=2πT0= 2πf0. A signal that does not satisfy 
the condition in (2.1) is said to be a periodic or non-periodic.

 Deterministic and RandomSignals
Deterministic Signals are signals who are completely defined for any instant of time, there is no 
uncertainty with respect to their value at any point of time. They can also be described 
mathematically, at least approximately. Let a function be defined as

A random signal is one whose values cannot be predicted exactly and cannot be described by 
any exact mathematical function, they can be approximately described.

 Energy and PowerSignals:
Consider v(t) to be the voltage across a resistor R producing a current i(t). The
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instantaneous power p(t) per ohm is defined as, Total energy E and average power P on a per- 
ohm basis are

For an arbitrary continuous-time signal x (t), the normalized energy content E of x(t) is 
defined as,

The normalized average power P of x (t) is defined as,

Similarly, for a discrete-time signal x[n], the normalized energy content E of x[n] is defined as,

The normalized average power P of x[n] is defined as,

1.5 CT Systems and DTSystems:
A system is defined as a physical device which contains set of elements or functional 

blocks and that generates a response or output signal for a given input.

1.6 Classification ofsystem:
The systems are classified as,

 Static & dynamicsystem
 Time invariant and variantsystem
 Linear and non linearsystem
 Causal and non causalsystem
 Stable and unstablesystem

1.6.1 Static and dynamic system:
 Static system is said to be a memorylesssystem.
 The output does not depend the past or futureinput.
 It only depends the present input for anoutput.
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Eg, y(n) = x(n)
 Dynamic system is said to be as system withmemory.
 Its output depend the past values of input for anoutput.

Eg. Y(n) = x(n) + x(n - 1)
 This static and dynamic systems are otherwise called as memoryless and system with 

memory.

1.6.2 Systems with and withoutmemory:
 A system is called memory less if the output at any time t (or n) depends only on the 

input at time t (or n); in other words, independent of the input at times before of after t  
(or n). Examples of memory lesssystems:

Examples of systems with memory:

1.6.3 Time invariant and time variantsystem:

 If the time shifts in the input signals results in corresponding time shift in the output, 
then the system is called as time invariant.

 The input and output characteristics do not change withtime.
 For a continuous timesystem,

 For a discrete time system,
f[x(t1 – t2)] = y(t1 – t2)

F[x(n - k)] = y(n - k)

 If the above relation does not satisfy, then the system is said to be a time variantsystem.
 A system is called time-invariant if the way it responds to inputs does not change over 

time:

Examples of time-invariant systems:
 The RC circuit considered earlier provided the values of R or C areconstant.

Examples of time-varying systems:

 The RC circuit considered earlier if the values of R or C change overtime.

EnggTree.com

Downloaded from EnggTree.com



II YEAR/THIRD SEMESTER EC3354-SIGNALS AND SYSTEM

10

 Most physical systems are slowly time-varying due to aging, etc. Hence, they can be 
considered time-invariant for certain time periods in which its behavior does not 
changesignificantly.

1.6.4 Linear and non linearsystem:
 A system is said to be linear if it satisfies the superpositionprinciple.
 Superposition principle states that the response to a weighted sum of input signal be 

equal to the weighted sum of the output corresponding to each of the individualinput 
signal

 The continuous system is linearif,
F[a1x1(t) + a2x2(t)] = a1y1(t) + a2y2(t)

 The discrete system is linearif,
F[a1x1(n) + a2x2(n)] = a1y1(n) + a2y2(n)

 Otherwise the system is non linear.
 A system is called linear if its I/O behavior satisfies the additivity and homogeneity 

properties:

for any complex constant a.

 Equivalently, a system is called linear if its I/O behavior satisfies the superposition 
property:

where any complex constants a and b.

1.6.5 Causal and non causalsystem:
 A causal system is one whose output depends upon the present and past inputvalues.
 If the system depends the future input values, the system is said to be non causal. 

Eg. for causalsystem.

Eg. For non causal system,

Y(t) = x(t) + x(t - 1)
Y(n) = x(n) + x(n - 3)

Y(t) = x(t+3) + x2(t) 
Y(n) = x(2n)
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weighted sum of output weighted sum of output weighted sum of input

 A system is called causal or non-anticipative if the output at any time t (or n) depends 
only on the input at times t or before t (or n or before n); in other words, independent of 
the input at times after t (or n). All memory less systems are causal. Physical systems 
where the time is the independent variable arecausal.

 Non-causal systems may arise in applications where the independent variable is not 
the time such as in the image processingapplications.

Examples of causal systems:

Examples of non-causal systems:

1.6.6 Stable and unstablesystem:
 When every bounded input produces bounded output then the system is called as 

stable system or bounded input bounded output (BIBOstable).
 Otherwise the system is unstable.
 A system is called stable if it produces bounded outputs for all boundedinputs.
 Stability in a physical system generally results from the presence of mechanisms that 

dissipate energy, such as the resistors in a circuit, friction in a mechanical system,etc.

Sample Problems: 

Problems:

Determine whether the following system is linear or not.
dy 

 3ty(t) t 2x(t)
dt

For an input x1(t) and for the corresponding output y1(t) the differential equation can be written as,
dy1(t)3ty(t)t2x(t) --------(1)

dt 1 1

For an input x2(t) and for the corresponding output y2(t) the differential equation can be written as,
dy2 (t)  3ty (t) t 2x (t) --------(2)

dt 2 2

(1) a  (2) b and rearrranging,
d[ay1 (t) by2 (t)]  3t[ay (t) by (t)] t 2[ax (t) bx (t)]

dt 1 2 1 2

d [ay (t) by (t)] 3t [ay (t) by (t)] t 2[ax (t) bx (t)]
dt 1 2 1 2 1 2
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2

From the above equation, we can note that the weighted sum of inputs to the system produces an 
output which is also equal to weighted sum of outputs corresponding to each of the individual 
inputs.
Therefore, the system is linear.

Determine whether the system y(n)  2x(n)  1
x(n 1)

is linear or not

y(n) T[x(n)]2x(n) 

For an input x1(n),

1
x(n 1)

y(n)T[x(n)]2x(n) 1
----------------(1)

1 1 1 x1 (n  1)
For an input x2(n),
y  (n) T[x (n)] 2x(n) 1

------------------(2)
2 2 2 x2 (n  1)

Weighted sum of outputs is given by
ay (n) by (n)  2ax (n) 

a
 2bx(n) b

-------------(3)
1 2 1 x1 (n1) x2(n1)

Output due to weighted sum of inputs is
y(n)T[ax(n)bx(n)]2[ax(n)bx(n)]

1
--------(4)

3 1 2 1 2 [ax(n1)bx(n1)]
1 2

y3 (n) ay1(n) by2 (n)
Therefore, the system is non-linear.

Determine whether the following systems are time-invariant or not.
(1) y(t) tx(t)
y(t) T[x(t)] tx(t)

The output due to delayed input is
y(t,T ) T[x(t T )] tx(t T )

If the output is delayed by T, we get
y(t T )  (t T )x(t T )
y(t,T ) y(t T )

Therefore, the system is time-variant
(2) y(n) x(2n)

y(n) T[x(n)] x(2n)
If the input is delayed by k units of time then the output is ,

y(n, k) T[x(n k)] x(2n k) 
Outputdelayedbykunitsoftimeis, 
y(nk)x[2(nk)]x[2n2k]
y(n, k ) y(n k )

Therefore, the system is time –variant.
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

Problem
Find whether the signal xt 2cos(10t 1) sin(4t 1) is periodic or not.

Time period of 2cos10t 1is T 2sec
1 10 5

Time period of sin(4t 1) is T 
2


sec

2 4 2
T  2

The ratio of two periods is   1
5 

T2 2 5

The ratio of two periods is a rational number.
Therefore, the sum of two signals are periodic and the period is given by

T 2T2 5T1
2



2
5



5

sec

ii)Find thesummation e2n(n2)
n

(n  2)  1
 0

for 
for

n  2
n  2

e2n(n2)e2n(n2)|
n

n2 e4

iii) Explain the properties of unit impulsefunction.
unit impulse function

1

0.8

0.6

0.4

0.2

0
-4 -3 -2 -1 0 1 2 3 4

t

The impulse function has zero amplitude everywhere except at t = 0.
(t)1 t 0

0 t 0

At t=0, the amplitude is infinity such that the area under the curve is equal to one.


(t)dt  1




( 
t)
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6

iv) Find the fundamental period T of the continuous timesignal xt  20cos10t 

 
 

xt20cos10t

 
 

0  10

T  2
0

2
10


1 sec
5

Derive the relationship between unit step and delta function.
( t ) integrateu(t)
u (t )  differentiate(t)
(t ) unit impulse function

u(t) 1
0

du(t)  1
dt

u (t ) unit step
t 0
t 0

t  0

function

0 t0 (t)

Sketch the following signals:

(1) xtrt

(2) xtrt  2
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(3) xt2rt where r(t) is a ramp signal.

.Determine whether the following systems are time invariant or not.
i) Y(t) =tx(t)
ii) Y(n) =x(2n)

Solution:
i) Y(t) =tx(t)

Y(t) = T[x(t)] = tx(t)
The output due to delayed input is, 

Y(t,T) = T[x(t - T)] = tx(t - t)
If the output is delayed by T, we get 

Y(t -T) = (t - T) x( t - T)
The system does not satisfy the condition, y(t,T) = y(t – T). 
Then the system is time invariant.

ii) Y(n) = x(2n) 
Y(n) =x(2n)

Y(n) = T[x(n)] = x(2n)
If the input is delayed by K units of time then the output is, 

Y(n,k) = T[x(n-k)] = x(2n-k)
The output delayed by k units of time is, 

Y(n-k) = x[2(n-k)]
Therefore, y(n,k) is not equal to y(n-k). Then the system is time variant.
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T

T

T

 



UNIT – II
ANALYSIS OF CONTINUOUS TIME SIGNALS

2.1Fourier Series representation of CT periodicsignals

Any periodic function of time x(t) can be represented by an infinite series called the Fourier Series.
(i)Trigonometric FourierSeries

 

x(t)a0ancosn0tbnsinnot
n1 n1

a0 , an , bn are Fourier Coefficients

0  2 f

1 T

where f fundamental frequency &T 1

f

a0  x(t)dt
0

2 T

an x(t)cos(n0t)dt
0

2 T

bn  x(t)sin(n0t)dt
0

(ii) CosineSeries

 

x(t)a0ancosn0tbnsinnot
n1 n1

a0 , an , bn are FourierCoefficients


x(t)a0 ancosn0tbnsinn0t
n1

x(t)A0Ancosn0tn
n1

where A0 a0

An 
1bn 

n  tan  
an

note:Trigonometric identity

Asin C B cosC  
cosC tan1A 

B
  

(iii) Exponential FourierSeries

 

x(t)  Cn 
n

e jn0t

a2b2
n n

A2B2
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



n

n

C 1

T T

x(t)ejn0t dt

2.2 Properties of CT FourierSeries

Using exponential Fourier series, a periodic signal x(t) with period T can be expressed as

x(t)  Cn 
n

e jn0t

C 1

T T

x(t)ejn0t dt


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











1. Linearity
If x1 (t) and x2(t) are two periodic signals with period T with Fourier series coefficients
Cn1 and Cn2 then Fourier series coefficient of linear combination of x1 (t) and x2 (t) is given by
FSAx1(t)Bx2(t)ACn1BCn2

Proof:

Fourier seriescoefficientofAx1(t)Bx2 (t)is= Ax1(t)Bx2
T T

(t) ejn0tdt


1 Ax(t)ejn0tdt1
Bx(t)ejn0tdtAC  BC

T 1 T 2 n1 n2
T T

2.TimeShifting
If the Fourier series coefficient of x(t) is Cn then the Fourier series coefficient of the time shifted
signal x(t t0 ) is e jn0t0 C

Proof:Fourier series coefficient of x(t t0 ) is =
1 x(t t
T T

)ejn0t dt

let t t0 m t m t0

1 x(m)ejn0(mt0)dm 
TT

&dt dm

ejn0t0 1 x(m)ejn0mdmejn0t0C 
TT

3.TimeReversal
If the Fourier series coefficient of x(t) is Cn then the Fourier series coefficient of the time reversed
signal x(t) is  Cn

