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Unit |
LOGIC AND PROOFS

1.1 INTRODUCTION
PROPOSITION (OR) STATEMENT:

Proposition is a declarative statement that is either true or false but not both. The truth value of
proposition is true or false.

Truth table
It displays the relationship between the truth values of proposition.
Negation of a proposition

If P is a proposition, then its negation is denoted by =P or ~p and is defined by the following truth
table.

P P
T F
F T

EXAMPLE
P - Ramis intelligent
=P -Ram is not intelligent

proposition is a declarative sentence which is either true or false but not both.
COMPOUND PROPOSITION
It is a proposition consisting of two or more simple proposition using logical operators.
1.2 LOGICAL CONNECTIVES

(1) DISJUNCTION (OR)

The disjunction of two proposition P and Q is the proposition PVvQ  [read as P or Q ] and is
defined by the following truth table.
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T F T
F T T
F F F

(1) CONJUNCTION (AND)

If P and Q are two propositions , then the conjunction of P and Q is denoted by PAQ (read as P
and Q ) and is defined by following truth table.

p Q PAQ
T T T
T F F
F T F
F F F

CONDITIONAL AND BI- CONDITIONAL PROPOSITION
(1) Conditional proposition

If p and g are propositions, then the implication “If p then q “ denoted by p—q, called the
conditional statement of p and g, is defined by following truth table.

mmd|do
miH|m| |

o
—{4|m|4|]
Nl

NOTE

p—q is false when p is true and q is false. Otherwise it is true.

The different situations where the conditional statements applied are listed below.
(1) Ifpthen g
(2 ponlyif g
(3) gwhenever p
(4) qgis necessary for p
(5) gfollows from p
(6) gwhenp
(7) p is sufficient for g
(8) p implies q

Converse, contrapositive and Inverse statement
If p—q is a conditional statement, then

(1) g—p is called converse of p—q

(2) —~gq—p is called contrapositive of p—q

(3) -p——q is called inverse of p—q
EXAMPLE
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p—q: If Ram is a computer scienceEﬂDQgﬂ-ﬂ&G 16ONI| study DBMS.

(2) Bi-conditional proposition

If p and g are proposition, then the proposition p if and
only if g, denoted by p < qis called the bi-conditional
statement and is defined by the following truth table.

mmiH -
M4 mnHe
=M

NOTE

P & Qis true if both p and g have same truth values. Otherwise P < @ is false.

EXAMPLE
P: You can take the flight
g: You buy a ticket
p<q: You can take the flight if and only if buy a ticket.

Symbolize the statements using Logical Connectives

Example: 1

The automated reply can be sent when the file system is full.
P: The automated reply can be sent
Q: The file system is full
Solution:
Symbolic form :q——p
EXAMPLE: 2

Write the symbolized form of the statement. If either Ram takes C++ or Kumar takes pascal,
then Latha will take Lotus.

R:Ram takes C++
K:Kumar takes Pascal

L:Latha takes Lotus
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Symbolic form: (RVK)—L EnggTree.com
Example 3
Let p,q,r represent the following propositions,
P:1t is raining
g: The sun is shining
r: There are clouds in the sky
Symbolize the following statements.

(1) Ifitis raining, then there are clouds in the sky
(2) Ifitis not raining, then the sun is not shining and there are clouds in the sky.
(3) The sun is shining if and only if it is not raining.

Solution:

Symbolic form:

Dp-r
(2) =p = (=qar)
3 qe —r
Example: 4
Symbolize the following statements:

(1) If the moon is out and it is not snowing, then Ram goes out for a walk.

(2) If the moon is out, then if it is not snowing,Ram goes out for a walk.

(3) Itis not the case that Ram goes out for a walk if and only if it is not snowing or the moon is
out.

Solution:
Let the propositions be,
P: The moon is out
Q: It is snowing
R: Ram goes out for a walk.

Symbolic form:

(1) (prnq) - r
2)p—=>(=q—r)
() —(r & (~qvp))

Example: 5
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P:1 finish writing my computer program b#iggilinee.com

g: | shall play Tennis in afternoon.

r: The sun is shining

s: The boundary is low.

(1) If the sun is shining, | shall play tennis in the afternoon.

(2) Finishing the writing of my computer program before lunch is necessary for playing tennis in
this afternoon.

(3) Low boundary and sunshine are sufficient to play Tennis in this afternoon.

Solution:

Symbolic form:

(1) r—-q
@ q-p
(3) (sar) > q

Construction of Truth Tables

EXAMPLE: 1

Show that the truth values of the formula PA(P — Q) — Q are independent of their

components.

Solution:

The truth table for the formula is,

p Q P-Q PA(P > Q) (PA(P=0Q)) > Q
T T T T T
T F F F T
F T T F T
F F T F T

The truth values of the given formula are all true for every possible truth values of P and Q.
Therefore, the truth value of the given formula is independent of their components.

Example 1. Without constructing the truth table show that

pP—(q
Solution

—p)= p(p—q)

p—(q—p)= p— (7 qVp)

7q)

= 7pv(Tqvp)
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= (7pvp)vq
=Tv-q
=T.
Example 2. Prove that p— q is logically prove that (= pvQ)
Solution:
p q p—=49 pvVgq
T T T T
T F F F
F T T T
F F T T
EXAMPLE: 2

Write the symbolized form of the statement. If either Ram takes C++ or Kumar takes pascal,
then Latha will take Lotus.

R:Ram takes C++
K:Kumar takes Pascal
L:Latha takes Lotus
Solution:
Symbolic form: (RVK)—L

Tautology.
A statement that is true for all possible values of its propositional variables is
called
a tautology universely valid formula or a logical truth.

Example:1. Write the converse, inverse, contra positive of ‘If you work hard then you
will be rewarded’

Solution:

p: you will be work hard.

g: you will be rewarded.

—p: You will not be work hard.

= Qg: You will notbe rewarded.

Converse: g— p, If you will be rewarded then you will be work hard

Contrapositive: = g— p,if You will not be rewarded then You will not be work hard.

Inverse: = p— = q, if You will not be work hard then You will no tbe rewarded.
Example:2. Write the converse, inverse, contra positive of ‘If you work hard then you
will be rewarded’
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p: you will be work hard. EnggTree.com
g: you will be rewarded.
—p: You will not be work hard.

= Qg: You will no the rewarded.

Converse: q— p, If you will be rewarded then you will be work hard

Contrapositive: = g— p,if You will not be rewarded then You will not be work hard.

Inverse: = p— = q, if You will not be work hard then You will no tbe rewarded.

Example 4.Provethat (P > Q) A (Q > R) » (P - R)

Proof:
LetS: (P->Q)A(Q—>R) » (P »R)

To prove: S is a tautology

P-Q |@->R) | (P->R) | P->Qr@—>R)

mimmim|-H|—-|—-|—-|T
7| ||| | o
T|— ||| ||| o
—| |||

—|=|—|H|n|n|4|H
—|=|m|H|4|4|n|H
—|=|—|H|[4][n|H
—|=|m|H|4|[n|[n|H

The last column shows that S is a tautology
1.3 PROPOSITIONAL EQUIVALENCE:

Logical Equivalence:

Let p and q be two statements formulas, p is said to be logically equivalent to q if p & g have the
same set of truth values or equivalently p & g are logically equivalent if p < g is tautology.

Hence, p & g ifand only if p < g is a tautology.
Logical Implication or Tautological Implication

A statement formula A logically implies another, statement formula B ifand only if A —» Bisa
tautology.

~ A = B[Alogically iff A — B is tautology, implies B]

If A =B ,then
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B is called consequent. EnggTree.com
Further A = B guarantees that B has the truth value T whenever A has the truth value T.

~ In order to show any of the given implications, it is sufficient to show that an assignment of the truth
value T to the antecedent of the given conditional leads to the truth value T for the consequent.

1. Prove without using truth table (P - Q) A =Q = =P
Proof:
Antecedent: (P - Q) A =Q
Consequent: =P
Assume that, the antecedent has the truth value T.
=~ =0Q And (P - Q) both are true.
= Truth value of Q is F and the truth value of P is also F.
~ Consequent —P is true.
=~ The truth of the antecedent implies the truth of the consequent.
“(P->Q)A=Q > =P

Example:1Without constructing the truth table show that p— (q — p)= " p(p— q)
Solution

p—(q—p)=p—>(7qVp)
= 7pv(Tqvp)
= 7pv(pva)
= (7pvpvq
=Tv
=T.
Example 2:Show that = (p—q) = (pvqg) A = (pAqg) without constructing the truth table

Solution :

7 (peq) =(pva) /A 7 (pAq)

T(peq = 7 (p~a) A (0-p)
=7 (7pva) A (7qvp)
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== (=pA g vig/ FBFYIIES LA p)
= (~pva) VFVFV(g/\p)

== (= pva) v(a/Ap)

=(pva) A (@A\p).

Consider (<P A -Q)v («PA=R)= = (PvQ)v=(PvR)= -((PvQ)a (PVvR)
Using (1) and (2)

(PvQ)A(PvQ)a(PVvR)v=((PvQ)a(PvR))

> (PVvQ)A(PVR)IVA[I(PVQ)A(PVR)I=T

Prove the following equivalences by proving the equivalences of the dual

“((mPAQ)V(=-PA=Q)Vv(PAQ)=P

Solution: It“s dual is

((=PvQ)Ar(=Pv-Q)A(PvQ)=P

Consider,
~((=PvQ)A(=Pv=Q)A(PvQ)=P Reasons
= (PA=Q)v(PAQ)A(PVQ) (Demorgan“s law)
(Commutative law)
= (QAP)V (=QAP)A(PVQ) (Distributive law)

(Pv-P=T)

= ((Qv-Q)AP)A(PVQ)
(PAT =P)

= (TAP)A(PVQ) (Absorption law)

ObtainDNFof Q v (P AR)A =((P v R)A Q).
Solution:

QV(PAR)A=({(PVR)AQ)
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S QV((PAR)AW(=PA=R)Vv=Q) (Demorgan law)

S QA(EPASR))VIQA=Q)Y((PAR)A=PA=SR)V((PAR)A=Q)
(E xtended distributed law)
< (w-PAQA=R)VFV(FARA=R)V(PA=Q AR) (Negation law)

< (wPAQA=R)V(PA=Q AR) (Negation law)
Obtain Pcnf and Pdnf of the formula (=P v =Q) > (P & —=0Q)
Solution:

LetS=(-Pv -Q)> (P & Q)

PIQ| -P| -Q -Pv -Q Po -0 | S| Minterm | Maxterm

T[T| F | F F F T| Paq
T(F| F [ T T T T Pa-0
FIT| T | F T T T| —rnro
FIF[ T | T T F F PvQ

PCNF: Pv Q andPDNF: (P A Q)v (P A =Q)v (=P A Q)

P> (PA(Q—>P)).
Obtain PDNF of

Solution:

P—)(PA(Q—)P))<:>~PV(P/\(~QVP))
<3~P\/(P/\~Q)V(P/\P)
< (FPAT)V(PA~Q)Vv (P AP)

< (~PAQv~Q)v(PA~Q) v (PA(Qv ~Q))
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PAQ)v (~ PA~Q)v
(PA~Q)
v(PAQ)

PAQ)v (~ v(PA~Q

PA~Q)v
(PA~Q)v
(PAQ)
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1.4 PREDICATES & QUANTIFIERS:

Quantifiers.
Universal Quantifiers:

The universal Quantification of P(x) is the proposition.”P(x) is true for all
values of x in the universe of discourse”.

The notation ¥x P(x) denotes the universal quantification of P(x).here ¥
is called the universal quantifier.

