EnggTree.com

Reg. No. : E N G G T R E E . C O M

Question Paper Code: 70132

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2022

For More Visit our Website EnggTree.com First Semester

Civil Engineering

MA 3151 - MATRICES AND CALCULUS

(Common to : All Branches (Except Marine Engineering))

(Regulations 2021)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A
$$-(10 \times 2 = 20 \text{ marks})$$

- 1. The eigenvalues and the corresponding eigenvectors of a 2×2 matrix is given by $\lambda_1 = 8$; $x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\lambda_2 = 4$; $x_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Find the corresponding matrix.
- 2. Determine the nature, index and signature of the quadratic form $x_1^2 + 5x_2^2 + x_3^2 + 2x_2x_3 + 6x_3x_1 + 2x_1x_2$.
- 3. For what values of the constant c is the function f continuous on $(-\infty, \infty)$?

$$f(x) = \begin{cases} cx^2 + 2x; & x < 2 \\ x^3 - cx; & x \ge 2 \end{cases}.$$

- 4. Find the slope of the circle $x^2 + y^2 = 25$ at (3, -4).
- 5. Find $\frac{\partial^2 w}{\partial x \partial y}$, if $w = xy + \frac{e^y}{y^2 + 1}$.
- 6. Find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w = x^2 + y^2$, x = r s and y = r + s.
- 7. Evaluate $\int \frac{\tan x}{\sec x + \tan x} dx$.

Downloaded from EnggTree.com

EnggTree.com

8. Find the area of the region shown in the diagram given below, bounded between x = a and x = b.

- 9. Sketch the region of integration in $\int_{0}^{1} \int_{x}^{1} f(x, y) dy dx$.
- 10. Change the Cartesian integral $\int_{0}^{6} \int_{0}^{y} x dx dy$ into an equivalent polar integral.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

11. (a) Obtain an orthogonal transformation which will transform the quadratic form $Q = 2x_2x_3 + 2x_3x_1 + 2x_1x_2$ to canonical form.

Or

- (b) An elastic membrane in the x_1x_2 -plane with boundary circle $x_1^2 + x_2^2 = 1$ is stretched so that a point $P = (x_1, x_2)$ goes over a point $Q = (y_1, y_2)$ given by $y_1 = 5x_1 + 3x_2$ and $y_2 = 3x_1 + 5x_2$. Find the principal directions that is, the directions of the position vector x of P for which the direction of the position vector y of Q is the same or exactly opposite. What shape does the boundary circle take under this deformation?
- 12. (a) (i) Find y'' if $x^4 + y^4 = 16$. (8)
 - (ii) Differentiate $y = (2x+1)^5 (x^3 x + 1)^4$. (8)

Or

(b) Find the intervals on which $f(x) = -x^3 + 12x + 5$; $-3 \le x \le 3$ is increasing and decreasing. Where does the function assume extreme values? What are those values?

2 70132

EnggTree.com

13. (a) Find the maximum and minimum values of the function f(x, y) = 3x + 4y on the circle $x^2 + y^2 = 1$.

Or

- (b) Find the Taylor series expansion of the function $f(x, y) = \sin x \sin y$ near the origin.
- 14. (a) (i) Evaluate $\int_{0}^{\infty} e^{-ax} \sin bx dx$, for a > 0. (8)

(ii) Integrate
$$\int_{0}^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3\cos x + 2} dx$$
 (8)

Or

- (b) (i) Evaluate $\int \frac{3x^4 + 3x^3 5x^2 + x 1}{x^2 + x 2} dx.$ (8)
 - (ii) Integrate $\int x\sqrt{1+x-x^2} dx$. (8)
- 15. (a) (i) Change the order of integration in $\int_{0}^{1} \int_{x^2}^{2-x} xy \, dy \, dx$ and hence evaluate.

 (8)
 - (ii) Find the area of the region inside the cardioid $r = a(1 + \cos \theta)$ and outside the circle r = a. (8)

Or

(b) Find the volume of the region bounded by the paraboloid $z = x^2 + y^2$ and the plane z = 4. (16)

70132