Proof: Fourier series coefficient of x(t) is =
1

x(t)ejn0tdt
TT

let t m  t m  &dt dm


1

x(m)ejn0(m)dmC
 n
T

4.Timescaling
If the Fourier series coefficient of x(t) is Cn then the Fourier series coefficient of the time scaled

signal x(t) is
1


Cn / 

Proof:Fourier series coefficient of x(t) is =
1

x(t)ejn0tdtT
T

let t m t m


&dt dm



n

T

1

0

n
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n

n

C e

C n

 n

m1 1 jn0 





 x(m)e
T

dm

n 1 1 jm0 
1




 x(m)e
T

dm 


Cn / 

5.Conjugation
If the Fourier series coefficient of x(t) is Cn then the Fourier series coefficient of the complex

conjugate of the signal 
Proof:

x(t) is C 

x(t)  Cn 
n



e jn0t taking complex conjugate on both sides,

x(t)  Cejn0t

let
n

l n

x(t)


 jl0t
l changing the variable

x(t)

l



nejn0t FSx (t)C

6.Differentiation
n

If the Fourier series coefficient of x(t) is Cn then the Fourier series coefficient of the signal dx(t)
dt

is jn0Cn

Proof:

x(t)  Cn 
n

e jn0t differentiatingw.r.t t on both sides,

dx(t) dt Cejn0tjn

dx(t) 

n

 jn0t dx(t) 

dt
7.Integration

jn0Cn e
n

FS dt 
 jn0 Cn

If the Fourier series coefficient of x(t) is Cn then the Fourier series  coefficient  ofthe signal
t

x(t)dt is


Proof:

Cn 

jn0



x(t)  Cn 
n

e jn0t integratingw.r.t  t on both sides,

t

x(t)dt 


Cn
n

ejn0t 1
jn0



T

T







0
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C e




l








 n n










n Cn

t  C t  C
x(t)dt   n ejn0t FSx(t)dt n

 n jn0   jn0

8.Multiplication
If x (t) and y(t) are two periodic signals with period T with Fourier series coefficients Cn and Dn



then Fourier series coefficient of product of

Proof:

x(t) and y(t) isgiven by ClD(nl)
l 

x(t)  Cn 
n

ejn0t  x(t) 


jl0t
l

l 

Fourier series coefficient of x(t) y(t) is =
1

x(t)y(t)ejn0tdt
TT


1

y(t)ejn0tdt
TT


l

C e jl0t

= Cl
l 


1
y(t)ej(nl)0tdt

TT

ClD(nl)
l 

9.Parseval’s Relation for periodic signal

If the Fourier series coefficient of x(t) is Cn then,
1 x(t)
T T

dt  Cn
n

1 x(t)
T T
Proof:

dt average power in the signal

1 x(t)T dt 1
T [x(t)x (t)]dt 1

T x(t) Cne jn0t
dt

T T T n 


1 x(t)T C ejn0t dt  C C  2

T n n n

\











 
 

2
2

2

2
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 



2.3 laplacetransform

The Unilateral Laplace Transform
The Unilateral Laplace Transform is applied to the signals that are causal. The Unilateral Laplace 
Transform of a signal x(t) is defined by



Lx(t)X (s) x(t)estdt
0

Properties of Unilateral Laplace transform
1 Linearity

Lx1(t)X1(s) 
Lx2(t)X2(s)

LAx1(t)Bx2(t)AX1(s)BX2(s)
Proof:

LAx1(t)Bx2 (t) Ax (t) Bx (t)est dt

2

 AX1(s)BX2 (s)
2 Shifting in timedomain

Lx(t)X (s)
Lx(tt)est0X(s)

0

Proof:

Lx(t t0 )


x(tt0 
0

)estdt

let t  t0 p t t0 p


x(p)es(t0p)dp
0

and dt dp



est0x(p)espdpest0X(s)
0

3 Shifting in frequencydomain
L x (t) X (s)

Leat x(t)X (s a)
Proof:

 

Leatx(t)eatx(t)estdt x(t)e(sa)tdt X (s a)
0 0

4 Differentiation in time
Lx(t)X (s)

x (t)eA x (t)estdt

1 2
0



1
0



st dt B
0

EnggTree.com

Downloaded from EnggTree.com



II YEAR/THIRD SEMESTER EC3354-SIGNALS AND SYSTEM

27

Ldx(t) sX (s) x(0 )

dt 
Proof:

dx(t) dx(t)L  e st dt
dt  0 dt

let u est

dusestdt

and

and

dv dx(t)

v x(t)


udv uv vdu
Ldx(t)estx(t)

 x(t)sestdt

dt  0 

let u x()ddu x(t)dt
0

dv e

t

st dt v

t

est

s
(est)


est 

x()destdtx()d   x(t)dt
00 0

 0 X (s)
s

s 0 0 s 



x(0)sx(t)estdtsX(s)x(0

0

Note:

L
d2x(t) 

 dt2 s[sX (s) x(0 )] 


dx(0 )
dt

dx(0 )
dt



s X (s) sx(0 ) 2 

5. Integration in time
Lx(t)X (s)

0

Lx()d
t 



X (s)
s 

x()d



proof :

s

t 0 t


x()dx()dx()d

 0

0

Lx()d0  x()d

  s

L x(t

 )d  x(
 t

0
 

 00
 )de dtst

t

0
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

 

t  X (s)
0

x()d
Lx()d 

  s s

6.Scaling in Time
Lx(t)X (s)
Lx(at)

1 X s

a

a


 
Proof:



Lx(at)x(at)est dt
0

let at p t p

a
and dt dp

a

 
 s pdp 1 s

L x(at)   x( p)e a  X 
0 a a a 

7.Differentiation in s-domain (frequencydifferentiation)
Lx(t)X (s)

Ltx(t)
dX (s)

ds
Proof:



X (s) x(t)estdt
0

dX(s)  dest 

  st

ds
x(t)

ds
dt   tx(t)e dt

Ltx(t)
dX (s)

ds
Note:n d n X (s)

L ( t) x(t)
dsn

8.Integration in s-domain (frequencyintegration)

Lx(t)X (s)
x(t) 

L
t X (s)ds

s

Proof:

0 0
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







1

0

0

0

0



X (s) x(t)est dt
0

   

X (s)ds x(t){e st ds}dt x(t)estdt
s 0 s 0t

x(t) 

L
t X (s)ds

s

9.initial and Final valuetheorem

Lx(t)X (s)
Initial Value theorem:

lt
t0

x(t)  lt
s

s X (s)

Proof: Ldx(t) sX (s) x(0 )
dx(t) 

dt 


dt e st dt sX (s) x(0 )

dx(t)lt estdt  0  lt sX (s) x(0 )
s dt s

lt
s

sX (s) x(0)

Final Value theorem:
lt

t
x(t)  lt

s0
s X (s)

Proof:
dx(t) est dt sX (s) x(0 )
0 dt

dx(t)lt est dt  lt [sX (s) x(0 )]
s0 dt s0

dx(t) 

dt
dt  lt [sX (s) x(0 )]

s0

lt
t

x(t) x(0)  lt
s0

sX (s)x(0)

lt
t

x(t)  lt
s0

sX (s)
10.Convolution in Time
Lx1(t)X1(s)
Lx2(t)X2(s)
Lx1(t)x2(t)X1(s)X2(s)



By definition ,

Proof:

x1(t)x2(t)



x1 ()x2 (t )d


Lx1(t)x2 (t) 


x1 ()x2 (t )destdt

let t p t p &dt dp
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1



 

 

Lx1(t)x2 (t)







x1 ()x2 ( p)des (p ) dp



x ()esd


x2


( p)espdp X (s) X 2 (s)

11.Convolution in frequency(multiplication)
Lx(t)X (s)
Lg(t)G(s)

Lx(t)g(t)

Note:

1
2j

X (s) G(s)



(i) X(s)G(s) X(u)G(su)du


by definition
  1

(ii) L 1

Proof:

X (s) x(t)  X (s)est ds by definition
2j 

Inverse Laplace Transform of 1
2j

X (s) G(s)is

1 1 

 X(u)G(su)duestds
2j 2j 

let s u p s u p and ds dp
1 1 

 X(u)G(p)due(up)tdp
2j 2j 

 1 
2j



X (u)eut



du 1 
2j



G(p)e


pt dp x(t)g(t)

2.4Continuous Time Fourier Transform

X ( j) Fx(t)


and x(t) F 1X ( j)

Xj

1
x(t)ejtdt




for all 

x(t) 
2 X(j)ejtd



for all t

Properties of CT Fourier 
Transform1.Linearity
Fx1(t)X1(j)
Fx2(t)X2(j)

FAx1(t)Bx2(t)AX1(j)BX2(j)
Proof:

1


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1

0

 

0

0

 



FAx1(t)Bx2 (t)


 Ax1(t)Bx2 (t)ejtdt




A


x (t)ejtdt B


x2


(t)ejt dt

 AX1(j)BX2(j)
2. Shifting in timedomain
Fx(t)X ( j)
Fx(tt)ejt0X(j)
Proof:

Fx(t t0 )


x(t t0 )ejtdt

let


t t0 p t t0 p


and dt dp

x( p)ej(t0 p ) dp




ejt0x(p)ejpdpejt0X(j)


3.Shifting in frequencydomain
Fx(t)X ( j)

Fej0tx(t)X(jj)
Proof:

Fej0tx(t)


ej0tx(t)ejtdt


x(t)e(j0j)tdtX(jj)
 

4.Scaling in Time
Fx(t)X ( j)
F x(at)

1 X j

a

a 



Proof:


Fx(at) x(at)ejt dt


let at p t p

a
and dt dp

a

 
 jp dp 1 j

F x(at)  x( p)e a

 a
 X 

a a 

5.Time 
reversalFx(t)X 
( j) Fx(t)X 
(j)
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





Proof:

Fx(t)


x(t)ejtdt




x(t)ejtdt




x(t)e(j)t


X (j)

6.Differentiation in time
Fx(t)X ( j)

Fdx(t) jX ( j)

dt 
Proof:

x(t) 1 

X(j)ejtd for all t

dx(t)
2

1 X(j)d [e jt]d
dt 2 dt

dx(t) 1 


jX(j)ejtddt
2

F dx(t) jX ( j)
dt

note:
dnx(t) n
F dtn  (j)


X ( j)

7.Differentiation in frequency
Fx(t)X ( j)

Ftx(t)

Proof:

j dX ( j) 
d

Xj


x(t) ejtdt


dX (j) 
d



x(t)



d (ejt )
d

dt



Ftx(t)

jt x(t)ejt dt


j dX ( j) 
d

  8. Duality
Fx(t)X ( j)
FX (t)2x (j)
Proof:
x(t) 1 

X(j)ejtd for all t
2
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1



2x(t) X ( j) e jt d




2x(t)X(j)ejtd


FX ( j)

changing t toj


2x(j)X(t)ejtd


9.Convolution in Time
Fx1(t)X1(j)
Fx2(t)X2(j)

FX (t)

Fx1(t)x2(t)X1(j)X2(j)


By definition ,

Proof:

x1(t)x2(t)



x1 ()x2 (t )d


Fx1(t)x2 (t) 


x1 ()x2 (t )dejt dt

let t p t p &dt dp


Fx1(t)x2 (t)  



x1 ()x2 ( p)dej(p ) dp



x ()ejd


x2


(p)ejpdpX ( j)X 2 ( j)

10.Convolution in frequency(multiplication)
Fx(t)X ( j)
Fg(t)G( j)

F x(t)g(t)
1

2
Note:

X ( j) G( j)



(i) X(j)G(j) X(u)G(ju)du


by definition
  1

(ii) F 1

Proof:

X (j) x(t) 
2 X ( j)e jt dby definition



Inverse Fourier Transform of
1 X ( j) G( j)is

2
1 1 

  X(u)G(ju)duejtd
22

let s u p s u p and ds dp

1


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 





1 1 

 X(u)G(p)due(up)tdp
2j 2j 

 1 
2j



X (u)eut



du 1 
2j



G(p)e


pt dp x(t)g(t)

Parseval’s Theorem
Fx(t)X ( j)



E x(t)


2dt 1

2



X ( j


2d

Proof:
 

x(t) 2dt x(t)x(t)dt


x(t) 1



X(j)ejtd x (t) 1 

X  ( j) ejtd
2

  1 


 
2

x(t)x (t)dt  x(t) X ( j)e jtddt


1 


 2 
 

 X(j)x(t)ejtdtd
2  
1 

   X(j)x(t)ejtdtd
2  


1 X
2

( j) X ( j)d
1

2



X ( j)


2d
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Continuous Time Fourier Transform:

Viewed periodic functions in terms of frequency components ((Fourier series) as well as 
ordinary functions of time

Viewed LTI systems in terms of what they do to frequency components (frequency 
response)

Viewed LTI systems in terms of what they do to time--domain signals (convolution with 
impulse response)

When theperiodof approaches infinity , the periodic signal 

becomes a non-periodic signal and the following willresult:

Interval between two neighboring frequency components becomes zero:

►  View aperiodic functions in terms of frequency components 
viaaFouriertransform

The Fourier expansion coefficient

is

( in OWN) of a periodic signal is

and the Fourier expansion of the signal is:

which can also be written as:

where is defined as
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the second equal sign is due to the general fact:

Time integral over in equation (b) becomes over the entire time axis:

In summary, when the signalisnon-periodic , the Fourier 
expansion becomes Fourier transform. The forward transform (analysis)is:

and the inverse transform (synthesis) is:

Discrete frequency becomes continuous frequency:

Summation of the Fourier expansion in equation (a) becomes an integral:

Notethat isdenoted by in OWN.