Existential Quantifier:

The existential Quantification of P(x) is the proposition.” There exists an
element x in the universe of discourse such that P(x) is true”.

~ We use the notation dx P(x) for the existential quantification of p(x).here
H is called the existential quantifier.

Normal Forms:

DNF:
A formula which is equivalent to a given formula and which consists of
sum of elementary products is called a disjunctive normal form of the given
formula

PDNF: a formula which is equivalent to a given formula which is consists of sum
its minterms  is called PDNF.

PCNF: a formula which is equivalent to a given formula which consists of
product of maxterms is called PCNF.

Obtain PCNF of (7 p— r) A(q<> p). and hence obtain its PDNF.

Solution:

PCNF:

Se ("p->r)A(ge p).
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S PV A(Tavp).A(TpVvaq)
& ((pvr) V) A((mqvp).VF) A((mpVQq VF)
o ((pv)v@AgIAN(Tqvp).v(rA 1) A("pvgV(pA D).

S (Vv PApV v T )A(Tgvpy r)A(TqV pV T r)A
((rpvqVvr)Vv("pvqV 7r)

e ((pvrvaa((mgvpy A(TqV pVv T )A((TpvqVvDVv(TpV
qVv 7r)

PCNFofS: ((pvrv @) A((mqv pv r)A.("qV pV " NA(("pVvqVr)Vv
(7"pvaqV 7r)

PCNF of = S: (pvqvr)A(~pV 7qVr] )A("pV 7qV 7r)
PDNF of S: (pAgAD) V (7"pA 7"gAT) V(T pVA 7"qA 1),
1.5 RULES OF INFERENCE:

EXAMPLE:1 Verify that validating of the following inference. If one person is
more successful than another, then he has worked harder to deserve success.
Ram has not worked harder than Siva. Therefore, Ram is not more successful
than Siva.

Solution:

Let the universe consists of all persons.

Let S(x,y): x is more successful thany.

H(x,y): x has worked harder than y to deserve success.
a: Ram

b: Siva
Then, given set of premises are

1) () (y) [S(xy) >H(Xxy)]
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2) 7 H(a,b)

3) Conslution is 7 S(a,b).

{1} D) [Sxy) - HXxy)] [RuleP

{2} 2) (y)[S(ay) — H(ay)] Rule US

{3} P)[S(ab) — H(a,b)] Rule US

{4} |4 -H@ab) Rule P

{5} 5) - S(abh) Rule T (- P,P 5Q = Q)

EXAMPLE: 2Show that (x) (H(X) >M(x)) A H(s) = M(s)

Solution :
Steps Premises Rule Reason
1 (x) (HX) >M(x)) P Given premise
2 H(s) =~M(s) Us (1) (VX) p ) = p(y)
3 H(s) P Given premise
4 M(s) T @B @ —=ap=249)

EXAMPLE: 3 Show that - p(a,b) follows logically from (x) (y) (p(x,y)
-w(x,y)) and -w(a, b)
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Solution :

L () () (p(xy) = w(x,y) p

2. (y), p(ay) = w(ay) Us, (1)

3. P(a,b) = w(a,b) UsS (2)

4. -w(a,b) p Given

5. —=ip(a,b) T(3).,4), (P~ QA=Q>-p
EXAMPLE:A4.

Symbolise: For every x, these exixts a y such that x*+y*> 100
Solution :
(wx) (3y) (C+y*> 100)
Example:Let p, g, r be the following statements:

p: I will study discrete mathematics q: |
will watch T.V.

r: 1 aminagood mood.

Write the following statements in terms of p, g, r and logical connectives. (1)
If I do not study and | watch T.V., then | am in good mood.

(2) If I am in good mood, then I will study or | will watch T.V.

(3) If I am not in good mood, then I will not watch T.V. or | will study.

W (=prq)->r
(2)r > (pva)

(8)=r—>(=qv p)
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1.6 Introduction to proofs & statergy

Method of proofs :
Trival proof:

In an implication p— q, if we can establish that q is true , then regardless of the truth
value of p, the implication p— q So the construction of a trivial proof of p— q needs to
show that the truth value of q is true.

Vacous proof:
If the hypothesis p of an implication p— q is false , then p— q is true for any proposition g.
Prove that +/2 is irrational.
Solution :
Suppose ~/2 is irrational.

\/E:Ep for p,q €2,q#0, p&q have no common divisor.

2
.'.p—2:2:> p?=2q°.

q

Since p? is an even integer, p is an even integer.

.. p= 2m for some integer m.
s (2m)? =29° = g° =2m?
Since g® is an even integer, g is an even integer.

. =2k f or some integer k.
Thus p & q are even . Hence they have a common factor 2. Which is a contradiction to our

assumption.

~.[2is irrational.
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UNIT 1l COMBINATORICS
Pigeon Hole Principle:

If (n=1) pigeon occupies ‘n’ holes then atleast one hole has more than 1 pigeon.
Proof:

Assume (n+1) pigeon occupies ‘n’ holes.

Claim: Atleast one hole has more than one pigeon.

Suppose not, ie. Atleast one hole has not more than one pigeon.

Therefore, each and every hole has exactly one pigeon.

Since, there are ‘n’ holes, which implies, we have totally ‘n’ pigeon.

Which isa = <= to our assumption that there are (n+1) pigeon.

Therefore, atleast one hole has more than 1 pigeon.
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2.1 MATHEMATICAL INDUCTION

EXAMPLE 1:show that

SOLUTION: = +-X 4.+ =
1.2 23 n(n+1) n+1

Let P(n):1i T

= Ll is true. > (1)

CLAIM : P(k+1) is true.

1 1 1 1
P(k+1)_ﬁ +55 et "GRiD + eI

k 1 .

T k+1 (k+1)(k+2) using (1)
k(k+2)+1

(k+1)(k+2)

(kk)+2k+1
(k+1)(k+2)

(k+1)(k+1)
(k+1)(k+2)

(k+1)
(k+2)

k+1
(k+1)+1

P(k+1) is true.

BY THE PRINCIPLE OF MATHEMATICAL INDUCTION

1 1 1 n
— 4 4.+ = — Is true foralln.
1.2 23 n(n+1) n+1

EXAMPLE 2 : Using mathematical induction prove that if
n>=1, then 1.11+2.21 433! +....4n.nl = (n+1)! - 1
SOLUTION:
Let p(n): 1.1'+2.21+3.31 +.....+n.n! = (n+1)! - 1

1.P(1):1.1! =(1+1)! =1 is true
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2 . ASSUME p(k) : 1.1! + 2.2 +3.3! +......+k.k!
= (k+1)! =1 is true
CLAIM : p(k+1) is true.
P(k+1) = 1.11+2.21 +3.31 +.....+k.k! +(k+1)(k+1)!
= (k+1)!-1 +(k+1)(k+1)!
= (k+1)! [(1+k+1)] -1
= (k+1)! (k+2) -1
=(k+2)1-1
=[(k+1) +1]'-1
P(k+1)is true.
BY THE PRINCIPLE OF MATHEMATICAL INDUCTION,

P(n):1.11+2.21+3.31 +....+n.nl = (n+1)! =1 , n>=1

EXAMPLE 3 : Use mathematical induction, prove that 3", 3" = w

SOLUTION:

(3An+1)—1

Let p(n): 3%+ 3'+....... 3" = .

1.p(0) : 30:% = % =1 istrue.
2.ASSUME
P(k): ): 3%+ 3'+........ 3n - Gakih-i is true.

CLAIM : p(k+1)is true.

P(k+1):): 3%+ 3%+ 3%+....... +354 31

3Ak+1)—1
( ) 4+ 3k

> using (1)

(3Ak+1)+2.(3Ak+1)—1
2

3(3Ak+1)-1
2

(3Ak+2)-1
2
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_ GBAK+D+1)-1
2

P(k+1)is true.
By the principle of mathematical induction.

(3An+1)-1

P(n): Ym0 3" = is true for n>=0

L . 1 1 1
EXAMPLE 4 :Use mathematical induction , prove that Nen +\/? +\/—3_ +""+«/T >yn , n>=2

SOLUTION:

Let p(n): % +L2 +\/L3_ +...,+\/Ln_ >yn , n>=2

[uy

1

=+ =(1.707) >V2  +(1.414) is true

1.p(2): that
2.ASSUME

1 1 1 .
P(): that ——= +— +..+ = >vk istrue -> (1)
CLAIM : p(k+1) is true.

_i_ +_i_ + +_E_.+ 1
iV T e T ke

P(k+1) :

Vi + \/k;? using (1)

Vk VE+1 +1
Vvk+1

Jk(k+1) +1
Vk+1

Vkk +1
Vk+1

k+1
k+1

Nrz=E
>Vk+1
P(k+1) > vk+1

P(K+1) istrue

>

BY THE PRINCIPLE OF MATHEMATICAL INDUCTION.

PRE S S L>\/n+1

1
that \/—1— Ne N
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EXAMPLE 5: Using mathematical induction ,prove that 1%+ 3>+ 5% +...... (2n-1)* = n@n-1)@ntl)
SOLUTION :

Let p(n): 12+ 3%+ 5% +...... (2n-1)% = é n(2n-1)(2n+1)

1.p(1): 12 = %1(2-1)(2+1) = 1.3

=1is true.

2.ASSUME p(k)is true.
12432 +5%+..... (2k-1)2 = %n(Zk-l)(2k+1) > (1) Istrue.
CLAIM : p(k+1) is true.

P(k+1) = = k(2k-1) (2k+1) +(2k+1)? using (1)

= = (2k+1) [k(2k-1) +3(2k+1)]

= (2k+1) (2k2+5k+3)

= (2k+1)(2k+3)(k+1)

= = (k+1) [2(k+1)-1][2(k+1)+1]
P(k+1) is true.

BY THE PRINCIPLE OF MATHEMATICAL INDUCTION,

P(n)=12+3%+5% +..... (2n-12= 2@a-DEnD

EXAMPLE 6:Use mathematical induction to show that n* - n is divisible by 3. For n € Z*
SOLUTION:
Let p(n): n" - n is divisible by 3.
1. p(1): 1°-1 isdivisible by 3,is true.
2. ASSUME p(k): k*-k is divisible by 3. -> (1)
CLAIM : p(k+1) is true.
P(k+1): (k+1)® - (k+1)

= kK +3k% + 3k+1 - k-1
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= (kP-k) + 3(Kk*+k) >(2)
(1) =>k® =k s divisible by 3 and 3(k? + k) is divisible by 3 ,we have equation (2) is divisibleby 3
Therefore P(k+1) is true.

By the principle of mathematical induction, n®-n is divisible by 3.
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2.2 Strong Induction

There is another form of mathematics induction that is often useful in
proofs.In this form we use the basis step as before, but we use a different inductive step. We
assume that p(j)is true for j=1...,k and show that p(k+1)must also be true based on this
assumption . This is called strong Induction (and sometimes also known as the second principles
of mathematical induction).

We summarize the two steps used to show that p(n)is true for all positive integers

Basis Step : The proposition P(1) is shown to be true
Inductive Step: It is shown that
[P(DAP2) A....... AP(k)] -> P(k+1)
NOTE:

The two forms of mathematical induction are equivalent that is, each can be shown to be
valid proof technique by assuming the other

EXAMPLE 1: Show that if n is an integer greater than 1, then n can be written as the product of
primes.

SOLUTION:
Let P(n) be the proportion that n can be written as the product of primes
Basis Step : P(2) is true , since 2 can be written as the product of one prime

Inductive Step: Assume that P(j) is positive for all integer j with j<=k. To complete the Inductive
Step, it must be shown that P(k+1) is trueunder the assumption.