Comparing Fourier coefficient of a periodic signal   with with Fourier spectrum of a 

non-periodicsignal 
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we see that thedimension of is different fromthatof :

If represents the energy contained in the kth frequency component of a periodic

signal , then represents the energy density of a non-periodic signal

distributed along the frequency axis. We can only speak of the energy contained ina 

particular frequencyband :

2.5 InverseTransforms

If we have the full sequence of Fourier coefficients for a periodic signal, we can reconstruct it by 
multiplying the complex sinusoids of frequency ω0k by the weights Xk and summing:

We can perform a similar reconstruction for aperiodic signals

These are called the inverse transforms.
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Example 1:

If the spectrum of a signal is a delta function in frequency domain

, the signal can be found to be:

i.e.,

Example 2:

2.6 PROBLEMS: 

Example0:

Consider the unit impulse function:
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Note that the height of the main peak is 
larger. Also note

and it gets taller andnarroweras gets

When approachesinfinity, forall , and the spectrumbecomes

Recall that the Fourier coefficient of is
which represents the energy contained in thesignal at (DC component atzero

The spectrum is

This is the sinc function withaparameter , as shown in thefigure.

frequency), andthespectrum is the energy density or distribution which is infinity at 
zerofrequency.

The integral in the above transform is an important formula to be used frequently later:

which can also be written as
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Switching and in the equation above, we alsohave

representing a superposition of an infinite number of cosine functions of all frequencies,
which cancel each other any where along the time axisexcept at where they add up to infinity, an 
impulse.

Example 3:

The spectrum of the cosine function is 

The spectrum of the sine function

can be similarly obtained to be

Again, these spectra represent the energy density distribution of the sinusoids, while the corresponding 
Fourier coefficients

and

represent the energy containedat frequency .

Continuous Time Fourier Transform-PROBLEMS

X ( j) Fx(t)


and x(t) F 1X ( j)

Xj

1
x(t)ejtdt




for all 

x(t) 
2 X(j)ejtd



for all t
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0

0

2

0



1

0

1. Find the inverse Fourier transformof (i) () (ii) (0 )

(i) x(t) 1 

X ( j) e jt d
2


1  

() ejtd 
1

2

Since,

2
()1

 0
for 
for

 0
 0

F 1()
1
2

F 12() 1

F1 2()

(ii) x(t) 1 

X ( j) e jt d
2


 (0)ejtd 

e j0t

2

Since,
2

(0)1 for 0

F1 (0 
e j0t

2

 0 for 0

F12()ej0t

Fej0t 2(0 )
Fourier transform of standard signals:

a) x(t) cost

cost 
e j0t

 ej0t

2

  Fej0tFej0t 1
X j

 2  [2(0)2(0)]
 [(0 ) (0 )] [(0 ) (0 )]

b) x(t) sin t

)


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




 



  e j0t ej0t

sin0t 2j
  Fej0tFej0t 1

X j
 2j 

2j

[2(0 ) 2(0 )]

j [(0 ) (0 )] j[(0 ) (0 )]

c) x(t) sgnt
The given function x(t) sgnt is known as signum function and is defined as,

sgn(t)  1if
0 if
1if

t 0
t 0
t 0

The function is not absolutely integrable. The Fourier transform of x(t)  sgntis
obtained by considering thefunction lt

a0
ea|t| sgnt 

Xj lt
a0



e


a|t| sgn(t)e  jt dt


 0  
lt a0 eat ejt dt eat ejt dt 

lt
 1


0

1 
 lt


 2 j

a0a j a j a0a2 2

 2 j


d) x(t) ut
u(t)  1



for

2
j

t  0
0 for t  0
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Fu(t)
1 
j
 

e) Rectangular pulse t 

 

Rectangular pulse ofwidth extending from  
to

and amplitude1.2 2

x(t) t 


x(t)  1

 


to
2 2

 0otherwise


Xjx(t)ejtdtejtdt
 2

 

This signal can be expressedas u t 
1 


1 sgn(t)

F1
2 2

2()

Fsgn(t)

Fu(t)

2
j

12
1 2

2 2 j
 

2

 
ejt2 1 j


j

 2 sin
2 

   e 2 e 2  
j


2

j  
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Triangular pulse of width  extending from 
to 
2 2 and amplitude 1.

x(t) t

 

x(t)  1 2t


1
2t



0 t 

2



t  0 2

Xjx(t)ejtdt






0

(1 )e jtdt(1 )e
2t 2

 2t 


  0 

j t dt



 j 


 
0

 

 e


e
 

2  
sin

2 
 sin 2 

  


 sinc 
 2 
2

Note:
sin x 

 sin c(x) 
x

t 
f)Triangularpulse  

2


e jt 

0   jtt 


jt 
0




ejt 2   jtt 



jt 2

 
 


2

 j ( j)2 
2

 
0  j ( j)2

2 2
  j

e e
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   

 







4




 

e



  




 j
  j


j

  j
 




 1


e 2   


2


1


 e 2


e

2 


e
2 


1  j


j


 (j)2


2 (j) (j)2  j

 
j





2 

j


e 2
j

 
2 1  






2 
 2


e j



2
j


2  

2 j


( j)2 ( j)2



 (j)2




(j)2

j

( j)2


j

  j


j



2

 2 e 2


e 2 


2 e 4 e 4
 (j)2


( j)2 ( j)2


 j 


2

  2   
 j

4
j

4
2 sin 

2e e
 

 j


 
 16



8





 4
 

 
4 


sinc2


 

2  





 

e

2


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2.5 LaplaceTransform

►Lapalcetransform isageneralization oftheFourier transform in the sensethat it allows ―complex 
frequency‖ whereasFourieranalysis can on lyhandle ―real frequency‖.LikeFourier transform,Lapalce 
transform allows us to analyzea―linearcircuit‖problem, no matterhow complicated the circuit is, in the 
frequency domain in stead of in he timedomain.

►Mathematically, it produces the benefit of converting a set of differential equations into a 
corresponding set of algebraic equations, which are much easier to solve. Physically, it produces more 
insight of the circuit and allows us to know the bandwidth, phase, and transfer characteristics important 
for circuit analysis and design.

►Most importantly, Laplace transform lifts the limit of Fourier analysis to allow us to find both the 
steady-state and ―transient‖responses of a linear circuit. Using Fourier transform, one can only deal with 
he steady state behavior (i.e. circuit response under indefinite sinusoidal excitation).

►Using Laplace transform, one can find the response under any types of excitation (e.g. switching on 
and off at any given time(s), sinusoidal, impulse, square wave excitations, etc.
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ROC for Laplace Transform


Laplace transform of x(t) is X (s)  x(t)est dt


The range of values of ‗s‘ for which the integral in the equation converges is referred to as the region 
of convergence(ROC).

2.8 Properties of ROC for LaplaceTransform

1. ROC of X(s) consists of strips parallel to the jaxis in the s-plane.
2. For rational Laplace Transform, the ROC does not contain anypoles.

X (s) N(s)

D(s)
general formof rational LT

Roots of D(s)  0 are poles

3. If x(t) is of finite duration and if there is at least one value of s for which the LT converges, then the 
ROC is the entires-plane.

4. If x(t) is right sided and if the line Res0is in the ROC , then all values of s forwhich
Res0will also be in the ROC.

5. If x(t) is left sided and if the line Res0

Res0will also be in the ROC.
6. If x(t) is two sided and if the line Res0

is in the ROC , then all values of s for which

is in the ROC , then the ROC will consist of a strip in
the s-plane which includes the line Res0.

EnggTree.com

Downloaded from EnggTree.com



II YEAR/THIRD SEMESTER EC3354-SIGNALS AND SYSTEM

51

UNIT III

LINEAR TIME INVARIANT –CONTINUOUS TIME SYSTEMS

3.1 System:
A system is an operation that transforms input signal x into output signal y.

3.2 LTISystems
• Time Invariant

• Linearity
–X(t) y(t) &x(t-to) y(t-to)

– a1x1(t)+a2x2(t) a1y1(t)+a2y2(t)
– a1y1(t)+ a2y2(t)=T[a1x1(t)+a2x2(t)]

• Meet the description of many physicalsystems
• They can be modeledsystematically
– Non-LTI systems typically have no general mathema tical procedure to obtainsolution

Differential equation:
• This is a linear first order differential equatio n with constant coefficients (assuming a and bare 
constants)

The general nth order linear DE with constant equations is

Linear constant-coefficient differential equations In RC circuit
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- To introduce some of the important ideas concerning systems specified by linearconstant- 
coefficient differential equations ,let us consider a first-order differentialequations:

3.3 Block diagramrepresentations
Block diagram representations of first-order systems described by differential and 

difference equations

3.4 ImpulseResponse

This impulse response signal can be used to infer properties about the system‘s structure (LHS of 
difference equation or unforced solution). The system impulse response, h(t) completely characterises a 
linear, time invariant system
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3.5 Properties of System ImpulseResponse

Stable
A system is stable if the impulse response is absolutely summable

Causal
A system is causal if h(t)=0 when t<0

Finite/infinite impulse response
The system has a finite impulse response and hence no dynamics in y(t) if there exists T>0, such 

that: h(t)=0 when t>T

3.6 ConvolutionIntegral
• An approach (available tool or operation) to desc ribe the input-output relationship for LTISystems

• In a LTIsystem
– d(t) h(t)
– Remember h(t) isT[d(t)]
– Unitimpulsefunction the impulseresponse
• It is possible to use h(t) to solve for any input -outputrelationship
• Any input can be expressed using the unit impulsefunction

3.6.1 Convolution Integral –Properties
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3.7 BLOCK DIAGRAM REPRESENTATION-STRUCTUREREALIZATION

IIR Systems are represented in four different 
ways Direct Form Structures Form I and Form II 
Cascade Form Structure
Parallel Form Structure
Lattice and Lattice-Ladder structure.

DIRECT FORM STRUCTURE FOR IIR SYSTEMS

IIR systems can be described by a generalized equations as 
N M

y(n)=-∑ ak y(n–k)+∑ bk x(n–k)
k=1 k=0

Z transform is given as
M

H(z) = ∑ bk z–k
N

/ 1+ ∑ akz
K=0 k=1

M N
Here H1(z) = ∑ bk z–k And H2(z) = 1+ ∑ akz–k

K=0 k=0

Overall IIR system can be realized as cascade of two function H1(z) and H2(z). Here H1(z) represents zeros 
of H(z) and H2(z) represents all poles of H(z).

1. Direct form I realization of H(z) can be obtained by cascading the realization of H1(z) 
which is all zero system first and then H2(z) which is all pole system.

· There are M+N-1 unit delay blocks. One unit delay block requires one memory location. 
Hence direct form structure requires M+N-1 memorylocations.

3. Direct Form I realization requires M+N+1 number of multiplications and M+N number 
of additions and M+N+1 number of memory locations.

–k
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DIRECT FORM -I

DIRECT FORM - II

1. Direct form realization of H(z) can be obtained by cascading the realization of H1(z) 
which is all pole system and H2(z) which is all zero system.

· Two delay elements of all pole and all zero system can be merged into single delayelement.

· Direct Form II structure has reduced memory requirement compared to Direct form I 
structure. Hence it is called canonicform.

· The direct form II requires same number of multiplications(M+N+1) andadditions 
(M+N) as that of direct formI.
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CASCADE FORM STRUCTURE FOR IIR SYSTEMS

In cascade form, stages are cascaded (connected) in series. The output of one system is input to 
another. Thus total K number of stages are cascaded. The total system function
'H' is given by

H= H1(z).H2(z)… .............................Hk(z) (1)

H=Y1(z)/X1(z).Y2(z)/X2(z). ......................Yk(z)/Xk(z) (2)

k
H(z)=π Hk(z) (3)

k=1

EnggTree.com

Downloaded from EnggTree.com



II YEAR/THIRD SEMESTER EC3354-SIGNALS AND SYSTEM

58

Each H1(z), H2(z)… etc is a second order section and it is realized by direct form 2.

PARALLEL FORM STRUCTURE FOR IIR SYSTEMS

x(n)=x1(n) y1(n)=x2(n) y2(n)=x3(n) yk(n)=y(n)
H1(z) H2(z) Hk(z)

FIG - CASCADE FORM REALIZATION OF IIR SYSTEM
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R
X(t) C Y(t)

For the circuit shown in figure,

x(t) Ri(t)  1
i(t)dtC

(1)

y(t)  1
i(t)dtC

(2)

Taking LT of the equations and rearranging,

X (s) RI (s)I(s)
(1)

sC

Y (s)  I (s)
sC

(2)

X(s)sRCY(s)Y(s)

H (s) Y (s)
X (s)

H (s)  1
(sRC 1)



1
RC

(s 
RC
1 )



3.8 PROBLEMS

1. Determine the output response of RC Low pass network shown in figure due toinput
t

x(t) teRC by convolution.

 t
x(t) te RC

X(s)
1

(s  1 )2

RC
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



y(t) x(t)h(t)
1

Y(s)X(s)H(s) RC

(s  1 )3

RC

y(t)L1Y(s)
  1 
2RC

t2e
 t 

RC

2. The Input and Output of a causal LTI system are related by the differentialequation
d 2y(t)

dt2
6

dy(t) 
dt 8y(t)2x(t). Using Fourier Transform

(i) Find the Impulse response of thesystem
(ii) Find the response of the systemif x(t) e3tu(t)

SOLUTION:
(i) Impulse response of thesystem:

d 2y(t)

dt2
6

dy(t) 
dt

8y(t)2x(t) ---------------(1)

Applying Fourier Transform to the given Differential Eq.
j2Yjj6Yj8Yj2XjYj

(j26j8)2Xj
Yj 2X j

( j2 6 j8) ----------------------(2)

Here x(t) tand X ( j)  1
using partial fraction expansion

Y( j)  A 
j 2

B
j 4

Set j = -2 then A(j+2)+B(j+4)2, gives B  1
Set j = -4 then A( j+2)+B(j+4)2, gives A 1

Y( j)  1 
j 2

1
j 4

By taking inverse FT , y(t) e4tu(t) e2tu(t)

(ii) If x(t) e3tu(t) then X ( j) 1
j 3

Yj(j2j68) 2
j 3

Yj
2

(j3)(j26j8)
using partial fraction expansion

Y( j)  A 
j 2

B 
j 4

C
j 3

Solving for A,B & C, we get A=1 , B=1 and C=-2
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Then by taking Inverse FT,  weget
y(t) e2tu(t) e4tu(t) 2e3tu(t)

3. Realize the system described by the differential equation
d3y(t) d2y(t) dy(t) d2x(t) dx(t)4 7 8y(t)5 4 7x(t) in Direct FormII.

dt3 dt2 dt dt2 dt

SOLUTION:
Apply Laplace transform for the given differential equation with assuming zero initial conditions.
s3YS4s2YS7sYS8YS5s2XS4sXS7XS(1)

Y(s) 5s24s 7
H(s) 

X(s) s34s27s 8
5s24s7 Y (s) W(s)

s34s27s8 X(s) W(s)

let W(s)


1
(1)

X(s) s34s27s 8

let Y (s) 
 5s2 4s  7  (2)

W (s)
from (1)
(s34s27s8)W(s)X(s) (3)
from (2)
Y(s)(5s24s7)W(s) (4)
from (3)
s3W (s)  4s2W (s)  7sW (s)  8W (s) X (s)
s3W(s)X(s)4s2W(s)7sW(s)8W(s) (5)
from (4)
Y(s)5s2W(s)4sW(s)7W(s) (6)
Equations (5) and (6) are used for implementing the system.
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4. Find the convolution of the followingsignals.
x (t) eatu(t) ; x (t) ebtu(t)
1 2

SOLUTION:
L[x1(t) x2(t)]=X1(s)X2(s)

x1(t)=e-atu(t)  ; X1(s)=L[e-atu(t)]=

x1(t)=e-btu(t)   ;X2(s)=L[e-btu(t)]=

1
s a

1
s b

Y(s) = X (s)X (s)  A  B
1 2 sa s b

A= s a
(s a)(s b)

A= s b
(s a)(s b)

1

| s a ,then

| s b ,then

1

A
1  

(b a)

B  1  
(a b)

Y(s) = (b a) (b a)
s a

y(t) = 1eat

b - a

s b

 ebtu(t)

5.Find the convolution of the followingsignals:
x(t) e2tu(t)
h(t) u(t  2).

SOLUTION:
L[x1(t)  x2(t)]=X1(s)X2(s)

x1(t)=e-2tu(t) and X1(s)=L[e-2tu(t)] =

e2S

1
s  2

1
x2(t)=L[u(t+2)]=

s
, [Using time shiftingproperty,L[u(t)]= ]

s

L[x1(t)  x2(t)]=
e2S

ss  2
e2S A B

Y(s) = 
ss  2 

s s 2

A s
1

s(s  2)
| s0 ; A 1

2

B(s2) 1
s(s  2)

| s 2 ; B 
1

2
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(s1)(s2)

S 2 (S 1)

1

Y (s) = 1/ 2 1/ 2
1 s (s 2)

Y(s) = e2S(1

2s


1 )
2(s  2)

Y(s) = e2S 

2s
 e2S

2(s  2)

y(t) = 1 u(t 2)- 1 e-2( t+2 ) u(t+2)
2 2

6.i) Using Laplace transform , find the impulse response of an LTI system
d2


dyt

  
described by thedifferentialequation dt 

yt 2yt xt
dt

SOLUTION:
Apply Laplace transform for the given differential equation with assuming zero initial conditions .

s2YSsYS2YSXSYS
s2s2XS
HS

YS
2 

X S 


1

s s  2




A   

B

1 1
3 (S 2)

1 1
3 S  1

ht 
1 e2t u(t) 1 etu(t)
3 3

ii) Explain the properties of Convolutionintegral.
(1) Commutativeproperty

x1(t) x2 (t) x2 (t) x1(t)
(2) Associative property

x1(t)x2(t)x3(t)x1(t)x2(t)x3(t)
(3) Distributiveproperty

x1(t)x2(t)x3(t)x1(t)x2(t)x1(t)x3(t)
(4) shift property

ifx1(t) x2 (t) z(t) then
x1(t)x2(tT)z(tT)

(5) Convolution with animpulse
x(t) (t) x(t)

(6) Convolution with unitstep
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0

2



x(t)u(t) 
t

x()d


t t0

And x(t)u(tt0)  x()d


(7) Width property 
Let the duration of 
Let the durationof

x1(t) beT1

x2 (t) beT2

Then the duration of the signal obtained by convolving x1(t) and x2 (t) is T1 T2

8.i) Solve the differential equation:
d yt4
dt

dyt


dt
5yt 5xt with y(0) 1and

dyt 
| 2

dt
andxt ut 

SOLUTION:
To solve the given differential equation we can use LT method. 

Applying LT to the given differential Eq. With given initial conditions.
2  dy(0)     

s Y S sy(0 )
dt 4 sYs y(0 ) 5Y s 5X s

s2Y S s  2  4sYs1 5Y s 5X s
s2Y S  4sY (s)  5Y s

5 
s  6

s
(s2 4s  5)Y (s) 5 

s  6
s

Y (s) 5 
s(s2 4s  5)

s 
(s2 4s  5)

6
(s2 4s  5)

----------(1)

Applying Partial fraction to the first term in Y(s)
5

s(s2 4s  5)


A 


s
Bs C

(s2 4s  5)
5

s(s24s5)
5

s(s24s5)

A(s2 4s  5)  (Bs C)s
s(s2 4s  5)

A((s  2)2 1)  (Bs C)s
s(s2 4s  5)

By solving this Eq. We can get the values of A, B and C 
A=1, B=-1 and C=-4
By substituting the values in Eq. (1) and rearranging the terms we have

Y (s) 1


s


1 


s
((s  2)21) 
2

 4
((s 2)21)


6


((s  2)2 1)

s
((s  2)2 1)

s ((s  2)21)
By taking inverse LT we can get y(t)
y(t) u(t)  2e2tsint
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d2


dyt
 

dx(t)
 

ii) The system is described by the input output relation dt 
y t 3y t

dt
2xt .dt

Find the system transfer function, frequency response and impulse response.
System Transfer function:
Applying Laplace Transform to the given differential equation with zero initial conditions,
s2Y S sYS  3Y S sX s 2X s
Y s

(s 2) Xs
(s2s  3)Y s


(s2)

H(s)systemtranferfunction
Xs (s2s 3)

Frequence response of the System :
Applying FOURIER Transform to the given differential equation.
j2YjjYj3YjjXj2XjYj(j

2j3)(j2)Xj
Yj

 ( j2) X j
( j2j 3)

H(j)Yj


 ( j2)
Frequencyresponse

Xj ( j2j3)
Impulse response of the system:
s2Y S sYS  3Y S sX s 2X s
Y s

(s 2) Xs
(s2s  3)

Y s(s2) H(s)
Xs (s2s 3)

Impulse response of the systemh(t)
h(t)  inverse LT of H(s),
Y s(s2) H(s)
Xs (s2s 3)

9. Draw the direct form I and II implementations of the system describedby
dyt 

 5 yt  3xt 
dt

Applying LT to the given differential Eq.
sY(s)  5Y s 3X (s)

(s 5)Y s3X (s)
Y s3 H(s)
X(s) (s 5)

Direct form I
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s s

s
Using (2) and (3) the system is implemented asfollows:

Y(s)W(s)5Y(s)(3)

Direct form II

H (s) Ys 3 YsWs
X(s) (s5) X(s) W(s)

let, W s


1
(1)

X(s) (s 5)

let, Y s
3 (2)

W (s)
from (1)
sW (s)  5W (s) X (s)
sW(s)X(s)5W(s)(3)
from (2)
Y (s)3W(s) (4)

Using (3) and (4) the system is implemented as follows:

3
Y s3  3  s
X (s) (s 5) s1

5 1 5 
   
   

Y(s)5Y(s)3X(s) (1)
s s

let
3 X (s) W (s)  (2)
s

from (1) and (2)
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s2YS6sYS8YS2XS

HS
Y
XS 

S 


s26s8
2

HS

x(t) (t) and X (s) 1
2

s  6s  82  X (s)

H (s)  A B 2
(s2) (s4) (s  2)(s 4)

 

A(s2) 2
(s  4)(s 2) 

2
(s  4)(s 2)

| s2 A 1

B(s4) | s 4 B 1

H (s)  1 1
s2 s 4



Taking inverse Laplace transform to get impulse response
h(t) e2tu(t) e4t u(t)

3.9 Convolution integralexamples

To find the output of the system with impulse response

to the input

10. The input and the output of a causal CTI system are related by thedifferential
d 2yt 

d   
equation

system. 
SOLUTION:

dt
2

6 yt
dt

8y(t) 2x t .Find impulse response of the

Apply Laplace transform for the given differential equation with assuming zero initial conditions .

we will use the convolution integral

Because the input function has three distinct regions t<0, 0<t<1 and 1<t, we will need to split up the 
integral into three parts.

Section 1: t<0
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For t<0 the argument of the impulse function (t-λ) is always negative. Since h(t-λ)=0 for (t-λ)<0, 
the result of the integral is zero for t<0.

This situation is depicted graphically below (t=-0.2):

Section 1: t<0
For t<0 the argument of the impulse function (t-λ) is always negative. Since h(t-λ)=0 for (t-λ)<0, 

the result of the integral is zero for t<0.
This situation is depicted graphically below (t=-0.2):

The result for the first part of our solution is the integral of the yellow line (which is always zero),

Section 2: 0<t<1
For 0<t<1 we need to evaluate the integral only from λ=0 to λ=t, since f(λ)=0 when λ<0, and h(t- 

λ)=0 when (t-λ)<0 (or, equivalently t<λ). So the integral becomes, in effect:

This situation is depicted graphically below (t=0.5):
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We can now evaluate the integral of the yellow line:

Thus, the result for the second part of the solution is

Section 3: 1<t
For 1<t we need to evaluate the integral only from λ=0 to λ=1, since f(λ)=0 when λ<0 and when 

λ>1. So the integral becomes, in effect:

This situation is depicted graphically below (t=1.2):

We can now evaluate the integral:
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Thus, the result for the third part of the solution is:

The Complete Answer
We can get the results for all time by combining the solutions from the three parts.

This result is shown below. Click on image to go to an animation of the procedure.
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Continuous-time convolution

Here is a convolution integral example employing semi-infinite extent signals. Consider the convolution 
of x(t) = u(t) (a unit step function) and

(a real exponential decay starting from t = 0). The figure provides a plot of the waveforms.

Putting the two pieces together, the analytical solution for y(t)

The output support interval is

You need two cases (steps) to form the analytical solution valid over the entire time axis.

 Case 1: Using Figure b, you can clearly see that for t < 0, it follows thaty(t) =0.

 Case 2: Again looking at Figure b, you see that for t ≥ 0, some overlap always occurs betweenthe 
two signals of the integrand. The convolution integral outputis
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UNIT IV

ANALYSIS OF DISCRETE TIME SIGNALS

4.1 Samplingtheory

Let x(t) be a continuous signal which is to be sampled, and that sampling is performed by 
measuring the value of the continuous signal every T seconds, which is called the sampling interval. 
Thus, the sampled signal x[n] given by: x[n] = x(nT), with n = 0, 1, 2, 3, ...

The sampling frequency or sampling rate fs is defined as the number of samples obtained in one 
second, or fs = 1/T. The sampling rate is measured in hertz or in samples per second.

The frequency equal to one-half of the sampling rate is therefore a bound on the highest 
frequency that can be unambiguously represented by the sampled signal. This frequency (half the 
sampling rate) is called the Nyquist frequency of the sampling system. Frequencies above the Nyquist 
frequency fN can be observed in the sampled signal, but their frequency is ambiguous. That is, a 
frequency component with frequency f cannot be distinguished from other components with frequencies 
NfN + f and NfN – f for nonzero integers N. This ambiguity is called aliasing. To handle this problem as 
gracefully as possible, most analog signals are filtered with an anti-aliasing filter (usually a low-pass 
filter with cutoff near the Nyquist frequency) before conversion to the sampled discrete representation.