There are two cases to consider namely

i) When (k+1) is prime
ii) When (k+1) is composite

Case 1 : If (k+1) is prime, we immediately see that P(k+1) is true.
Case 2: If ( k+1) is composite

Then it can be written as the product of two positive integers a and b with
2<=a<b<=k+1. By the Innduction hypothesis, both a and b can be written as the
product of primes, namely those primes in the factorization of a and those in the
factorization of b .
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The Well-Ordering Property:

The validity of mathematical induction follows from the following
fundamental axioms about the set of integers.

Every non-empty set of non negative integers has a least element.

The well-ordering property can often be used directly in the proof.
Problem :
What is wrong with this “Proof” by strong induction ?
Theorem :
For every non negative integer n, 5Sn = 0
Proof:
Basis Step: 5-0=0

Inductive Step: Suppose that 5j = O for all non negative integers j with o<=j<=k. Write k+1 = i4]
where I and j are natural numbers less than k+1. By the induction hypothesis

S(k+1) =5@+j) =51+ 5j=0+0=0
Example 1:

Among any group of 367 people, there must be atleast 2 with same birthday, because there are
only 366 possible birthdays.

Example 2:

In any group of 27 English words, there must be at least two, that begins with the same letter,
since there are only 26 letters in English alphabet

Example 3:
Show that among 100 people , at least 9 of them were born in the same month
Solution :

Here, No of Pigeon = m = No of People = 100

No of Holes = n = No of Month = 12
Then by generalized pigeon hole principle

{[100-11/12}+1 = 9, were born in the same month
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Combinations:

Each of the difference groups of sections which can be made by taking

some or all of a number of things at a time is called a combinations.

The number of combinations of ‘n’ things taken ‘r’ as a time means the

number as groups of ‘r’ things which can be formed from the ‘n’ things.
It denoted by nCer.
The value of nCr :

Each combination consists /r/ difference things which can be arranged among
themselves in r! Ways. Hence the number of arrangement for all the
combination is nCr x r! . This is equal to the permulations of ‘n’ difference

things taken ‘r’ as a time.
nCrxr!=nPr
nCr=nPr/r! e 2(A)
= n(n-1), (n-2)........ (n-r+1)/ 1,2,3,....... r

Corl: nPr= n!/(n-r)! --——---- ->(B)

Substituting (B) in (A) we get
nCr= n!/ (n-r)!r!
Cor 2: To prove that nCr = nCn-r
Proof :
nCr=n!/r!(n-r)! - —2>(1)

nCn-r =n!/ (n-r)! [n-(n-1)]!
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=n!/(M-1) ! 1!~ 2>(2)
From 1 and 2 we get
nCr=nCn-r
Example :
30C5-30 C39 25
=30 C,
30x29/1x2
Example 2:
In how many can 5 persons be selected from amongs 10 persons ?
Sol :
The selection can be done in 10Cs5 ways.
=10x9x8x7x6 / 1x2x3x4x5
=9 x 28 ways.
Example 5 :

How many ways are there to from a commitiee , if the consists of 3

educanalis and 4 socialist if there are 9 educanalists and 11 socialists.

Sol : The 3 educanalist can be choosen from a educanalist in 9C3 ways. The 4

socialist can be choosen from 11 socialist in 11C4 ways.
.". By products rule , the number of ways to select the commitiee is
=9C;.11C,

=9! /316! . 11!/4!7!
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=84 x 330
27720 ways.
Example 6 :

1. A team of 11 players is so be chosen from 15 members. In how ways can

this be done if

1. One particular player is always included.

1.  Two such player have always to be included.

Sol : Let one player be fixed the remaining players are 14 . Out of these 14

players we have to select 10 players in 14C;, ways.
14C4 ways. [.". nCr=nC,, |
= 14x13x12x11 / 1x2x3x4
=> 1001 ways.

2. Let 2 players be fixed. The remaining players are 13. Out of these

players we have to select a players in 13Cy ways.
13C4ways [ .. nC, =nC,, ]
= 13x12x11x10/ 1x2x3x4 ways
=715 ways.
Example 9 :
Find the value of ‘v’ if 20C,=20¢;-»
Sol: Given 20 C,=20Cy 2 =2r=20-(r+2) ---------------- 2>(1)

(1)----- 2>r=20-r-2
2r=18
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r=9
Example 12 :

From a commitiee consisting of 6 men and 7 women in how many ways

can be select a committee of

(1)3men and 4 women.

(2)4 members which has atleast one women.

(3)4 persons of both sexes.

(4)4 person in which Mr. And Mrs kannan is not included.

Sol :

(a) 3 men can be selected from 6 men is 6C; ways. 4 women can
be selected from 7 women in 7C, ways.
.". By product rule the committee of 3 men and 4 women can be

selected in

6C; x7C4 ways = 6x5x4x X 7x6x5x4
1x2x3 1x2x3x4

=700 ways.
(b) For the committee of atleast one women we have the following
possibilities

1. 1 women and 3 men
2. 2 women and 2 men
3. 3 women and 1 men
4

. 4 women and 0 men
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There fore the selection can be done in
=T7C; x 6C3 +7C, x 6C, +7C5 x6C; + 7C4 x 6C¢ ways
= 7x20+21x15+35x6+35x1
=140x315x210x35
=700 ways.
(d) For the committee of bath sexes we have the following possibilities .

1. 1 men and 3 women
2. 2 men and 2 women

3. 3 men and 1 women
Which can be done in
=6C;x7C3+6C,x7C,+6C;3x7C,
=6x35+15x21+20x7
=210+315+140

=665 ways.

Sol : (1) 4 balls of any colour can be chosen from 11 balls (6+5) in 11C, ways.
=330 ways.

(2) The 2 white balls can be chosen in 6C, ways. The 2 red balls can be

chosen in 5C, ways. Number of ways selecting 4 balls 2 must be red.

:6C2 + 5C2
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=. 6x5 . +.5x4 .
I1x2 1x2
=15+ 10
=25 ways.
Number of ways selecting 4 balls and all Of same colouris =6C,+ 5C,
=15+5
=20ways.

Definition

A Linear homogeneous recurrence relation of degree K with
constant coefficients is a recurrence relation of the form

The recurrence relation in the definition is linesr since the right hand
side is the sum of multiplies of the previous terms of sequence.

The recurrence relation is homogeneous , since no terms occur that
are not multiplies of the aj”s.

The coefficients of the terms of the sequence are all constants

a_

,rather than function that depends on “n”.

The degree is k because an is exrressed in terms of the previous k
terms of the sequence
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Ex:4 The recurrence relation
H,=2H,.1+1
Is not homogenous
Ex: 5 The recurrence relation
B,=nB,.1
Does not have constant coefficient
Ex:6 The relation T(k)=2[T(k-1)]*KT(K-3)
Is a third order recurrence relation &
T(0),T(1),T(2) are the initial conditions.
Ex:7 The recurrence relation for the function
f : N->Z defined by
f(x)=2x,¥ x € N is given by
f(n+1)=f(n)+2,n>=0 with f(0)=0
f(1)=f(0)+2=0+2=2
f(2)=f(1)+2=2+2=4 and so on.

It is a first order recurrence relation.
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2.3 Recurrence relations.
Definition

An equation that expresses a,, the general term of the
sequence {a,} in terms of one or more of the previous terms of the

sequence , namely ag,a; _an.1,for all integers n with n>=0,where ngis

.......

a non —ve integer is called a recurrence relation for {a,} or a
difference equation.

If the terms of a recurrence relation satisfies a recurrence
relation, then the sequence is called a solution of the recurrence
relation.

For example ,we consider the famous Fibonacci sequence
0,1,1,2,3,58,13,21,.....,
which can be represented by the recurrence relation.
Fn=Fn1+Fn2,n>=2
& Fo=0,F;=1. Here Fy=0 & F1=1 are called initial conditions.

It is a second order recurrence relation.
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2.4 Solving Linear Homogenous Recurrence Relations with
Constants Coefficients.

Step 1: Write down the characteristics equation of the given
recurrence relation .Here ,the degree of character equation is 1 less
than the number of terms in recurrence relations.

Step 2: By solving the characteristics equation first out the
characteristics roots.

Step 3: Depends upon the nature of roots ,find out the solution
a, as follows:

Case 1: Let the roots be real and distinct say ry,r,rs.....,r, then
An=0ur + oor '+ agrs™........ + aply

Where a; a;, ....,an are arbitrary constants.

Case 2: Let the roots be real and equal say ri=r,=r3=r, then
An= ogr ™ NoLR % asrs ... +n° ayr,

Where o, a;, ....,an are arbitrary constants.

Case 3: When the roots are complex conjugate, then

an=r"(a;cosnf+ a,sinno)
Case 4: Apply initial conditions and find out arbitrary constants.
Note:

There is no single method or technique to solve all recurrence
relations. There exist some recurrence relations which cannot be
solved. The recurrence relation.

S(k)=2[S(k-1)]*-kS(k-3) cannot be solved.
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Example 1: If sequence a,=3.2",n>=1, then find the recurrence
relation.
Solution:
For n>=1
an=3.2",

-1,
now, a,.;=3.2"

=3.2"/2
an1=a"/2
dn = 2(an']-)

an = 2a,-1, for n> 1 with a,=3
Example 2 :

Find the recurrence relation for S(n) = 6(-5),n> 0

Sol :
Given S(n) = 6(-5)"
S(n-1) = 6(-5)™"
=6(-5)" /-5

S(n-1) =S(n) /-5

S, =-5.5(n-1), n> 0 with s(0) =6
Example 5: Find the relation from Y, =A.2% +B.3
Sol :
Given Y =A2" + B3 e >(1)
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Y =A2T + B3¢

=A.2%.2 +B3* 3
Yies =2A.2% +3B.3% oo >(2)
Yirr =4A.2% + 9B 3% e >(3)

(3) =5(2) + 6(1)

D Vii2 -5Yier + 6y =4A.2° + 9B.3¥-10A.2" - 15B.3"+ 6A.2" + 6B.3"

=0
v Yis1-5Yke1 + 6y =0 in the required recurrence
relation.
Example 9 :

Solve the recurrence relation defind by S, = 100 and S¢ (1.08)
Sk.1 for k>1

Sol ;
Given Sp=100
Si=(1.08) Sy k>1
S;=(1.08) So = (1.08)100
S,=(1.08) S; = (1.08)(1.08)100
=(1.08)° 100
S3=(1.08) S, = (1.08)(1.08)*100
= =(1.08)> 100

S, =(1.08)S1 = (1.08)“100
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Example 15: Find an explicit formula for the Fibonacci sequence .
Sol ;
Fibonacci sequence 0,1,2,3,4........ satisify the recurrence relation
fn="f,1+f.>
fn-fo1-fh2=0

& also satisfies the initial condition fy=0,f;=1
Now , the characteristic equation is
r,-r-1 =0
Solving we getr=1+1+4 / 2
=1+5/2
Sol :
fn=a; (1+5/2)"+ 0 (1-5/2)" ——-=>(A)
given fo =0 put n=0in (A) we get
fo=o; (1+5/2)°+a, (1-5/2)°
(A)=» al +a2 =0 ------------=-mmmmmmmm- -2>(1)
given f; =1 put n=1in (A) we get
fi=ay (145/2) +a, (1-5/2)*

(A)9(1+5/2)n+a2 (1—5/2)"0L2= 1--——--- 9(2)
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To solve(1) and (2)

(1) X(1+5/2)=>(1+5/2) oy + (1+5/2) a, =0 ----- - (3)

(1+5/2) ay+ (145/2) o = 1-—--

(-) (-) (-)

1/2 ay+5/2 a,-1/2 0, +5/2 a, = -1
25 dy=-1
o, =-1/5
Put o, =-1/5 ineqn (1) we get a1 1/5
Substituting these values in (A) we get
Solution fn=1/5 (1+5/2)" -1/5 (1+5/2)"
Example 13;
Solve the recurrence equation
an=2an1—23n2,n>2&ap=1&a;=2
Sol :
The recurrence relation can be written as
an-2a,.1+2a,,=0
The characteristic equation is
r2—2r-2=0
Roots are r=2+2i /2

=1+
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LINEAR NON HOMOGENEOUS RECRRENCE RELATIONS WITH
CONSTANT COEFFICIENTS

A recurrence relation of the form
Ay =C1 Ap_1+Cy Ap_oteceno. ... Cx Apn—TF(M)..cooooiiai. (A)

Where c¢;,c, ,.... ¢ are real numbers and F(n) is a function not identically zero
depending only on n,is called a non-homogeneous recurrence relation with
constant coefficient.

Here ,the recurrence relation

Is called Associated homogeneous recurrence relation.
NOTE:
(B) is obtained from (A) by omitting F(n) for example ,the recurrence relation

a, = 3 a,_1+2, is an example of non-homogeneous recurrence relation .Its
associated

Homogeneous linear equation is
a, = 3 a,_, [ By omitting F(n)=2n ]

PROCEDURE TO SOLVE NON-HOMOGENEOUS RECURRENCE
RELATIONS:

The solution of non-homogeneous recurrence relations is the sum of two
solutions.

1.solution of Associated homogeneous recurrence relation (By considering
RHS=0).

2.Particular solution depending on the RHS of the given recurrence relation
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STEP1:
a) if the RHS of the recurrence relation is

ap+a,n...a,. n, then substitute

Co+Cyn+cyn ... ¢, (n-1)" inplaceof a, —1........... and so on ,in the
LHS of the given recurrence relation

(b) if the RHS is a "then we have

Casel:if the base a of the RHS is the characteristric root,then the solution is of the
can” .therefore substitute ca” in place of a, ,ca™ in place of c(n-1) a,.; etc..

Case?2: if the base a of RHS is not a root , then solution is of the form ca” therefore
substitute ca” in place of a, , ca™ in place of a,, etc..

STEP2:

At the end of step-1, we get a polynomial in ‘n’ with coefficient c,c;...... on
LHS

Now, equating the LHS and compare the coefficients find the constants c,c,....

Example 1:
Solve a,, = 3 a,,_1 +2n with a;=3
Solution:
Give the non-homogeneous recurrence relation is
a, — 3 a,_1 -2n=0
It’s associated homogeneous equation is
a, — 3 a,_1 =0 [omitting f(n) =2n]

It’s characteristic equation is
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r-3=0 => r=3

now, the solution of associated homogeneous equation is
a, (n) =«,3"

To find particular solution

Since F(n) =2n is a polynomial of degree one,then the solution is of
the from

a, = ¢, +d (say) where ¢ and d are constant
Now, the equation
a, = 3 a,_, +2n becomes
¢, +d =3(c(n-1)+d)+2n
[replace a, by ¢,, +d a,.; by c(n-1)+d]

= ¢, +d =3cn-3c+3d+2n

= 2cn+2n-3c+2d=0

= (2+2¢)n+(2d-3¢)=0

= 2+2c¢=0 and 2d-3¢=0

= Saving we get c=-1 and d=-3/2 therefore cn+d is a solution if c=-1 and
d=-3/2

a, (p)=-n-3/2
Is a particular solution.
General solution
Ap=0pn(N)+ apn(p)
a, =X3"-n-3/2 ... (A)
Given a; = 3 putn=1 in (A) we get
a, =x 1(3) ' -1-3/2

3=3cx -5/2
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3 x =11/2

x 1=11/6

Substituting < =11/6 in (A) we get
General solution

a =-n-3/2+(11/6)3"

Example:2
Solve s(k)-Ss(k-1)+6s(k-2)=2

With s(0)=1 ,s(1)=-1
Solution:

Given non-homogeneous equation can be written as
a,=5a,;+6a,,-2=0
The characteristic equation is

1’-5r+6=0
roots are r=2,3
the general solution is

3,(n) =« (2)"+x , (3)"
To find particular solution

As RHS of the recurrence relation is constant ,the solution is of the
form C , where C is a constant

Therefore the equation
a,-5a,;-6a,,-2=2

c-5¢+6¢=2
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2¢c=2
c=2
the particular solution is
sn(p)=1
the general solution is
$n=Sn(1)+ Sa(p)
Sy =X 1(2)"+x , (3)+1.......... (A)
Given sp=1 put n=0 in (A) we get
So =% 1(2)’+o¢ 5 (3)"+1

Sop =X 1+X 5 +1

(A) => So=1 =X |+ , +1

Given a;=-1 put n=1 in(A)

= S =x 1(2)14'0C 2(3)14‘1
= (A) -1=x (2)+x , (3)+1

By solving (1) and (2)
(0.4 1=2,0< 2=-2

Substituting & =2, ,=-2 in (A) we get
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Solution is

= Sy =2.(2)"-2. (3)"+1

Example :3
Solve a, — 4 a,_1+4 a,_,=3n+2"

ap=a,=1
Solution:

The given recurrence relation is non-homogeneous
Now, its associated homogeneous equation is,

a, —4a,_1+4 a,_,=0
Its characteristic equation is

r’-4r+4=0

r=2,2
solution , a,(n) = {(2)"+n <, (2)"

a,(n) = (¢ +n o« ,)2"
To find particular solution

The first term in RHS of the given recurrence relation is 3n.therefore ,the solution
is of the form c¢;+c,n

Replace a, by c;+c,n , a,_1 by ¢;+c,(n-1)
And a,,_, by c;+c,(n-2) we get
(C1+C2n)—4(C1+Cz (n—l))+4(61+C2 (n-2))=3n

= ¢1-4c¢y + 4cq + ¢y n-4cyn+4cyn+4c,-8c,=3n
= C1+C2n‘462=3n
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Equating the corresponding coefficient we have
C1-4C2:0 and C2:3
¢1=12 and ¢,=3

Given ay=1 using in (2)

(2) => o« +12=1

Given a,=1 using in (2)

(2)=> (¢ 1+ )2+12+3+1/2 .2=1

=> (2 +2 X 5)+16=1................. (14)
(3) «,;=-11

Using in (4) we have « ,=7/2

Solution a ,=(-11+7/2n)2"+12+3n+1/2n?2"
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Example:
HOW MANY INTEGERS BETWEEN 1 to 100 that are
i) not divisible by 7,11,0or 13
ii) divisible by 3 but not by 7
Solution:
1) let A,B and C denote respectively the number of integer between 1 to 100
that are divisible by 7,11 and 13 respectively
now,
Al =[100/7]=14
IBI =[100/11]=9
ICI =[100/13]=7
IA7BI =[100/7]=1
IANCI =[100/7%13]=1
IBACI =[100/11*13]=0
IAABACI =[100/7*11%13]=0
That are divisible by 7, 11 or 13 is |AvBvC]

By principle of inclusion and exclusion

IAvBvCl =|Al+IBI+ICI-IABI-IAACI-IBACI+HAMBACI

=144+9+7-(1+1+0)+0
=30-2=28
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Now,
The number of integer not divisible by any of 7,11,and 13=total-|IAvBvCl
=100-28=72

i1) let A and B denote the no. between 1 to 100 that are divisible by 3 and 7
respectively

|Al'=[100/3]=33
IBI=[100/7]=14
| A7B |I=[100/3*7]=14
The number of integer divisible by 3 but not by 7
=IAl-l A*B |
=33-4=29
Example:

There are 2500 student in a college of these 1700 have taken a course in
C, 1000 have taken a course pascal and 550 have taken course in networking
Jfurther 750 have taken course in both C and pascal ,400 have taken courses
in both C and Networking and 275 have taken courses in both pascal and
networking. If 200 of these student have taken course in C pascal and
Networking.

i)how many these 2500 students have taken a courses in any of these three
courses C ,pascal and networking?

ii)How many of these 2500 students have not taken a courses in any of these
three courses C,pascal and networking?

Solution:

Let A,B and C denotes student have taken a course in C,pascal and
networking respectively
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Given
|AI=1700
IBI=1000
ICI=550
| A7B | =750
| AMCI=40
| BAC =275
| AABAC =200
Number of student who have taken any one of these course=| A*B/C |
By principle of inclusion and exclusion
IAvBvCI =|Al+IBI+ICI-IAMBI-IAACI-IBACIH AMBACI
=(1700+1000+550)-(750+400+275)+200
=3450-1425=2025
The number between 1-100 that are divisible
by 7 but not divisible by 2,3,5,7= =IDI- | A*BAC *CDI

=142-4=138

Example:

A survey of 500 television watches produced the following
information.285 watch hockey games.195 watch football games 115 watch
basketball games .70 watch football and hockey games.50 watch hockey and
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basketball games and 30 watch football and hockey games.how many people
watch exactly one of the three games?

Solution:
H=> let television watches who watch hockey
F=> let television watches who watch football
B=> let television watches who watch basketball
Given
n(H)=285,n(F)=195,n(B)=115n(H"F)=70,n(H*B),n(F*B)=30
let x be the number television watches who watch all three games

now, we have

e (=

\ b 9*'1.-,0_1 AS+x

; x
[50-13L36 ~%)

{
Ast+a. |
B

Given 50 members does not watch any of the three games.
Hence (165+x)+(95+x)+(35+x)+(70+x)+(50+x)+(30+x)+x=500
=445+x=500
X=55
Number of students who watches exactly one game is=165+x+95+x+35+x
=295+3*55
=460
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2.5 .Generating function:

Of real numbers is the infinite sum.
G(x)=G(s,x)= ap+a;xt,..... X +.....= Jppa™x™
For example,

i) the generating function for the sequence ‘S’ with the terms 1,1,1,1.....1.s
given by,

G(x)=G(s,X)= Ym—p X*=1/1-x

i1)the generation function for the sequence ‘S’ with terms 1,2,3,4.....is given
by

Gx)=G(sx)= Y. _ (n+ 1x"
=142x43x°+. ...
=(1-x)?=1/(1-x)
2.Solution of recurrence relation using generating function
Procedure:
Stepl:rewrite the given recurrence relation as an equation with 0 as RHS

Step2:multiply the equation obtained in step(1) by x" and summing if form 1 to oo
(or 0 to ©) or (2 to ).