► The theory of taking discrete sample values (grid of color pixels) from functions defined over 
continuous domains (incident radiance defined over the film plane) and then using those samples to 
reconstruct new functions that are similar to the original(reconstruction).

► Sampler: selects sample points on the imageplane
► Filter: blends multiple samplestogether

► Samplingtheory
Sampling Theorem: bandlimited signal can be reconstructed exactly if it is sampled at a rate 

atleast twice the maximum frequencycomponent in it."
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Consider a signal g(t) that is bandlimited.

The maximum frequency component of g(t) is fm. To recover the signal g(t) exactly from its 
samples it has to be sampled ata rate fs _ 2fm. The minimum required sampling rate fs = 2fm is called 
nyquist rate

A continuous time signal can be processed by processing its samples through a discrete time 
system. For reconstructing the continuous time signal from its discrete time samples without any error, 
the signal should be sampled at a sufficient rate that is determined by the sampling theorem.

4.2 Aliasing

Aliasing is a phenomenon where the high frequency components of the sampled signal interfere 
with each other because of inadequate sampling ωs < 2ωm. Aliasing

Aliasing leads to distortion in recovered signal. This is the reason why sampling frequency should be 
atleast twice the bandwidth of the signal.
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.SAMPLING THEOREM
It is the process of converting continuous time signal into a discrete time signal by taking samples of the 
continuous time signal at discrete time instants.

X[n]= Xa(t) where t= nTs=n/Fs ….(1)

When sampling at a rate of fs samples/sec, if k is any positive or negative integer, we cannot distinguish 
between the samples values of fa Hz and a sine wave of (fa+ kfs) Hz. Thus (fa + kfs) wave is alias or 
image of fa wave.

Thus Sampling Theorem states that if the highest frequency in an analog signal is Fmax and the 
signal is sampled at the rate fs > 2Fmax then x(t) can be exactly recovered from its sample values. This 
sampling rate is called Nyquist rate of sampling. The imaging or aliasing starts after Fs/2 hence folding 
frequency is fs/2. If the frequency is less than or equal to 1/2 it will be represented properly.

Example:
Case1: X1(t) = cos 2∏(10) t Fs=40 Hz i.e t= n/Fs 

x1[n]= cos 2∏(n/4)= cos(∏/2)n

Case2: X1(t) = cos 2∏(50) t Fs=40 Hz i.e t= 
n/Fs x1[n]= cos 2∏(5n/4)= cos 2∏( 1+¼)n

= cos 
(∏/2)n

Thus the frequency 50 Hz, 90 Hz , 130 Hz … are alias of the frequency 10 Hz at the sampling rate of 40 
samples/sec

.QUANTIZATION
The process of converting a discrete time continuous amplitude signal into a digital signal by 
expressing each sample value as a finite number of digits is called quantization. The error 
introducedin
representing the continuous values signal by a finite set of discrete value levels is called 
quantization error or quantization noise.

Example: x[n] =5(0.9)nu(n) where 0 <n<∞ & fs= 1Hz

N [n] Xq [n] Rounding Xq [n] Truncating eq [n]
0 5 5.0 5.0 0
1 4.5 4.5 4.5 0
2 4.05 4.0 4.0 -0.05
3 3.645 3.6 3.6 -0.045
4 3.2805 3.2 3.3 0.0195

Quantization Step/Resolution : The difference between the two quantization levels is called 
quantization step. It is given by Δ = XMax – xMin / L-1 where L indicates Number of quantizationlevels.
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.CODING/ENCODING
Each quantization level is assigned a unique binary  code.  In  the  encoding  operation,  the 
quantization
sample value is converted to the binary equivalent of that quantization level. If 16 quantization levels 
are present, 4 bits are required. Thus bits required in the coder is the smallest integer greater than or 
equal toLog2L. i.e b= Log2L
Thus Sampling frequency is calculated as fs=Bit rate / 
b.

.ANTI-ALIASING FILTER
When processing the analog signal  using DSP  system, it  is  sampled at some rate depending upon   
the
bandwidth. For example if speech signal is to  be  processed  the  frequencies  upon  3khz  can  be  
used. Hence the sampling rate of 6khz can be used. But the speech signal also contains some frequency 
components more than 3khz. Hence a sampling rate of 6khz will introduce aliasing. Hence signal 
should be band limited to avoidaliasing.

The signal can be band limited by passing it through a filter (LPF) which blocks or attenuates  
all the frequency components outside the specific bandwidth. Hence called as Anti  aliasing filter or 
pre- filter. (BlockDiagram).

.SAMPLE-AND-HOLD CIRCUIT:
The sampling of an analogue continuous-time signal is normally implemented using a device called 
an
analogue-to-digitalconverter(A/D).Thecontinuous-timesignalisfirstpassedthroughadevicecalled a 
sample-and-hold (S/H) whose function is to measure the input signal value at the clock instant and 
hold

itfixedforatimeintervallongenoughfortheA/Doperationtocomplete.Analogue-to-digitalconversion 
ispotentiallyaslowoperation,andavariationoftheinputvoltageduringtheconversionmaydisruptthe 
operationoftheconverter.TheS/Hpreventssuchdisruptionbykeepingtheinputvoltageconstantduring the 
conversion. This is schematically illustrated byFigure.

After a continuous-time signal has been through the A/D converter, the quantized output may differ from 
the input value. Themaximum possible output value after the quantization process could be up to half the 
quantization level q above or q below the ideal output value. This deviation from the ideal output value is 
called the quantization error. In order to reduce this effect, we increases the number ofbits.
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4.3 Sampling of Non-bandlimited Signal: Anti-aliasingFilter
Anti aliasing filter is a filter which is used before a signal sampler, to restrict the 

bandwidth of a signal to approximately satisfy the sampling theorem.
The potential defectors are all the frequency components beyond fs/2 Hz.
We should have to eliminate these components from x(t) before sampling x(t).
As a result of this we lose only the components beyond the folding frequency fs/2 Hz.
These frequency components cannot reappear to corrupt the components with frequencies below the 
folding frequency.
This suppression of higher frequencies can be accomplished by an ideal filter of bandwidth fs/2 Hz. This 
filter is called the anti-aliasing filter.
The anti aliasing operation must be performed before the signal is sampled. The anti aliasing filter, 
being an ideal filter isunrealizable.
In practice, we use a steep cutoff filter, which leaves a sharply attenuated residual spectrum beyond the
folding frequency fs/2.
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4.4 DISCRETE TIME FOURIERTRANSFORM
In mathematics, the discrete-time Fourier transform (DTFT) is one of the specific

forms of Fourier analysis. As such, it transforms one function into another, which is called the frequency 
domain representation, or simply the "DTFT", of the original function (which is often a function in the 
time-domain). But the DTFT requires an input function that is discrete. Such inputs are often created by 
sampling a continuous function, like a person's voice.

Given  a   discrete  set   of  real   or  complex  numbers: (integers),the

discrete-time Fourier transform (or DTFT) of is usually written:
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4.5 Inversetransform

The following inverse transforms recover the discrete-time sequence:

The integrals span one full period of the DTFT, which means that the x[n] samples are also the 
coefficients of a Fourier series expansion of the DTFT.

Infinite limits of integration change the transform into a continuous-time Fourier transform 
[inverse], which produces a sequence of Dirac impulses. That is:

4.6 Properties
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4.7 SYMMETRYPROPERTIES

The Fourier Transform can be decomposed into a real and imaginary part or into an even and odd
part.
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4.8 Z-transforms

► Definition: The Z – transform of a discrete-time signal x(n) is defined as the powerseries:

where z is a complex variable. The above given relations are sometimes called the direct Z - transform 
because they transform the time-domain signal x(n) into its complex-plane representation X(z). Since Z – 
transform is an infinite power series, it exists only for those values of z for which this series converges.

The region of convergence of X(z) is the set of all values of z for which X(z) attains a finite
value.

► For discrete-time systems, z-transforms play the same role of Laplace transforms do in continuous- 
timesystems

Bilateral forward Z transform
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ADVANTAGES OF Z TRANSFORM
1. The DFT can be determined by evaluating ztransform.
2. Z transform is widely used for analysis and synthesis of digitalfilter.
3. Z transform is used for linear filtering. z transform is also used for finding Linear convolution, 
cross-correlation and auto-correlations of sequences.
4. In z transform user can characterize LTI system(stable/unstable,causal/anti- causal) and its 
response to various signals by placements of pole and zeroplot.

 ADVANTAGES OF ROC(REGION OF CONVERGENCE)
1. ROC is going to decide whether system is stable orunstable.
2. ROC decides the type of sequences causal oranti-causal.
3. ROC also decides finite or infinite durationsequences.
 Z TRANSFORM PLOT

Imaginary Part of z 
Im (z)

Z-Plane
|z|>a

|z|<a

Re (z) Real part of z

Fig show the plot of z transforms. The z transform has real and imaginary parts. Thus a plot of 
imaginarypartversusrealpartiscalledcomplexz-plane.Theradiusofcircleis1calledasunitcircle.

This complex z plane is used to show ROC, poles and zeros. Complex variable z is also expressed 
in polar form as Z= rejωwhere r is radius of circle is given by |z| and ω is the frequency of the 
sequence in radians and given by∟z.

EnggTree.com

Downloaded from EnggTree.com



II YEAR/THIRD SEMESTER EC3354-SIGNALS AND SYSTEM

82

1

S.No Time Domain
Sequence

Property z Transform ROC

1 δ(n) (Unit sample) 1 complete z plane
2 δ(n-k) Time shifting z-k except z=0
3 δ(n+k) Time shifting zk exceptz=∞
4 u(n) (Unit step) 1/1- z-1 = z/z-1 |z| > 1
5 u(-n) Time reversal 1/1- z |z| < 1
6 -u(-n-1) Time reversal z/z- 1 |z| < 1
7 n u(n) (Unit ramp) Differentiation z-1 / (1- z-1)2 |z| > 1
8 an u(n) Scaling 1/1- (az-1) |z| > |a|
9 -an u(-n-1)(Left side 

exponentialsequence)
1/1- (az-1) |z| < |a|

10 n an u(n) Differentiation a z-1 / (1- az-1)2 |z| > |a|
11 -n an u(-n-1) Differentiation a z-1 / (1- az-1)2 |z| < |a|
12 an for 0 < n < N-1 1- (a z-1)N/ 1- az-1 |az-1| <∞

except z=0
13 1 for 0<n<N-1 or 

u(n) – u(n-N)
Linearity 
Shifting

1- z-N/ 1- z-1 |z| > 1

14 cos(ω0n) u(n) 1- z-1cosω0

1- 2z-1cosω0+z-2

|z| > 1

15 sin(ω0n) u(n) z-1sinω0

1- 2z-1cosω0+z-2

|z| > 1

16 an cos(ω0n) u(n) Time scaling 1- (z/a)-1cosω0

1- 2(z/a)-1cosω0+(z/a)-2

|z| > |a|

17 an sin(ω0n) u(n) Time scaling (z/a)-1sinω0

1- 2(z/a)-1cosω0+(z/a)-2

|z| > |a|

4.9-Properties Of Z transform

Z- Transform of a signal x(n) is defined by

Properties of z- transform
1. Linearity

X (z)  x(n)z 
nn

x(n)zX (z)
x2(n)zX2(z)



1
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1 2 1 1



1 1

 



X

x(n)zX(z)
x(nk)zzkX(z)
Proof:

z- transformofx(nk)x(nk)zn

n

let n k m
n m k



  

n
x(nk)znx(m)z(mk)zkx(m)z(m)zkX (z)

m m

3.Time reversal 
x(n)zX(z) 
x(n)zX(z1)
Proof:



z- transform of x(n)x(n)zn

n

let n m
n m

n
x(n)z nx(m)z (m)x(m)(z 1)mX (z 1

  

m m

4.scaling in z-domain
(multiplication by an exponential sequence)

Ax(n)Bx(n)zAX(z)BX(z)
Proof:

z- transform of


Ax1 (n) Bx2



(n)   Ax1(n)Bx2
n



(n)z n



Ax (n)z nBx (n)z nA x (n)z nB x (n)z n

n n n n

AX1 (z) BX1 (z)

2. Shifting in timedomain

x(n)zX(z)

anx(n)zXz
a

 
Proof:

z- transform of anx(n) an x(n)z n

x(n)(a 1 z)

n

nX (a 1z)  z
a


n  



2 2
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dX (z) 


dz
x(n)(n)zn1

n



 z dX (z) 

z 1(nx(n))z n

n



dz
(nx(n))zn

n

6.Convolution
x(n)zX(z)1 1

x(n)X(z)z
2 2

x(n)*x(n)zX(z)X(z)1 2 1 2

Proof:
By definition,

x1(n)*x2(n)x1(k)x2(nk)


k 

Z – transform of x (n) * x(n) [x (n) * x(n)]z1 2  1


n

2
n

 
 

x (k )x (n k)z n
1 2

nk 

let n k p 
n p k

 