Step3:put G(x)=Y7—o a"x™ and write G(x) as a function of x
Step 4:decompose G(x) into partial fraction
StepS:express G(x) as a sum of familiar series

Step6:Express a, as the coefficient of x" in G(x)
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The following table represent some sequence and their generating functions

stepl sequence generating function
1 1 1/1-z

2 1" 1/1+z

3 a’ 1/1-az

4 (-a)" 1/1+az

5 n+l 1/1-(2)*

6 n 1/(1-z)°

7 n’ z(14+2)/(1-z)’

8 na" az/(1-az)*

Eg:use method of generating function to solve the recurrence relation
a,=3a,.;*+1; n=>1 given that a,=1
solution:
let the generating function of {a,} be
G, "
a,=3a,.+1
multiplying by x" and summing from 1 to oo,
Y=o anx" =3Ynzq(An-_1x™)+Xn=1 (x™)
S0 @nx™ =3 Y (g X" DHERL (")
G(x)-a9=3xG(x)+x/1-x
G(x)(1-3x)=ag+x/1-x
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=1+x/1-x
G(x)(1-3x)=1=x+x/1-x
G(x)=1/(1-x)(1-3x)
By applying partial fraction
G(x)=-1/2/1-x+3/2/1-3x
G(x)=-1/2(1-x)"'+3/2(1-3x)"!
G(x)[1-x-x"]=ag-a,X-apX
G(X)[I—X—X2]= ag-apX+a;x

G(x)=1/1-x-x>  [ap=1, a,=1]

1

=(1—1+\/5_ x/2)(1-1—V5 x/2)
— A 1 B

- a-(25

Now,

Mxxie—m—— B
-2 (1—(@)@

1=A[1 — (225014 B

Put x=0 in (2)
(2)=> A+B=1
Put x=2/1-V/5 in (2)

1+V5
1\/_]

1-v/5-1-5 ]
1-V5

(2)=> 1=B[l-

1=B][
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-24/5
_1-V5_
B_—Z\/S_
_ _1+V5
3) == A= e

Sub A and B in (1)

G)= = (- A5
=L e (0P
L e (0P

a,=coefficient of x" in G(x)
solving we get

1+V5 \n+l 1-V5 (n+1
e (et L (220
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2.6THE PRINCIPLE OF INCLUSION -EXCLUSION

Assume two tasksT

time(simultaneously) now to find the number of ways to do one of the two tasks
T,and T,, if we add number ways to do each task then it leads to an over count.
since the ways to do both tasks are counted twice. To correctly count the number
of ways to do each of the two tasks and then number of ways to do both tasks

Le MTvT)=(T)+N To)-*( T\ T2)
this technique is called the principle of Inclusion —exclusion

FORMULA:,

1) | A]VAQVA 3|:|A1|+|A2|+|A3|-|A1AAzI-IAlAA3|-|A2AA3|+|A1AA2A A3|

2) IA1VALVA 3V A JI=IAHAGIH A Ay -IA N AG-IANAS-TA AN AL LA ASL-
|A2/\A4|_|A3/\A4|+|A1AA2A A3 |+|A1AA2A A4 |+|A1AA3A A4 |+|A2AA3A A4 |+|A1AA2A
ANAL

Examplel:

A survey of 500 from a school produced the following information.200 play
volleyball, 120 play hockey,60 play both volleyball and hockey. How many are not
playing either volleyball or hockey?

Solution:
Let A denote the students who volleyball
Let B denote the students who play hockey
It is given that
n=500
|AlI=200

IBI=120
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|A*BI=60

Bt the principle of inclusion-exclusion, the number of students playing either
volleyball or hockey

|AvBI=|Al+IBI-|A*BI
IAvBI=200+120-60=260
The number of students not playing either volleyball or hockey=500-260
=240
Example?2:

In a survey of 100 students it was found that 30 studied mathematics,54
studied statistics,25 studied operation research,1 studied all the three subjects.20
studied mathematics and statistic,3 studied mathematics and operation research
And 15 studied statistics and operation research

1.how many students studied none of these subjects?
2.how many students studied only mathematics?
Solution:
1) Let A denote the students who studied mathematics
Let B denote the students who studied statistics
Let C denote the student who studied operation research
Thus IAI=30 ,IBI=54 ,ICI=25 ,IABI=20 ,|A”CI=3 ,IBACl=15 ,and IAB*Cl=1

By the principle of inclusion-exclusion students who studied any one of the subject
is

|AvBvCI=IAl+BI+ICI=IA"BI-IAMCI-IBACIHAMBACI
=30+54+25-20-3-15+1
=110-38=72
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Students who studied none of these 3 subjects=100-72=28
2) now ,

The number of students studied only mathematics and statistics=n(A”B)-
n(A*B"C)

=20-1=19

The number of students studied only mathematics and operation
research=n(A"C)-n(A*B"C)

=3-1=2

Then The number of students studied only mathematics =30-19-2=9

Example3:
How many positive integers not exceeding 1000 are divisible by 7 or 11?
Solution:

Let A denote the set of positive integers not exceeding 1000 are divisible by
7

Let B denote the set of positive integers not exceeding 1000 that are divisible by
11

Then [AlI=[1000/7]=[142.8]=142
IBI=[1000/11]=[90.9]=90
IA7BI=[1000/7*11]=[12.9]=12

The number of positive integers not exceeding 1000 that are divisible either
7 or 11 is |AvBI

By the principle of inclusion —exclusion

|IAvBI=IAl+IBI-|A"BI
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=142+90-12=220

There are 220 positive integers not exceeding 1000 divisible by either 7 or
11

Example:

A survey among 100 students shows that of the three ice cream flavours
vanilla,chocolate,and strawberry ,50 students like vanilla,43 like chocalate ,28 like
strawberry, 13 like vanilla, and chocolate,11like chocalets and strawberry,12 like
strawberry and vanilla and 5 like all of them.

Find the number of students surveyed who like each of the following flavours

1.chocalate but not strawberry

2.chocalate and strawberry ,but not vanilla

3.vanilla or chocolate, but not strawberry

Solution:
Let A denote the set of students who like vanilla
Let B denote the set of students who like chocalate
Let C denote the set of students who like strawberry

Since 5 students like all flavours

IAABACI=5

12 students like both strawberry and vanilla

IANCI=12

But 5 of them like chocolate also, therefore

IANC-BI=7

Similarly IBAC-Al=6
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Of the 28 students who like strawberry we have already accounted for
7+5+6=18

So, the remaining 10 students belong to the set C-|AvBI similarly

IA-BvCI=30 and IB-AvCl=24

Thus for we have accounted for 90 of the 100 students the remaining 10 students
like outside the region AvBvC

Now,

1.IB-Cl=24+8=32

So 32 students like chocolate but not strawberry

2.IBAC-Al=6

Therefore 6 students like both chocolate and strawberry but not vanilla
3.1AvB-Cl=30+8+424=62

Therefore 62 students like vanilla or chocolate but not strawberry

Example 5: find the number of integers between 1 to 250 that are not divisible by
any of the integers 2,3,5 and 7

Solution:

Let A denote the integer from 1 to 250 that are divisible by 2
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Let B denote the integer from 1 to 250 that are divisible by 3
Let C denote the integer from 1 to 250 that are divisible by 5
Let D denote the integer from 1 to 250 that are divisible by 7

|AI=[250/2]=125

IBI=[250/3]=83

ICI=[250/5]=50

IDI=[250/7]=35

Now, the number of integer between 1-250 that are divisible by 2 and
3=IA"BI=[250/2*3]=41

The number of integer divisible by 2 and 5=|A"CI=[250/2*5]=25
Similarly

IA~DI=[250/2*7]=17

IBACI=[250/3*5]=16

IBADI=[250/3*7]=11

ICADI =[250/5*7]=7

The number of integer divisible by 2,3,5=|AB/ACI|=[250/2*3*5]=8.
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1. Solve the recurrence relation a,,- a,,1-6 a,-9 given a,=2 and a;=1 using
generating functions

Solution:
Given recurrence relation is
dp42- an+1'6 an=0

[ee) n [e'e] n o n _—
= ano ap+2X Zn=0 ap+1X 6Zn=0 ap, X = 0

(00]

> /x5 Y X2 1/x Y

n+1 co n_
n=0 a,+2 X 6 n=0 ap, X = 0

n=0 an+1

= 1/x°[G(x)-a¢-2;x]- 1/X[G(x)-2,]-6[G(x)] = 0

= /X [G(x)-2-x]-1/x[G(x)-2]-6G(x) = 0

Multiply by x> we have

Generating functions
2— 2—
G(X) — X X

1-x—6x2 - (1-3x)(1+2x)
Now apply partial fraction

2—X _ A B
1-x—6x2  1-3x  1+2x

2-x = A(1+2x) + B(1-3x)...... (1)
Put x =-1/21in (1) we get

52=52”B=> B=1
Putx=1/3in(1)wegetA=1
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a, = co efficient of x" in [(1+3x+3x>+....3x")+1-2x4+2x>. ... +H(-1)"2x"]
a,=3"+(-1)"2n

: : : 5+2 : :
Identify the sequence having the expression 1_4;2 as a generating function
Solution:
. 5+2x
Given G(x)= e (1)
_ 5+2x
T (1-2x)(142%)
Now
5+2x A B

(1-2x)(142x) (142x)  (1-2%)

S+2x=A(1-2x)+B(1+2x)
Put x=1/2,5+1=2B => B=3

x=-1/2,5-1=2A => A=2

G(x) = 2 3

(1+2x) + (1-2x)
=2 [1+2x]"'+3[1-2x]""
=2 [1-2x42x%-2x>+... JF3[1+2x+2x7+... ]

=2 Ym=o (=1) + 2
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UNIT Ill GRAPHS
3.1GRAPHS & GRAPH MODELS
DEFINITION: Graph:

A Graph G=(V,E,@®) consists of a non empty set
v={vl,v2,..... } called the set of nodes (Points, Vertices) of
the graph, E={el,e2,...} is said to be the set of edges of
the graph, and - is a mapping from the set of edges E to
set off ordered or unordered pairs of elements of V.

The vertices are represented by points and each edge
is represented by a line diagrammatically.

DEFINITIONS:
From the figure we have the following definitions
V1,V2,V3,V4,Vs are called vertices.

€1,62,63,64,65,64,67,65 are called edges.

DEFINITION: Self Loop:

If there is an edge from v; to v; then that edge is called self
loop or simply loop.

For example, the edge e7 is called a self loop. Since the edge
e; has the same vertex (v4) as both its terminal vertices.

DEFINITION: Parallel Edges:

If two edges have same end points then the edges are called
parallel edges.
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For example, the edge e; and e; are called parallel edges
since e; and e, have the same pair of vertices (vi,v2) as their
terminal vertices.

DEFINITION: Incident:

If the vertex v; is an end vertex of some edge e« and e is
said to be incident with v;.

DEFINITION: Adjacent edges and vertices:

Two edges are said to be adjacent if they are incident on a
common vertex. In fig (i) the edges es and eg are adjacent.

Two vertices v; and v; are said to adjacent if v; v; is an edge of
the graph. (or equivalently (vi,v;) is an end vertices of the edge ey)

e
€y
€4
e
1
&
Y

For example, in fig., vi and vs are adjacent vertices.
DEFINITION: Simple Graph:

A graph which has neither self loops nor parallel edges is
called a simple graph.

NOTE: |In this chapter, unless and otherwise stated we consider
only simple undirected graphs.
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DEFINITION: Isolated Vertex:

A vertex having no edge incident on it is called an Isolated
vertex. It is obvious that for an isolated vertex degree is zero.

One can easily note that Isolated vertex is not adjacent to
any vertex.

If fig (ii), v5 is isolated Vertex.
DEFINITION: Pendentant Vertex:

If the degree of any vertex is one, then that vertex is called
pendent vertex.

EXAMPLE:
Consider the graph

In the above undirected graph
Vertices V={V1, V3, V3, V4, Vs}
Edges E={ ee,....}
And e;= < Vi, Vo> or <V, V>
e,= < V,,V3> or < V3, Vo>
es= < V4,Vo> or < V4, Vo>

es= < V4, V4>
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In the above graph vertices V, and V,, V., and V;, V3
and V,, V; and Vs are adjacent. Whereas V,; and Vs, V; and
V, are not adjacent.

The edge e6 is called loop. The edges e;and es are
parallel edges.

Directed Edges:

In a graph G=(V,E), on edge which is associated with an
ordered pair of V * V is called a directed edge of G.

If an edge which is associated with an unordered pair of
nodes is called an undirected edge.

Digraph:

A graph in which every edge is directed edge is called a
digraph or directed graph.

Undirected Graph:

A graph in which every edge is undirected edge is called an
undirected graph.
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\f

Mixed Graph:

If some edges are directed and some are undirected in a
graph, the graph is called an mixedgraph.