 1 2x (k)x ( p)z ( pk )
 

 p k

1

2 2

xx 1 2

5. Differentiation in z-domain
x(n)zX(z)

nx(n)zzdX(z)

dz
Proof:

z- transform of x(n) X (z)  x(n) z 
nn

differentiating the z-transform, we have,

pk 

7.Correlation
x(n)zX (z)

x2 ( p)z
p

x1 (k)z
k 

X 2 (z) X1 (z)

x(n)zX(z)
 zX(z)X(z1)

1 2

Proof:
By definition,



1

EnggTree.com

Downloaded from EnggTree.com



II YEAR/THIRD SEMESTER EC3354-SIGNALS AND SYSTEM

85

x(n)*x(n)zX(z)X(z)1 2 1 2

Time reversal property:
x(n)zX(z1)

8.Conjugation
x(n)zX(z)
x(n)zX(z)
Proof:

x (n) 

z- transform of   x (n)z n

 
n

n




x(n)zX(z)X(z)


 n

9.Initial value theorem
For causal signal x(n)
x(0) lt X (z)

z

Where, x(n)zX(z)
Proof:
For causal signal x(n)

X(z)x(n)znn0

X (z) x(0) x(1)z 1x(2)z 2x(3)z 3........
lt X (z) x(0)



x x

1 2

1 2

Correlation between two signals x1(n)&x2(n) is given by
 x (n) * x(n)

1 2


Z – transform of x1(n)*x2 (n)[x1(n)*x2
n

(n)]z n

X (z) X (z 1)
Using convolution and time reversal property of z- transform

Note:
Convolution property:

z

10Final value theorem
For causal signal, x(n)

x(n)z


X(z)
If poles of X (z) are within the unit circle in z-plane, then
x()  lim(z 1) X  (z)

z1

Proof:

EnggTree.com

Downloaded from EnggTree.com



II YEAR/THIRD SEMESTER EC3354-SIGNALS AND SYSTEM

86

 

 

 
k



1

1 1

1 1

1

2 2

k

Z{x(n1)x(n)}lim x(n 1) x(n) znk 
n0

k

zX(z)zx(0)X (z)lim x(n 1) x(n) z n
k n0

k

(z1)X (z)zx(0)lim x(n 1) x(n) z n
k n0

lim{(z  1) X  (z) zx(0)}  limlimx(n  1) x(n)z n

z1 z1 k n0

limlimx(1)x(0)x(2)x(1)x(3)x(2)x(k1)x(k)
z1 k 

x() x(0)
lim(z  1) X  (z) x(0) x() x(0)
z1

x()  lim(z  1) X  (z)
z1

4.10-Properties of DISCRETE TIME FOURIER TRANSFORM (DTFT)

x(n)DTFTX(ej)

Xej 
n

x(n)ejn Analysisequation

x(n)
1

Xejejnd
22

Properties of DTFT:

synthesis equation

1.Linearity:
x(n)DTFTX e j
x(n)DTFTXej
Ax1 (n) B x2 (n)A XDTFT ejBX e j

Where A , B are constants. 
Proof:



DTFT of


Ax1 (n) Bx2



(n)  Ax1(n)Bx2
n



(n)ejn



Ax(n)ejnBx (n)ejnAx(n)ejnBx (n)ej n

n n n n

A X (e j) BX (e j)

2.Periodicity
DTFT is periodic with period 2 π



1 2

2 2
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x(n)DTFTXe j


Xej(2k)Xe j

where ‗k‘ is an integer.

proof : Xej(2k) 
n

x(n) ej (2 k )n


n

x(n)e  jn

ej 2 k n n

x(n)e  j n Xe j
sin ce ej 2 k n 1

n  int eger

3.Time shiftingproperty
proof :



x(n)DTFTXe j DTFT of x(nk)isx(nk)ejn
n

x(nk)DTFTejkXeje n k p n 
k p


p

x(p)e j(k p)  ej k 
p

x(p)e  j p ej k Xe j

4.Time Reversalproperty 
x(n)DTFTXejx(n)
DTFTXej
proof :

DTFT of x(n)isx(n)ejn



let  n p 
n p

 x(p)e j(p )  x(p)(e  j )p  Xe j
p p

5.Conjugation
x(n)DTFTXej
x(n)DTFTXej



 

 



 

EnggTree.com

Downloaded from EnggTree.com



II YEAR/THIRD SEMESTER EC3354-SIGNALS AND SYSTEM

88

n 


 


jn 



n
 x(n)(e )  X  j


e 

6. Frequency shifting

ej0nx(n)DTFTXej(0)
proof :

DTFT of x(n) is x(n)ejn

n

DTFTofej0nx(n)isej0nx(n)ejn

n

x(n)DTFTXej








x(n)ej(0)nXej(0)
n

7.Differentiation in frequency

x(n)DTFTXej
n x(n) jDTFT dXej

d
proof :

DTFTofx(n)isx(n)ejnXej




proof :

DTFTof

DTFTof

x(n)isx(n)ejn



x(n)isx(n)ejnn

 


x(n)ejn

n

dXej
d

dX e j
j 

n


nx(n)ejn

 jn
j

d nx(n)en

DTFT of nx(n) j dXej
d




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1

2 2

x (k)e

1

2 2



1

1

1

1

1

8.Convolution in time
x(n)DTFTX(ej)
x(n)DTFTX(ej)
x1 (n)* x2 (n)DTFTX (ej)X (e j)

Proof:
By definition,



x1 (n) * x2 (n) x1 (k )x2 (n k )
k 

DTFT of x1(n)*x2 (n)[x1(n)*x2
n

(n)]ej n

 

x1(k)x2 (n k )ejn

nk 

let n k p n 
p k

 

x1 (k)x2 ( p)ej( pk )

pk 


 jk

1
k 

x2
p

(p)ejpX (ej)X (e j)

9.Convolution in frequency (Multiplication)
x(n)DTFTX(ej)
x(n)DTFTX(ej)

x1 (n)x2

Proof:

(n)DTFT
1

2
[X1 (ej)X (e j)]

Xej 
n

x(n)ejn Analysisequation

x(n)
1

Xejejnd
22

synthesisequation

x1 (n) 
2 X 1 

2

e je j n d

x2 (n) 
2 X 2 

2

e je j n d

let x2 (n) 
2 X 2 

2

ejejnd changing var iable to 







1 2

1 2

2
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

 2









2

 2



DTFT of x1 (n)x2 (n)  [x1(n)x2
n

(n)]ej n

x (n) 1 
X e je j n dej n

1  2
n 2

 1 
22

X e j


n

x1 (n)e j () n d

1 22 X e jX (ej())d
1X

2 1
ejX e j

10 .Parseval’s relation for DT signals
x(n)DTFTX(ej)

x(n) 2
n

Proof:


1 X (e 
22

j) 2d

X e j 
n

x(n) e jn DTFT of x(n)

x(n)1 Xejejnd
22

x(n)1 Xejejnd
22

x(n) 2
n

x(n)x(n)
n


n

x(n)1 Xejejnd
22

1 X
22

 e j{ 
n

x(n)e  jn }d


 1
X e jX e jd

 1
X (e j) 

2 
d

22 22

 RELATIONSHIP BETWEEN FOURIER TRANSFORM AND Z TRANSFORM.
There is a close relationship between Z transform and Fourier transform. If we replace the complex 
variable z by e –jω, then z transform is reduced to Fourier transform.
Z transform of sequence x(n) is given by

∞

X(z) = ∑ x (n)z –n (Definition ofz-Transform)

n=-∞

Fourier transform of sequence x(n) is given by







 





1 2
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e

∞

X(ω) = ∑ x (n)e–jωn (Definition of FourierTransform)

n=-∞

Complex variable z is expressed in polar form as Z= rejωwhere r= |z| and ω is ∟z. Thus we can be 
written as

∞

X(z) = ∑ [ x (n) r–n] e–jωn

n=-∞

∞
X(z) z=e

jw = ∑ x (n) e–jωn

n=-∞
X(z)   z=e

jw=x(ω) at |z| = unitcircle.

Thus, X(z) can be interpreted as Fourier Transform of signal sequence (x(n) r–n). Here r–n grows with n if 
r<1 and decays with n if r>1. X(z) converges for |r|= 1. hence Fourier transform may be viewed as Z 
transform of the sequence evaluated on unit circle. Thus The relationship between DFT and Z transform 
is given by

X(z) z=
j2∏kn=x(k)

The frequency ω=0 is along the positive Re(z) axis and the frequency ∏/2 is 
along the positive Im(z)
axis. Frequency ∏ is along the negative Re(z) axis and 3∏/2 is along the 
negative Im(z) axis.
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Z transform properties

Frequency scale on unit circle X(z)= X(ω) on unit circle
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4.11 INVERSE Z TRANSFORM (IZT)
The signal can be converted from time domain into z domain with the help of z transform (ZT). Similar 
way the signal can be converted from z domain to time domain with the help of
inverse z transform(IZT). The inverse z transform can be obtained by using two 
different methods.

1) Partial fraction expansion Method (PFE) / Application of residuetheorem
2) Power series expansion Method(PSE)

1. PARTIAL FRACTION EXPANSIONMETHOD

The above equation can be written in partial fraction expansion form and find the coefficient AK and 
take IZT.

SOLVE USING PARTIAL FRACTION EXPANSION METHOD (PFE)
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S.N
o

Function (ZT) Time domain sequence Comment

an u(n) for |z| > a causal sequence
1

1

1-
az-

1

-an u(-n-1) for |z| <a anti-causal sequence

1 (-1)n u(n) for |z| > 1 causal sequence
2 1

+ -(-1)n u(-n-1) for |z| < a anti-causal sequence

z-

1

-2(3)n u(-n-1) + (0.5)n u(n)
for 0.5<|z|<3

stable system

2(3)n u(n) + (0.5)n u(n) 
for |z|>3

causal system
3

3-
4z
-1

1- 3.5z-

1+1.5z-2

-2(3)n u(-n-1) - (0.5)n u(-n-1) for |z|<0.5 anti-causal system

-2(1) n u(-n-1) + (0.5)n u(n) stable system
for 0.5<|z|<1

4 1 2(1)n u(n) + (0.5)n u(n) causal system
for |z|>1

1- 1.5z-

1+0.5z-2
-2(1)n u(-n-1) - (0.5)n u(-n-1) for |z|<0.5 anti-causal system

5 1+2 z-1+ z-2

 
1-3/2 z-1+0.5z-2

2δ(n)+8(1)n u(n)- 9(0.5)n u(n)
for |z|>1

causal system

6
1+ z-1

1- z-1 + 0.5z-2

(1/2-j3/2) (1/2+j1/2)n u(n)+ 
(1/2+j3/2) (1/2+j1/2)n u(n)

causal system

7
1 –(0.5) z-1

1-3/4 z-1+1/8 z-2

4(-1/2)n u(n) – 3 (-1/4)n u(n) for |z|>1/2 causal system

8
1- 1/2z-1

1- 1/4z-2

(-1/2)n u(n) for |z|>1/2 causal system
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9
z + 1

3z2 - 4z + 1

δ(n)+ u(n) – 2(1/3)n u(n) 
for |z|>1

causal system
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3. POWER-SERIES EXPANSION METHOD
The z transform of a discrete time signal x(n) is given as

∞

X(z) = ∑ x (n) z –n

n=-∞

10
5z

(z-1) (z-2)

5(2n-1)
for |z|>2

causal system

11
z3

(z-1) (z-1/2)2

4-(n+3)(1/2)n

for |z|>1
causal system

RESIDUE THEOREM METHOD
In this method, first find G(z)= zn-1 X(Z) and find the residue of G(z) at various poles of X(z).

S. No Function (ZT) Time domain Sequence
1 z

z – a

For causal sequence (a)n u(n)

2 z

(z–1)(z-2)

(2n -1 ) u(n)

3 z2 + z

(z – 1)2

(2n+1) u(n)

4 z3

(z-1) (z–0.5)2

4 – (n+3)(0.5)n u(n)

(1)

Expanding the above terms we have
x(z) = …..+x(-2)Z2+ x(-1)Z+ x(0)+ x(1) Z-1 + x(2)Z2+….. (2)

This is the expansion of z transform in power series form. Thus sequence x(n)is 
given as x(n) ={…..,x(-2),x(-1),x(0),x(1),x(2),…................}.
Power series can be obtained directly or by long division method.
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SOLVE USING ―POWER SERIES EXPANSION― METHOD

S.No Function (ZT) Time domain Sequence
1 z

z-a

For causal sequence an u(n)
For Anti-causal sequence -an u(-n-1)

2 1

1- 1.5 z-1+0.5z-2

{1,3/2,7/4,15,8,….........} For |z| >1
{… 14,6,2,0,0} For |z| < 0.5

3 z2+z

z3 -3z2+3z -1

{0,1,4,9,…..} For |z| > 3

4 z2(1-0.5z-1)(1+z-1) (1-z-1) X(n) ={1,-0.5,-1,0.5}

5 log(1+az-1) (-1)n+1an/n for n≥1 and |z|>|a|
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Sample Problem:

1. Obtain the z transformof,

2. Find the inverse z transformof,
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UNIT V

LINEAR TIME INVARIANT DISCRETE TIME SYSTEMS

5.1 Introduction
A discrete-time system is anything that takes a discrete-time signal as input and generates a 

discrete-time signal as output.1 The concept of a system is very general. It may be used to model the 
response of an audio equalizer . In electrical engineering, continuous-time signals are usually processed 
by electrical circuits described by differentialequations.

For example, any circuit of resistors, capacitors and inductors can be analyzed using mesh analysis 
to yield a system of differential equations. The voltages and currents in the circuit may then be computed 
by solving the equations. The processing of discrete-time signals is performed by discrete-time systems. 
Similar to the continuous-time case, we may represent a discrete-time system either by a set of difference 
equations or by a block diagram of its implementation.

For example, consider the following difference equation. y(n) = y(n-1)+x(n)+x(n-1)+x(n-2) This 
equation represents a discrete-time system. It operates on the input signal x(n)x(n) to produce the output 
signal y(n).

5.2 BLOCK DIAGRAMREPRESENTATION

Block diagram representation of

LTI systems with rational system function can be represented as constant-coefficient difference 
equation

• The implementation of difference equations requires delayed values ofthe
– input
– output
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– intermediateresults
• The requirement of delayed elements implies need forstorage

• We also need meansof
– addition
– multiplication

Direct Form I

General form of difference equation

Alternative equivalent form
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 Cascadeform

General form for cascade implementation

Parallel form

► Represent system function using partial fractionexpansion

5.3 CONVOLUTIO NSUM
The convolution sum provides a concise, mathematical way to express the output of

an LTI system based on an arbitrary discrete-time input signal and the system's response. The convolution 
sum is expressed as,
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For the case of discrete-time convolution, here are two convolution sum examples. The first employs finite 
extent sequences (signals) and the second employs semi-infinite extent signals. You encounter both types of 
sequences in problem solving, but finite extent sequences are the usual starting point when you‘re first 
working with the convolution sum.

Two finite length sequences

Consider the convolution sum of the two sequences x[n] and h[n], shown here, along with the convolution 
sum setup.

When convolving finite duration sequences, you can do the analytical solution almost by inspection or 
perhaps by using a table (even a spreadsheet) to organize the sequence values for each value of n, which 
produces a nonzero overlap between h[k] and x[n – k].

The support interval for the output follows the rule given for the continuous-time domain. The output y[n] 
starts at the sum of the two input sequence starting points and ends at the sum of input sequence ending 
points. For the problem at hand this corresponds to y[n] starting at [0 + –1] = –1 and ending at [3 + 1] = 4.

Looking at Figure b, you can see that as n increases from n < –1, first overlap occurs when n = –1. The last 
point of overlap occurs when n – 3 = 1 or n = 4. You can set up a spreadsheet table to evaluate the six sum- 
of-products related to the output support interval.
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One finite and one semi-infinite sequence

As a second example of working with the convolution consider a finite duration pulse sequence of 2M + 1 
points convolved with the semi-infinite exponential sequence an u[n] (a real exponential decay starting 
from n = 0). A plot of the waveforms is given here.

With the help of Figure b, you have three cases to consider in the evaluation of the convolution for all values 
of n. The support interval for the convolution is

Here are the steps for each case:

 Case 1: From Figure b, you see that for n + M < 0 or n < –M no overlap occurs between thetwo 
sequences of the sum, so y[n] = 0.
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Putting the pieces together, the complete analytical solution for this problem is

Graphically understanding convolution

Convolution can be seen as a graphical process:

1. Plot x[m]x[m] with dependent variablemm
2. Plot h[−m]h[−m] with dependent variable mm (hh reflected aroundm=0m=0).
3. Plot h[n−m]h[n−m] with dependent variable mm (nn can shift h[n−m]h[n−m] from −∞−∞ (all the 

way to the left) to ∞∞ (all the way to theright).
4. For each shift (i.e. nn), compute y[n]=∑∞m=−∞x[m]h[n−m] y[n]=∑m=−∞∞x[m]h[n−m](i.e.,

multiply x[m]h[n−m]x[m]h[n−m] and then sum the result ).

 Case 2: Partial overlap between the two sequences occurs when n + M ≥ 0 and n – M ≤ 0 or – 
M ≤ n ≤ M. The sum limits start at k = 0 and end at k =n + M. Using the finite geometric seriessum 
formula, the convolution sum evaluatesto

 Case 3: Full overlap occurs when n – M > 0 or n >M. The sum limits under this case run from k = n–
M to k = n + M. Again, using the finite geometric series sum formula, the convolution sum evaluates to

EnggTree.com

Downloaded from EnggTree.com



II YEAR/THIRD SEMESTER EC3354-SIGNALS AND SYSTEM

105

1.
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LTI systems are causal if 

h[n] = 0 n < 0

5.4 LTI System analysis usingDTFT

5.5 LTI SYSTEMS ANALYSIS USINGZ-TRANSFORM
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POLE –ZERO PLOT
1. X(z) is a rational function, that is a ratio of two polynomials in z-1 orz.

The roots of the denominator or the value of z for which X(z) becomes infinite, defines locations 
of the poles. The roots of the numerator or the value of z for which X(z) becomes zero, defines 
locations of the zeros.

2. ROC dos not contain any poles of X(z). This is because x(z) becomes infiniteat
the locations of the poles. Only poles affect the causality and stability of the system.

3. CASUALTY CRITERIA FOR LSISYSTEM
LSI system is causal if and only if the ROC the system function is exterior to
the circle. i. e |z| > r. This is the condition for causality of the LSI system in terms of z transform. 
(The condition for LSI system to be causal is h(n) = 0 ….. n<0 )

4. STABILITY CRITERIA FOR LSISYSTEM
Bounded input x(n) produces bounded output y(n) in the LSI system only if

∞
∑ |h(n)| <∞

n=-∞

With this condition satisfied, the system will be stable. The above equation states that the LSI 
system is stable if its unit sample response is absolutely summable. This is necessary and 
sufficient condition for the stability of LSI system.

∞

H(z) = ∑ h (n)z–n Z-Transform.……(1)

n=-∞
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Taking magnitude of both the sides
∞

|H(z)|= ∑ h(n)z–n ...................................................................................(2)

n=-∞

Magnitudes of overall sum is less than the sum of magnitudes of individual sums.
∞

|H(z)|≤ ∑ h(n) z-n 

n=-∞

∞

|H(z)|≤ ∑ |h(n)| |z-n| ….(3) 

n=-∞

5. If H(z) is evaluated on the unit circle |z-n|=|z|=1.
Hence LSI system is stable if and only if the ROC the system function includes the unit circle. i.e 
r < 1. This is the condition for stability of the LSI system in terms of z transform. Thus

For stable system |z| < 1 
For unstable system |z| > 1
Marginally stable system |z| = 1

Im(z)
z-Plane
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Poles inside unit circle gives stable system. Poles outside unit circle gives 
unstable system. Poles on unit circle give marginally stable system.

6. A causal and stable system must have a system function that convergesfor
|z| > r < 1.

STANDARD INVERSE TRANSFORMS

S. No Function (ZT) Causal Sequence
|z| > |a|

Anti-causal sequence
|z| <|a|

1 z

z – a

(a)n u(n) -(a)n u(-n-1)

2 z

z – 1

u(n) u(-n-1)

3 z2

(z – a)2

(n+1)an -(n+1)an

4 zk

(z – a)k

1/(k-1)! (n+1) (n+2)……an -1/(k-1)! (n+1) (n+2)………an

5 1 δ(n) δ(n)

6 Zk δ(n+k) δ(n+k)

7 Z-k δ(n-k) δ(n-k)

S.No z Transform (Bilateral) One sided z Transform (Unilateral)
1 z transform is an infinite power series 

because summation index varies from ∞ 
to -∞. Thus Z transform are given by

∞

X(z) = ∑ x (n) z –n

n=-∞

One sided z transform summation index varies from 0 to
∞. Thus One sided z transform are given by

∞

X(z) = ∑ x (n) z –n

n=0

2 z transform is applicable for relaxed 
systems (having zero initial condition).

One sided z transform is applicable for those systems 
which are described by differential equations with non zero 
initial conditions.

3 z transform is also applicable for non- 
causal systems.

One sided z transform is applicable for causal systems 
only.

4 ROC of x(z) is exterior or interior to 
circle hence need to specify with z 
transform of signals.

ROC of x(z) is always exterior to circle hence need not to 
be specified.
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time shifting property
x(n)zX(z)



Case 1:

x(nk)z x(n)z X(z)
z k k

n 

n1 

X(z)x(n)znn0



Proof:



Unilateralz-transformofx(nk)x(nk)zn

n0

let n k m n 
m k

x(nk)znx(m)z(mk)zkx(m)zm
  

n0 mk mk

z k 
 

1

x(m)z  x(m)z(m) 


( m) 

mk m0


z k 


k

x(m)z  x(m)z(m) 


( m)





 

 

5.6Sample Problems:

Unilateral z-transform

 Unilateral z-transform is used in the analysis of non-relaxed DTsystems.

 Non-relaxed DT systems are systems with non zero initialconditions.

 Unilateral Z- Transform of a signal x(n) is definedby

X(z)x(n)znn0

m1 m0 

zk
k

n1
x(n)z(n)

m0

x(m)z (m)



zk
k

n1

x(n)znX (z)



Note:

Unilateral z- transform of y(n 3) is,




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Unilateralz-transformofx(nk)x(nk)zn

n0



let n k m
n m k

x(nk)znx(m)z(mk)zkx(m)zm
  

n0 mk mk

z k  


m0
 x(m)z  

k 1
(m) 

m0
 x(m)z (m)




z X(z) x(n)zk 




k 1

n 

n0



Discrete time systems has one more type ofclassification.
1. RecursiveSystems
2. Non-RecursiveSystems

 z3
3

n1

y(n)znY (z)


z 3Y (z) y(1)z 2y(2)z 1y(3)

Case2:
z k k 1 n 

x(nk)z X(z)x(n)z 
 n0 

X(z)x(n)znn0

Proof:

S. No Recursive Systems Non-Recursive systems
1 In Recursive systems, the output depends upon past, 

present, future value of inputs as well as past output.
In Non-Recursive systems, the 
output depends only upon past, 
present or future values of inputs.

2 Recursive Systems has feedback from output to 
input.

No Feedback.

3 Examples y(n) = x(n) + y(n-2) Y(n) = x(n) + x(n-1)
Example:

Find the step response of the system described by the difference equation

y(n)y(n1)2y(n2)x(n1)2x(n2) given the initialconditions

y(1)  0.5 ; y(2)  0.25

 Solution:

y(n) y(n 1)  2 y(n  2) x(n 1)  2x(n  2)

Taking unilateral z- transform


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X (z)

Y (z) z 1Y (z) y(1) 2z 2Y (z) z 1y(1) y(2)z 1X (z) x(1)
 2z 2X (z) z 1x(1) x(2)

Y (z) z 1Y (z)  0.5 2z 2Y (z) z 1(0.5)  0.25z 1X (z) 2z 2X (z)
sin ce x(n) u(n) &x(1)  0; x(2)  0

Y (z)  2z 2Y (z) z 1Y (z) z 1z 1X (z) 2z 2X (z)
Y (z)1  2z 2z 1z 1X (z)z 1 2z 2
Y (z) z22z z  21

sin ce

z 2

x(n) u(n)

z 2

&X (z) 

z

z
z  1

Y (z) z22zz 2
z

(z 1)
z  21

z2 z

Y (z) 



z(z2) 
(z  2)(z  1)(z  1)
2z 2z

z
(z2)(z1)

z(z  2) z(z  1) (z 
 2)(z  1)(z  1)

(z  2)(z  1)(z  1)
Y (z) 

z
2z  1

(z2)(z1)(z1)


A


(z  2)
B 

(z 1)
C

(z  1)2

A 
1 ; B 1 ; C  1
3 3


1z 1z

Y(z) 3 3 
z

(z2) (z1) (z 1)2

y(n) inverseztransformofY(z)

y(n)1u(n)1(2)nu(n)nu(n)
3 3

Example:

Find the difference equation description for the system with transfer function

Ans:

H(Z) 5Z  2
Z 2 3Z  2

H(Z) 5Z2 
Z 2 3Z  2

Y(Z)
X (Z)

 5Z 12Z2

1  3Z 1 2Z 2

(1  3Z 1 2Z 2 )Y (Z )  (5Z 1 2Z 2 ) X (Z )
Taking inverse z transform,
y(n)  3y(n 1)  2 y(n  2)  5x(n 1)  2x(n  2)
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System   analysis using DTFT

For LTI DT system

y(n) x(n) h(n) 
y(n) output 
x(n) input
h(n) impulseresponse

In frequency domain,

YejXejHej
YejDTFTofy(n)

X e jDTFT of x(n) 
HejDTFTofh(n)

H e j
Yej
Xej frequency Re sposeof the system

Frequency response of the system

 Plot of magnitudeof Hej Vs frequency is magnitude response of the system

 Plot of phase angleof Hej Vs frequency is phase response of the system

Example:

Determine and sketch the magnitude response of the system described by the difference

equation y(n)1x(n)x(n1)x(n2)3

Y e j
1 X e jejX e jej 2X e j
3

j
Yej


1 j

j 2
ej

 
He

Xe j 3
1 e e 1 2 cos()

3

magnitudeof H e j
1 

1  2 cos()
3

o Compute magnitudeof H e jfor values of frequency  ranging from to 

o Plot of magnitudeof Hej Vs frequencyis magnitude response of the system

Example:

Consider a system consisting of the cascade of two LTI systems with frequency responses

H1 (e j)  2 ej

1 and H2 (e
j)

1
1 1 . Find the difference equation

1 ej

2
1 ej

2
e2 j

4
describing the overall system.