Y.

Multi Graph:

A graph which contains some parallel edges is called a
multigraph.

Pseudograph:
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A graph in which loops and parallel edges are allowed is
called a Pseudograph.
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3.2 GRAPH TERMINOLOGY
DEF

The number of edges incident at the vertex v; is called the
degree of the vertex with self loops counted twice and it is
denoted by d (v;).

Example 1:

h L

d(vi) =5d(v4) =3
d(vy) =2d(vs) =1
d(vs) =5d(ve) =0
In-degree and out-degree of a directed graph:

In a directed graph, the in-degree of a vertex V, denoted by
deg- (V) and defined by the number of edges with V as their
terminal vertex.

The out-degree of V, denoted by deg+ (V), is the number of
edges with V as their initial vertex.

NOTE: A loop at a vertex contributes 1 to both the in-degree and
the out-degree of this vertex.

Theorem 1: (The Handshaking Theorem)

Let G= (V, E) be an undirected graph with ‘e’ edges.
Then

deg(v)= 2e
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The sum of degrees of all vertices of an undirected
graph is twice the number of edges of the graph and
hence even.

Proof:

Since every degree is incident with exactly two vertices,
every edge contributes 2 to the sum of the degree of the vertices.

Therefore, All the ‘e’ edges contribute (2e) to the sum of the
degrees of vertices.

Therefore, deg(v)= 2e
Theorem 2:

In an undirected graph, the numbers of odd degree
vertices are even.

Proof:

Let V; and V; be the set of all vertices of even degree and set
of all vertices of odd degree, respectively, in a graph G= (V, E).

Therefore,

d(v)= d(vi)+ d(vj)
By handshaking theorem, we have
Since each deg (v)) is even, is even.

As left hand side of equation (1) is even and the first
expression on the RHS of (1) is even, we have the 2nd expression
on the RHS must be even.

Since each deg (v;) is odd, the number of terms contained in
i.e., The number of vertices of odd degree is even.
Theorem 3:

The maximum number of edges in a simple graph with
‘n’ vertices is n(n-1))/2.
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Proof:

We prove this theorem by the principle of Mathematical
Induction.

For n=1, a graph with one vertex has no edges.
Therefore, the result is true for n=1.

For n=2, a graph with 2 vertices may have at most one
edge.

Therefore, 22-12=1
The result is true for n=2.

Assume that the result is true for n=k. i.e., a graph
with k vertices has at most kk-12 edges.

When n=k+1. Let G be a graph having ‘n’ vertices
and G’ be the graph obtained from G by deleting one
vertex say v e V (G).

Since G’ has k vertices, then by the hypothesis G’ has at
most kk-12 edges. Now add the vertex ‘v’ to G'. such that
‘v’ may be adjacent to all k vertices of G'.

Therefore, the total number of edges in G is,
Therefore, the result is true for n=k+1.

Hence the maximum number of edges in a simple
graph with ‘n’ vertices is nn-12.

Theorem 4:

If all the vertices of an undirected graph are each
of degree k, show that the number of edges of the
graph is a multiple of k.

Proof:

Let 2n be the number of vertices of the given graph.
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Let ne be the number of edges of the given graph.
By Handshaking theorem, we have

Therefore, the number of edges of the given graph is
amultiple of k.
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3.3
Regular graph:

Definition: Reqular graph:

If every vertex of a simple graph has the same degree, then the
graph is called a regular graph.

If every vertex in a regular graph has degree k,then the graph is
called k-regular.

DEFINITION : Complete graph:

In a graph, if there exist an edge between every pair of
vertices,then such a graph is called complete graph.

J.!\- -___.-"K:'IH:'I\.I\\
A <
f"f .1'1‘ .I".I .-TII'L HH:A{
™ ™ - -:_-" ™ - V Hh:l'
K K, E; E, K.

Fiz. 1.10 Some complets graphs.

i.e., In a graph if every pair of vertices are adjacent,then such a
graph is called complete graph.

If is noted that, every complete graphis a regular graph.In fact
every complete graph with graph with n vertices is a (n-1)regular
graph.

SUBGRAPH

A graph H =(V’, E’) is called a subgraph of G=(V, E), if VVCVandE' C
E.
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In other words, a graph H is said to be a subgraph of G if all the
vertices and all edges of H are in G and if the adjacency is preserve in

H exactly as in G.
Hence, we have the following:
() Each graph has its own subgraph.
(i) A single vertex in agraph G is a subgraph of G.
(i) A single edge in G, together with its end vertices is also a
subgraph of G.
(iv) A subgraph of a subgraph of G is also a subgraph of G.

Note: Any sub graph of a graph G can be obtained by removing certain
vertices and edges from G. It is to be noted that the removal of an
edges does not go with the removal of its adjacent vertices, where as

the removal of any edge incident on it.

Bipartite graph:
A graph G is said to be bipartite if its vertex set V (G) can be

partitioned into two disjoint non empty sets V1 and V2, V1 U V2=V(G),
such that every edge in E(G) has one end vertex in V1 and another end
vertex in V2. (So that no edges in G, connects either two vertices in V1

or two vertices in V2.)
Ezxramples of apartite and complete bipartste graphs are shoen a1 Fimre 111

s« 4 & w
(a) & tapattate oraph (h A complete bapartste graph Eag.
Fig.1.11 Twobipartsie graphs.
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Complete Bipartite Graph:

A bipartite graph G, with the bipartition V1 and V2, is called
complete bipartite graph, if every vertex in V1 is adjacent to every
vertex in V2.Clearly, every vertex in V2 is adjacent to every vertex in V1.

A complete bipartite graph with ‘m’ and ‘r’ vertices in the
bipartition is denoted by km,n.
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Incidence Matrix

Let G be a graph with n vertices, medges and without self-loops. The incidence matrix A of
Gis an nx m matrix A = [a;;| whose n rows correspond to the n vertices and the m columns
correspond to m edges such that

L, if jthedgem;isincident on the ith vertex

0 = .
T7V0. otherwise.

Itis also called vertex-edge incidence matrix and is denoted by A(G).
Example Consider the graphs given in Figure 10.1. The incidence matrix of G, is

€1 € €3 €4 €5 € €7 &

w[00010100]
m 100001111
100000001
A(G‘)‘m SEREET T
s (00110010
w |1 1000000]

The incidence matrix of Gy 1s
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€ &3 €4 &5

S - -
—_—— O
R
S ——

The incidence matrix of Gs is

Vi
Va

)
.l'J

V4

el

€ €3 €4 &5

—
=D e
S — |

e [ o T SO T =Y
_— = D

(a) (b) (c)
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The incidence matrix contains only two types of elements, 0 and 1. This clearly is a
binary matrix or a (0, I)-matrix.

We have the following observations about the incidence matrix A.

I. Since every edge is incident on exactly two vertices, each column of A has exactly
two one’s.

2. The number of one’s in each row equals the degree of the corresponding vertex.

3. A row with all zeros represents an isolated vertex.

4. Parallel edges in a graph produce identical columns in its incidence matrix.

E.J'l

If a graph is disconnected and consists of two components Gy and Ga, the incidence
matrix A(G) of graph G can be written in a block diagonal form as

10| "0 4o |

where A(Gy) and A(G,) are the incidence matrices of components G; and G,. This
observation results from the fact that no edge in G is incident on vertices of G, and
vice versa. Obviously, this is also true for a disconnected graph with any number of
components.

0. Permutation of any two rows or columns in an incidence matrix simply corresponds
to relabeling the vertices and edges of the same graph.
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Path Matrix

Let G be a graph with m edges, and u and v be any two vertices in G. The path matrix
for vertices u and v denoted by P(u, v) = [pijlgxm. Where g is the number of different paths
between u and v, 1s defined as

jl, if jth edge lies in the ith path,

Pij =
0, otherwise .

Clearly, a path matrix is defined for a particular pair of vertices, the rows in P(u, v)
correspond to different paths between u and v, and the columns correspond to different
edges in G. For example, consider the graph in Figure 10.10.

v

° = P = * e
6

Fig. 10.10

The different paths between the vertices vs and vy are
P = {é’g. 95}, P2 = {93, €7, 83} and 3= {Eg. €5, €4, 93}.
The path matrix for vz, vy is given by

€1 €32 83 €4 €5 €y e] £y

00 001 0 01
Py, w)=]1 0 0 1 0 0 0 1 1
Ak 1 1T @ 1 1 1

We have the following observations about the path matrix.

1. A column of all zeros corresponds to an edge that does not lie in any path between u
and v.

[

A column of all ones corresponds to an edge that lies in every path between u and v.

L

There is no row with all zeros.

=

The ring sum of any two rows in P(u, v) corresponds to a cycle or an edge-disjoint
union of cycles.
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Adjacency Matrix

LetV=(V, E)be agraph with V={vy, v, ..., w}, E={ey, ey, ..., e} and without parallel
edges. The adjacency matrix of G is an n x n symmetric binary matrix X = [x;;] defined over
the ring of integers such that

I if wi€ck,
Xi J; —
0, ot herwise.

Example Consider the graph G given in Figure 10.12.

Fig. 10.12
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adjacency matrix of G is given by

Vi V2 V3 Va4 V5 Vq

v [0 1 00 11
e 1EE R e

g [0/0 @1 @0
w |02 18 10
w1 1071 e
v |1 001 0 0]

We have the following observations about the adjacency matrix X of a graph G.

1.

I~

4.

The entries along the principal diagonal of X are all zeros if and only if the graph has
no self-loops. However, a self-loop at the ith vertex corresponds to x; = 1.

If the graph has no self-loops, the degree of a vertex equals the number of ones in the
corresponding row or column of X.

. Permutation of rows and the corresponding columns imply reordering the vertices.
We note that the rows and columns are arranged in the same order. Therefore, when
two rows are interchanged in X, the corresponding columns are also interchanged.
Thus two graphs G and G> without parallel edges are isomorphic if and only if their
adjacency matrices X (Gy) and X (G2) are related by

X(Gy) =R 'X(G})R.

where R is a permutation matrix.

A graph G is disconnected having components Gy and Gz if and only if the adjacency
matrix X (G) is partitioned as

A graph G is disconnected having components Gy and G if and only if the adjacency
matrix X (G) is partitioned as

[X(G]} ;W ]
X(G)= = : wi :
[ a8 i X(GQ)J

where X(G;) and X(G,) are respectively the adjacency matrices of the components
G and G;. Obviously, the above partitioning implies that there are no edges between
vertices in Gy and vertices in G,.

If any square, symmetric and binary matrix Q of order n is given, then there exists a
graph G with n vertices and without parallel edges whose adjacency matrix is Q.
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GRAPH ISOMORPHISM
DEFINITION:

Two graphs Gi and Gz are said to be isomorphic to each other, if there
exists a one-to-one correspondence between the vertex sets which preserves
adjacency of the vertices.

Note: If G1and Gz are isomorphic then G1 and G2 have,

(i) The same number of vertices.
(ii) The same number of edges
(iii) An equal number of vertices with a given degree.

Note: However, these conditions are not sufficient for graph
isomorphism.

ISOMORPHISM AND ADJACENCY:
RESULT 1:

Two graphs are isomorphic if and only if their vertices can be labeled in such a
way that the corresponding adjacency matrices are equal.

RESULT 2:

Two simple graphs G1 and G2 are isomorphic if and only if their adjacency
matrices Al and A2 are related A1=P-1 A2 P where P is a permutation matrix.

Note:

A matrix whose-rows are the rows of the unit matrix but not necessarily
in their natural order is called permutation matrix.

Example:
Test the Isomorphism of the graphs by considering the adjacency matrices.

Let A1 and. A2 be the adjacency matrices of G1 and G2 respectively.
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Since A; and A, are similar, the corresponding graphs G, and Gzare
Isomorphic: 1/ & )
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Paths,Reachability and Connectedness:

DEFINTTIONS:
Path:

A Path in a graphi s a sequence v1,v2,v3......vKk of vertices each adjacent
to the next.In other words,starting with the vertex v1 one can travel along
edges(v1,v2),(v2,v3)..and reach the vertex vk.

Length of the path:
The number of edges appearingi n the sequence of a path is called the
length of Path.

Cycle or Circuit:

A path which originates and ends in the same node is called a cycle of
circuit.

A path is said to be simple if all the edges in the path are distinct.

A path in which all the vertices are traversed only once is called an
elmentary Path.

Examplel:
Consider the graph:
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Then some of the paths originating in node V1 and ending in node v1 are:

P1=(<V1,V2> ,<V2V3>)

P2=(<V1,V4> <V4,V3>)

P3 =(<V1,V2>,(V2,V4), <V4,V3>)

P4 = (<V1;V2><V2V4><V4V1><V1 V2> <V2,V3>)
P5 = (<V1,V2><V2,V4>,<V4V1 >,<V1,V4>,<V4,V3>)
P6=(<V1,Vl>, (V1,V1),(V1V2),<V2 V3>)
Here,paths P1P2 and P3 are elementary path.

Path P5 is simple but not elementary.

DEFINITION:

REACHABLE:

A node v of a simple digraph is-said to ber eachable from the node u of the
same graph, if there exist a path from u to v.

Connected Graph:

An directed graph is said to be connected if any pair of nodes are
reachable from one another that is, there is a path between any pair of
nodes.

A graph which is not connected is called disconnected graph.
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Example 1 :
vV, v,
v, Vi
Not Connected Graph

Connected Graph

Components of a Graph:

The connected subgraphs of a graph G are called components of the.’
graph G.
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Theorem :

A simple graph with ‘n’ vertices and ‘k’ components can ha}é.
m-Km-k+1) | G

3 edges
Proof :
Let ny, ny, ......, n;, be the number of vertices in ea
components of the graph G.
Then ny + 1y + ...... +n=n=|V(G)|
k
pIE. Tl
i=1
k

k
> (n—1)= n-k
i=1

Squaring on both sides

k
S (=1 = (-
Li=1
(n1—1)2+(n2—1)2+ ...... +(nk-—1)2 < n?+ k2 -2nk

2

2
n]+l—2ﬂ]+n2

+1—2n2+...+n2+]~2nk§n2+k2—2nk
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DEFINITION:

Unilaterally Connected:

A simple digraph is said to be unilaterally connected if for any pair of
nodes of the graph atleast one of the node of the pair is reachable from the
node.

Strongly Connected:
A simple digraph is said to be strongly connected if for any pair of nodes of the
graph both the nodes of the pair are reachable from the one another.

Weakly Connected:
We call a digraph is weakly.connected if it is connected.as an undirected graph
in which the direction of the edges is neglected.

Note:

1.A unilateraaly connected digraph is weakly connectedbut a weakly
connected digraph is not necessarily unilaterally connected.

2.A strongly connected digraph is both unilaterally and weakly
connected.

EXAMPLE:
For example consider the graph:

It is strongly connected graph.

For,

The possible pairs of vertices of the graph are (v1 v2), (vl v3),
(vl V4), (V2 V3)and (v2 V4)

(1) Consider the pair (v1 v2)
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Then there is a path from v1 to v2,via vl-> v2 and path from v2-> v1,via v2-
>v3->v1

(2) Consider the pair (v1 v3)

There is a path from v1 to v3, via vl -> v2-> v3 and path from v3 to v1 via v3 -
>vl.

similarly we can prove it for the remaining pair of vertices,each vertices is
reachable from other.

Given graph is strongly connected

DEFINITION:

For a simple digraph maximal strongly connected subgraph is called
strong component.
For the digraph:

zvapran 3

b
N
—d

{1,2,3},{4},{5},{6} are strong component.

The possible Hamilton cycles are

() A-B-C-D-A

(2) A-D-C-B-A

(3) B->C-D-A-B

(4) B-A-D-C-B

(s) C-D-A-B-C

(6) C-B-A-D-C

(7) D-A-B-C-D

(S) D-C-B-A-D

(Since all the vertices appeares exactly once),but not all the edges.
Since,G 1 contains Hamiltonian cycle,G 1- is a Hamiltonian graph.
(2) G2 contains Hamiltonian paths,namely

(1) A-> B-C-D

(2) A->B-D-C

(3) D->C-B-A etc.
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We cannot find Hamiltonian cycle in G2.
Therefore G2 is not a Hamiltonian graph

Properties :

(1) A Hamiltonianc irbuitc ontainsa Hamiltonian path but a graph,
Containing a Hamiltonian path need not have a Hamiltonian cycle.

(2) By deleting any one edge from Hamiltonian cycle,we can get Hamiltonian
path.

(3) A graph may contain more than one Hamiltonian cycle.

(4) A complete graph ky, will always have a Hamiltonian cycle, when n>=3

Note :

We don't have simple necessary and sufficient criteria for the existence of
Hamiltonian cycles. However, we have many theorems that give sufficient
conditions for the existence of Hamiltonian cycles.

Also, certain properties can be used to show that a graph

Has no Hamiltonian cycle.F or example a, graph with a vertex of degree one
cannot have a Hamiltonian cycle, since in a Hamiltonian cycle each vertex is
incident with two edges in the cycle.

3.4 EULER GRAPH & HAMILTON GRAPH:

Example:Explain Konisberg bridge problem.Repersent the problem by mean of graph.Does the
problem have a solution?

Solution: There are two islands A and B formed by a river.They are connected to each other
and to the river banks C and D by means of 7-bridges

The problem is to start from any one of the 4 land areas.A,B,C,D, walk across each bridge
exactly once and return to the starting point.(without swimmimg across the river)
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This problem is the famous Konisberg bridge problem.

When the situation is represented by a graph,with vertices representating the land areas
the edges representing the bridges,the graph will be shown as fig:

Theorem:
In a simple digraph,G=(V,E) every node of the digraph lies in exactly one strong component.
Proof:

Let v €V(G) and S be the set of all those vertices of G which are mutually reachable with v.

The problem is to find whether there is an Eulerian circuit or cycle(i.e.a circuit containing
every edge exactly once) in a graph.

Here, we can not find a Eulerian circuit.Hence,Konisberg bridge problem has no solution .
EULER GRAPH:
Definition: Euler path:

A path of a graph G is called an Eulerian path,if it contains each edge of the graph exactly
once.

Eulerian Circuit or Eulerian Cycle:

A circuit or cycle of a graph G is called an Eulerian circuit or cycle,if it includes each of G
exactly once.

(Here starting and ending vertex are same).
An Eulerian circuit or cycle should satisfies the following conditions.

(1)Starting and ending points(vertices) or same.
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(2)Cycle should contain all the edges of the graph but exactly once.

Eulerian Graph or Euler Graph:
Any graph containing an Eulerian circuit or cycle is called an Eulerian graph.
Theorem:

A connected graph is Euler graph(contains Eulerian circuit) if and only if each of its vertices is
of even degree.

Proof:

Let G be any graph having Eulerian circuit(cycle) and let “C” be an Eulerian circuit of G with
origin(and terminus) vertex as u.Each time a vertex as an internal of C,then two of the edges
incident with v are accounted for degree.

We get,for internal vertex v € (G)

d(v)=2+2*{number of times u occur inside V

=even degree.
Conversely, assume each of its vertices has an even degree.

Claim: G has an Eulerian circuit.Support not, i.e.,Assume G be a connected graph which is not
having an Euler circuit with all vertices of even degree and less number of edges.That is ,any
degree having less number of edges than G,then it has an Eulerian circuit.Since each vertex of
G has degree atleast two,therefore G contains closed path.Let C be a closed path of maximum
possible length in G.If Citself has all the edges of G,then Citself an Euler circuit in G.

By assumption,C is not an Euler circuit of G and G-E© has some component G’ with
|E(G’)|>0.C has less number of egdes than g, therefore Citself ia an Eulerian,and C has all the
vertices of even degtee,thus the connected graph G’ also has all the vertices of even
degree.Since |E(G’)|< | E(G)|,therefore G’ has an Euler circuit C’'.Bec ause G is connected,there
is vertex v in both Cand C’. Now join C and C’ and transverse all the edges of C and C’ with
commen vertex v,we get CC’ is a closed path in Gand E ( C C’) > E (C), which is not possible for
the chioices of C.

G has an Eulerian circuit.

G is Euler graph.
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10 Introduction

In this unit we shall embark on the study of the algebraic object
i as a group which serves as one of the fundamental building
ks for the subject today called abstract algebra.

|| ALGEBRAIC SYSTEMS - DEFINITIONS
- EXAMPLES - PROPERTIES

lefinition 1: Algebraic system or Algebra

A system consisting of a set and one or more n-ary operations
it the set will be called an algebraic system or simply an algebra.

We shall denote an algebraic system by (S, fy,f, ) Where § is

 nonempty st and fy, f, ... are operations on 3.

Dofinition 2 : Algebraic structure

The operations and relations on the set S define a structure on
e clements of S, an algebraic system is called an algebraic structure.

xample : Let T be the set of integers. Consider the algebraic system
I, +,%) where + and X are the operations of addition and

multiplication on I
\ list of important properties
(A1) For any a,b,c €1
(@+b)+c =at(b+c) (Assocativity)
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For any g b€ 1
a+b=b+ag (Commutativily)

There exists a distinguished element 0 € I such that for
any g € |
a+0=0+a=aq (Identity clemup|

Here 0 € I'is the identity element with respect to additfom

For each g € 1, there exists an element in I denoted by «4
and called the negative of a such that

a+(-a) =0 (Inverse clomonl)
For any g,b,c € 1

@xb)yXc = ax(®xc) (Associativily)
For any g, p € 1

aXb =bXa (Commutativity)

There cexists a distinguished element 1€ 1 such that fin
any a € |
axl= 1lxg =4 (Identity clemon

For any a,p,c € 1
axX{+c) = (@axb)+(axc) (Distributivily)

The operation X distributes over +.

For a,b,ce I and a = 0
aXb =axc=>b = (Cancellation propwly

The algebraic system (I, +, X ) should have been expressid i
(L +, ¥, 0, 1) in order to emphasize the fact that O and | w

distinguished elements of 1.

Definition 3 - Homomorphjsm
If {X, o} and {Y, *} are two algebraic systems, wherc o il
are binary (n-ary) operations, then a mapping g: X =Y satislyin,

g(X1ox) =g(x) #g(r) V %1,% € X is called a homomor il
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= la1 (Bi N Ey) ay'] A [ay (B N Ey) ay']
= (@1 Eyay") and (a1 Eyay') A (¢ E; ay') and (a2 By ay')
= (@1 E1a1’) A (2, E; 42'3. and (a; Eza;’) A (23 B ay')
= (@1 *ax) By (@) *ay’) and (a1 * ax) B, (a1’ + ay')
= (a1 *a3) (E; N Ey) (ay’ *ay’)
= (@1 *ax)) E (e *ay’)

Hence, E is a congruence relation on A.

Example 2. Let f : S - T bhe a homomorphism from S, *) tu
(T, A and g : T — P is also a homomorphism from (T, A) to (I, V),
then g 0 f: 8§ - P is a homomorphism from (S, =) to (P, V).