Frequency response of the overall system is H (e j) H1 (e j)H 2 (e j)


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H (e j)  2 ej

11ej3

8

Y (e j)
X(ej)

Y(ej)1ej3Y(ej)2X(ej)ejX(e)8
taking inverseDTFT ,

y(n) 1 y(n  3)  2x(n) x(n  1)
8

Example:

Determine the frequency response of the system

described by the difference equation, y(n) 1 y(n  1) 1 y(n  2) x(n  1) .

6
 

6


   

taking DTFT , and rearranging,

frequency responseH (e j)  Y(ej)
X(ej)


ej

1 1 ej1 ej 2

6 6

1. Consider the system described by the differenceequation.
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2. Compute the impulse response of the system describedby,
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4. Obtain the structures realization of LTI system
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Find the convolution of x(n)=[1,1,1,1,2,2,2,2] with h(n)=[3,3,0,0,0,0,3,3] by using 
matrix method.

Solution: By using matrix method, N=8

EnggTree.com

Downloaded from EnggTree.com



II YEAR/THIRD SEMESTER EC3354-SIGNALS AND SYSTEM

121

REALIZATION

A linear time invariant discrete-time systems characterized by the general linear constant coefficient 
difference equation

There are various forms to implement above equation either in hardware or in software. For each set 
of equation, we can construct a block diagram consisting of an interconnection of delay elements, 
multipliers and adders. We referred to such a block diagram as a realization of the system.
The computational complexity refers to the number of operations (like multiplication, addition etc.,) 
required to compute an output value of the system
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The structure has M-1 memory location for storing M-1 previous inputs. The structure has M 
complex multiplication and M-1 additions. The output is the weighted linear combination of M-1 
past input and the weighted current value of the input.

Direct Form (N = odd)
When the FIR system has linear phase, the unit sample response of the system satisfies either the 
symmetry or asymmetry condition
h(n) = ± h(M – 1 – n) 7
for such system, the number of multiplication is reduced from M to M/2 for even M and M to (M- 
1)/2 for odd M.

Tapped Delay Line (TDL) or Transversal System (TS)

Direct form is one of the simplest structures. The direct realization can be obtained from the non- 
recursive difference equation given in equation
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PROBLEMS: ON CONVOLUTION
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PROBLEMS

1.The input and output of an LTI system are relatedby

Note that without further information such as the initial condition, this equation does not

uniquelyspecify when is given. Taking z-transform of this equation and using the 
time shifting property, weget

and the transfer function can be obtained

Note that the causality and stability of the system is not provided by this equation, unlessthe 

ROCof this is specified. Consider these two possible ROCs:

 If ROCis , it is outsidethepole and includes the unit circle. The 
system is causal andstable:

 If ROCis , it is inside thepole and does not include the unit 
circle. The system is anti-causal andunstable:
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First order system
The first order discrete system is described by

Theimpulse response can be found by solving thefollowing

to be

Alternatively, we can take z-transform of the DE and get

and the transfer function of the system (assumed causal)

has azeroat and apole and its ROC istheregion outside

thepole.If , then theunitcircle can be included in the ROC, the Fourier 
transform exists and the system is stable. The impulse response (unit sample response) of the 
systemis

Although seems to have a form different from the typical impulse response incontinuous

case , they are essentially thesame as can be rewrittenas
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where

Letting  in , we get the frequency response function of thesystem

where and are two vectors in z-plane definedas

Foranyfrequency represented byapoint on the unit circle, the 
magnitude and phase angle of the frequency response function can be represented in the z-plane 
as

and

which can be evaluated graphically in the z-plane asthe frequency changes in the

range . Ifweassume , then when , the denominator reaches 

itsminimumof , and is maximizedto be ; andwhen ,the

denominator reaches its maximumof , and is minimized to

be . Thephaseangle of  is zero when or , 

and isnegativefor and positive for .
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System Algebra and Block Diagram

Z-transform converts time-domain operations such as difference and convolution into algebraic 
operations in z-domain. Moreover, the behavior of complex systems composed of a set of 
interconnected LTI systems can also be easily analyzed in z-domain. Some simple 
interconnections of LTI systems are listed below.

 Parallel systems: If the system is composed of two LTI systems 

with and connected in parallel, its impulse response is

or in s-domain

 Serial or cascade system: If the system is composed of two LTIsystems 

with and connected in series, its impulse responseis

or in s-domain
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 Feedback system: If the system is composed of an LTIsystemwith in aforward

path and anotherLTIsystem in a feedback path,its output can be implicitly 
found in timedomain

or in s-domain

While it is difficult to solve the equation in time domain to find an explicit expressionfor 

output , it is easy to solve the algebraic equation in z-domain to 

find
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and the transfer function can be obtained

The feedback could be either positive or negative. For the latter, there will be anegative 

sign infront of and of the feedback pathso

that and

Example 0: The transfer function of a first order LTI system

is

Comparingthis with the transfer function of the feedback system, we see that a first 

order system can be represented as a feedbacksystemwith in the forward path, 

and for theproduct of and (a delay elementwithinput and

output ) in the negative feedbackpath.

Example 1:
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can be obtained the same way as in previous example. Once and are

available, we can easily obtain :

Example 2: Consider a second order system with transfer function

These three expressions of this correspond to three different block diagram
representations of the system. The last two expressions are, respectively, the cascade and the 
parallel representations (same as the corresponding cases in Laplace transform), while the first 
one is the direct representation, as shown below. We first consider a general 2nd order system

This equation can be rewritten as:

where

Weseethat is the linear combination of the delayed versions of itself and the 

input which can be represented as a feedback system with two feedback paths 

of and . In thisparticular system, and .
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Example 3: A second order system with transfer function

This system can be represented as a cascade of two systems

and
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Thefirstsystem can be implemented by two delay elements with proper feedback paths 
as shown in the previous example, and the second system is a linearcombination

of , and , all of which are available along the feedback path of 
the first system. The over all system can therefore be represented as shown. Obviously theblock 
diagram of this example can be generalized to represent any system with a rational transfer 
function
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EXAMPLES OF DT CONVOLUTION
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The u(n) comes from our first case above since s(n) = 0 for n < 0, and obviously the other part 
comes from the expression found in the second case above.
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3. In the convolution sum, the impulse response is written as h(n−k), meaning that in the k 
domain, the impulse response is shifted by n and flipped around thatpoint

We can visualize the convolution operation as that shifted-and-flipped impulse response 
sliding along the k axis from −∞ to ∞ as the summation occurs.

Whenever there is some non-zero overlap between this shifted-and-flipped impulse 
response and the input signal, the system output will be non-zero (unless the non-zero 
overlaps cancel each other).
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4. Finding the impulse response of a diffeq system. Find the impulse response of thesystem 
described by the followingdiffeq:
y[n] = 4 3 y[n − 1] − 7 12 y[n − 2] + 1 12 y[n − 3] + x[n] − x[n − 3] .

Step 0: Find the system function. (linearity, shift property)
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Why Are Z Transforms Used?

You should know that Laplace transform methods are widely used for analysis in linear 
systems. Laplace transform methods are used when a system is described by a linear differential 
equation, with constant coefficients. However:

 There are numerous systems that are described by difference equations - notdifferential 
equations - and those systems are common and different from those described by 
differentialequations.

 Systems that satisfy difference equations include thingslike:
o Computer controlled systems - systems that take measurements with digital I/O 

boards or GPIB instruments, calculate an output voltage and output thatvoltage
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digitally. Frequently these systems run a program loop that executes in a fixed 
interval of time.

 Other systems that satisfy difference equations are those systems with Digital Filters - 
which are found anywhere digital signal processing - digital filtering is done. That 
includes:

o Digital signal transmission systems like the telephonesystem.
o Systems that process audio signals. For example, a CD contains digital signal 

information, and when it is read off the CD, it is initially a digital signal thatcan 
be processed with a digitalfilter.

At this point, there are an incredible number of systems we use every day that have digital 
components which satisfy difference equations.

In continuous systems Laplace transforms play a unique role.  They allow system and 
circuit designers to analyze systems and predict performance, and to think in different terms - 
like frequency responses - to help understand linear continuous systems. They are a very 
powerful tool that shapes how engineers think about those systems. Z-transforms play the rolein 
sampled systems that Laplace transforms play in continuoussystems.

 In continuous systems, inputs and outputs are related by differential equations and 
Laplace transform techniques are used to solve those differentialequations.

 In sampled systems, inputs and outputs are related by difference equations and Z- 
transform techniques are used to solve those differentialequations.

In continuous systems, Laplace transforms are used to represent systems withtransfer 
functions, while in sampled systems, Z-transforms are used to represent systems with 
transfer functions.

There are numerous sampled systems that look like the one shown below.

 An analog signal is converted to a digital form in anA/D.
 The digital signal is processedsomehow.
 The processed digital signal is converted to an analog signal for use in the analogworld.

The processing can take many forms.

 In a voice transmission situation, the processing might be to band-limit the signal and 
filter noise from thesignal.

 In a control situation, a measurement might be processed to calculate a signal to controla 
system.

 And there are many othersituations.

Goals

In sampled systems you will deal with sequences of samples, and you will need to learn Z- 
transform techniques to deal with those signals. In this lesson many of your goals relate to basic 
understanding and use of Z-transform techniques. In particular, work toward these goals.

 Given a sequence of samples intime,
o Be able to calculate the Z-transform of the sequence for simplesequences.

 Given a Z-transform,
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o Be able to determine the poles and zeroes of theZ-transform.
o Be able to locate and plot the poles and zeroes in thez-plane.

Later you will need to learn about transfer functions in the realm of sampled systems. As you 
move through this lesson, there are other things you should learn.

 Given a Z-transform of a signal, and the pole locations,
o Be able to relate distance from the origin to decayrate.
o Be able to relate angle off the horizontal to the number of samples in a cycleof 

signaloscillation.

What Is A ZTransform?

You will be dealing with sequences of sampled signals. Let us assume that we have a 
sequence, yk. The subscript "k" indicates a sampled time interval and that ykis the value of y(t) 
at the kthsampleinstant.

 ykcould be generated from a sample of a time function. Forexample:
o yk= y(kT), where y(t) is a continuous time function, and T is the sampling 

interval.
o We will focus on the index variable, k, rather than the exact time, kT, in allthat 

we do in thislesson.

It's easy to get a sequence of this sort if a computer is running an A/D board, and measuring 
some physical variable like temperature or pressure at some prescribed interval, T seconds. A 
sampled sequence like this plays the same role that a continuous signal plays in a continuous 
system. It carries information just like a continuous signal.

The Z transform, Y[z], of a sequence, ykis defined as:

We will use the following notation. A large "z" denotes the operation of taking a Z-transform 
(i.e., performing the sum above) and the result is usually denoted with an upper-case version of 
the variable used for the sampled time function, yk.

 Z[yk] =Y[z]

The definition is simple. Take the sequence, and multiply each term in the sequence by a 
negative power of z. Then sum all of the terms to infinity. That's it.

EnggTree.com

Downloaded from EnggTree.com



II YEAR/THIRD SEMESTER EC3354-SIGNALS AND SYSTEM

150

The frequency domain tells us the relative contribution of sinusoids of different frequencies to 
the overall signal. Consider the figure below, which illustrates a simple example of the 
transformation between the time and frequency domains. On the left, we plot the function :

HINTS

Some important examples of systems include filters, encryption and control. •
Time domain vs. frequency domain: We are used to viewing signals in the time domain — that 
is, as a function of time. however, there is another domain — namely, the frequency domain, that 
is critically important in understanding, analyzing and transforming signals. In lecture, we 
introduced the concept of frequency, and the frequency domain. . The process of sampling a 
continuous-time signal changes the signal, and it is important to understand how exactly the 
sampling process changes the information content of that signal. In due time, we will carefully 
look at the implications of sampling, and how choosing an appropriate sampling rate is critically 
important to preserving the information contained in a signal.
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ALL THE BEST
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