Solution : As gof (B1%83) = g(f (s = S5))
= 8 (S1A1(S,) [Since f is [homomorphism]|
= 81 Ve (5y))) [Since g is homomorphism]|

= 8o/ (S Vgof(Sy)

= gof:85>Tis a homomorphism
Example 3. Let (A, *) and (B, A) be two algebra systems and g he
homomorphism from A - B, Let (Ay, *) be subalgebra of (A, )
Then show that an the homomorphic image of (Ayg, %) is a subalgebry
of (B, A)

Solution : Let g be an homomorphism from A to B. Then fo
any two elements aj,a, € A.

g (a1 * ay) =g (a,) Ag(a,). Let A1 be a subset of A. As g i
homomorphism from A to B, for any, two clements, a;, a € A C A
glaixa) =g(a) Ag (2;) and g (A1) S g(A4) © B. Therefore the
image of A; and g forms an algebraic system with operation A, which

becomes a subalgebra of B.
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o TR VUL T LT
4. Given two algebraic system (W, +) and (Z4, +4) where W
the set of all lOu-negative integers and 4+ is the usual addi|,

Operation defined on W, Then show that there is a homomaon,
from W to Zy.

such that n, Rny if and only if cither 11 =Rz Or ny — iy s divisihl
by 5. Show that R is an equivalence relation and that |,
homomorphism g defined from (W, +) to Zs by g(i) = [£] is thy

natural homomorphism associated with R.

4.2 Semij groups and Monoids - Groups
- Subgroups- Homomorphisms

Definition 1 . Semi-gmup 2 [A.U N/D 2014

A noa-empty set S, together with 3 binary operation 15 calle
a scmi-group if satisfies the following conditions,

(1) Closure ¥YNabes =axhbey

(i) Associative Vabces g« B*c)=(ax b) *c

Example ; (Zs~) iz a semi-group.

le., set of integers under multiplication Operation is g semi-group.

Definition 2 - Moneid - [A.U N/D 2014)

A 1on-cmpty set A, togcther with g binary operation = is calle(
a monoid if * satisfies the following conditions

(1) Closure i VabeM = ,. bem
(it) Associative g VabceM = 4. (B *¢) = (ax b) ¢
(iii) Identity ; Vaeg 3ec G

Sl axe = gxg - a

Example : (z, +) is a monoid,
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Definition 3 : Group :
A non-empty set G, together with a binary operation * is said to
lmima group, if it satisfies the following conditions. ‘

(1) Closure < Vab&G =a+xbeEG

(1) Associative : VabcE€G = a*(b*c)=(axh)*c

(in) Identity : VaEG I ecG,st.ase = e*a = g
(iv) Inverse 3 VaeG 3o leq st.ara l=g"1 *@ =g

Ihample : (Z, +) is a group.

Definition 4 : Abelian group :

A group (G, *) is said to be an abelian group or commutative
proup if a*b=b=*a, V abeG
I'xample : 1. (Z, +) is an abelian group.

2. 83 is a non-abelian group.

Definition 5 : Subgroup :
A non-empty subset H of a group G (H & G) is a subgroup of
Gifa,beEH = ab leyg
I'xample : (Z, +) is a subgroup of group (R, +)
Definition 6 : Order of a group :

Let G be a group under the binary operation *. The number of
clements in G is called the order of the group G and is denoted by

O (G)

Note : If the O(G) is finite, then G is called a finite group,
therwise it is called an infinite group.
Definition 7 : Semi-group homomorphism

Let (S, *) and (T, A) be any two semigroups. A mapping g : S—T
wch that for any two clements a, b € S.

™
g@a=b) = g(a) A g(b)

s called a semigroup homomorphism.
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Wustraion :

I« = {-1, 1} is a cyclic group generated by —1,

since (=)' = —1 and (-1)? = 1. Thus G = (—1)

) & = {~1,1,i,—i} is a cyclic group, where G = <i>.
Notice that i' =i, ¥ = —i, i® = —i, i* = 1.
Also G = <i>.

Delinition 12 : Permutation :

Any one-to-one mapping of a set S onto S is called a permutation
ol S,
Definition 13 : Even and odd permutation

A permutation of a finite set is called even if it can be written
v a product of an even number of transpositions, and it is called odd
Il it can be written as a product of an odd number of transpositions.

4.2(a) Semi-group and Monoids

Theorem 1 : The composition of semi-group homomorphism 18
also a semi-group homomorphism.

’roof :
Let (S, *), (7T, A) and (V, ©) be semi-groups
let a,b €S '

Define : f:S = 7 be semi-group homomorphism

= f(axb) = f(@Af®) ... (1) where f(a),f(B) ET

Define : g: 7 -> 1 be semi-group homomorphism

> gf @ AL = g (f@) ®g (F®)) - @)
where g (f(a)) , 8 (f (b)) eV

To prove : gof : § =V i1s a semi-group homomorphism
Proof : gof(a*b) = glf (a *b)]

= glf (@ AfF®)] by (1)
glf@l@glf ()] by (2)

Downloaded from EnggTree.com


http://www.PDFWatermarkRemover.com/buy.htm

EnggTree.com

= @of) (@) @ (goj
Hence, gof : S—= Vs a semi-groy nomorphi
' phism.

Note : gof(a) =g (f(a))
Definition : Semi-group endomorphism

h : = .

A. femUiigrphism of g SEIL-EEoup iy liself is called a semi
e € ".lun‘

endomorphism.

. T}leorefll 2. Tl.le set of all semj.gmup sndsiarohs
semi-group 1S a semti-group under (he Wraion of lCﬁorp .mms- ol
L compostiian

Proof : Let £ be the sct of al] semi-groy, homomorphism
S8 —=5 where (S, #) is ascmigroup. |
To prove : (F,o) is a semi-group with bigp, : ;
composition of mappine S Operation o, the lcli
Proof :
(i) Closure : MLBEF  sjfpen
(ii) Associative VigheEFVYa €S
Gog)oh @ = fog (n (a))
=/ (g (w)))
= [ (goh (@)
= folgon) @
=2 (fogloh = So(gohn)
S (F,0) is a semi-group.

| N?te ;.Infacl (F, o) is a monoid, because . ident i
is, t.h_e 1der}t11y under o. Thus (F, o, I)is a Monoid. T ty nl'di"pmg I
of all semigroup homomorphisms of a scmiQroup . hmfoi: the sl
| 1 = IS a monoid.
Theorem 3. Let (S, %) be g given SeMi-group. The ist
n e . %, I exists a
homomorphism : 5 = 5%, where (5%, o) is a supys g
from § to S under the operation of (left) compyy '-l;':roup = S
SIL1O1.
(AU N/D 2011]
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wl - For any e €S
we define a function f, : S =S,
defined by f,(b) = axb, VbES
& Jd] E.5°
Now, we define g : S = S° by
gla) = fa YVaeES
lct a,b €S, then axb €S
glaxb) = [faxo

Jasp(c) = (@axb)*c, VCcES
= fa(b*c)
= fa (6 ©)
= faofu (©)
= fasv = JaoSo

= gla=b) = g@og®)
Hence, the proof.

imeorem 4. Let X be a set containing n elements, let X" denote the
hee semigroup generated by X, and let (S, @) be any other semigroup
senerated by any n generators ; then there exists a homomorphism
vy X5 = S,

* Proof : Let Y be the sct of n generators of 8. Let g : X — b 4
e a one-to-one mapping given by g (x1) = y; for i = 1, 2, ... n. Now
lor any string

& = X5 Xpy oKy

ol X*, we define
gla) = gx) ®g) & ... D glm)

i‘rom this dcfinition it follows that for a string af8 € X7,
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S RRLILE ™
(@p) = g(a) DB
so that g is the required homomorphism,
Theorem 35, Let (S, *) and (T, A) be two semigroups . b
semigroup homomorphism from (8, %) ¢4 (T, A). COI“I'('SlmlnHug |

the homomorphism &> there exists g Congruence relation K on oy
defined by
xRy iff g (x) = g0 for x, y ¢

Proof : It i €asy to see that R is aq €quivalence relation (o,
Let X1, X2, Xq ’, Xy = S such that X1 R X7 ! and Xy R X5 " oo

8G1*x) = g(r) A B(2) = g(r;) A BES) = g v,
it follows thas g Is a congruence relation on (S, =).

Theorem ¢, Let (S, =) be a semigroup and R pe a congruence reluty,,
on (8, =). The quotient set S/R is a semigroup (S/R, &) where ),

a homorphism from S, =) onto (S/R, D) calleg the ity )
hamomorphism.

Proof : For any a € S let [a] denote the equivalenc ¢l
corresponding to the congruence relation R Fora, p € g define 4,
Operation & on §/R given by

(4] @ [b] = [44p]

The associativity of the Opcration s guarantees the associativify
the operation D on S/R, 50 that (S/R, ®) is a SCmigroup,. Next, defin,
a mapping g : § - 8/R given by

g{a) = fa] for any g < §

Property 1 . A semigroup homom@sphism Preserves  the Property of
associativity,
Solutien : Llet a, b,c es
El@xbyvc] = g@hayog (e
= [ @ @og®))og (c) ] (1)
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glax@=c)] = g(@)og(=*c)
= g@)o[g®)og(c)] - (2)
it - S, (a*b)=c =a*(b*q)Va,b,c€S
gllaxbyscl = glax®B=c)]
> [g(@a)og ()] og (c) = g(a)o[g(B)og(c)]
I'lic property of associativity is preserved.
Moperty 2 ¢ A semigroup homomorphism preserves idempotency.
wlution : Let ¢ € S be an idempotent element.
axa= a
ga+a) = g(a)
g@og(a) = g(a)
This shows that g (¢) is an idempotent element in T.

. The property of idempotency is preserved under semigroup
homomorphism.

Property 3 : A semigroup homomosphism preserves commutativity.
Solution ¢ Let a, b € S.
Assume that a+*b= b=xa
glaxb) = g(b=a)
g@)og () = gb)og(a)

This means that the operation o is commutative in T.

. The semigroup homomorphism preserves commutativity.
Property 4 : Show that every finite semigroup has an idempotent
element.

Solution : Consider the subsemigroup S generated by s (i.e.,)
S = {s, 52 , 53, ... s}, where mis-finite. S is a finite subset of a finiter

semigroup G. Therefore there exist ry, 7, such that s'! = 52, Without

loss of generality, we assume that ry > r,.
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g@ap) = gl @ gPB)
so that g is the required homomorphism.
Theorem 5. Let (S, *) and (T, A) be two semigroups and g he ¢
semigroup homemorphism from (S, =) to (T, A). Corresponding (g
the homomorphism &> there exists a congruence relation R on (8, )
defined by
xRy iff g(x) = g forx,y €S

Proof : It is easy to see that R is an equivalence relation on §
Let x;, x5, x{', x,' € § such that ¥y Rx;" and x, R x;,’. From

EG1¥x) = g(r) Agln) =g ’) A E2") = gxy #xy")

it follows that R is a congruence relation on (S, *).
Theorem 6. Let (S, *) be a semigroup and R be a congruence relation
on (S, =). The quotient set S/R is a semigroup (S/R, @) where the
operation & corersponds to the operation # on S. Also, there existy
a homorphism from (S, *) onto (S/R, D) called the natural
homomorphism.

Proof : For any ¢ S, let [a] denote the equivalence clasy
corresponding to the congruence relation R. For a, b € S define an
operation € on S/R given by

[a] ® [B] = [a=b]

The associativity of the operation # guarantecs the associativity ol
the operation @ on S/R, so that (S/R, @) is a semigroup. Next, definc
a mapping g : § -» S/R given by

gla) = [a] for any @ &€ §
Property 1 : A semigroup homomosphism preserves the property of
associativity.
Solutien : Let a,b,c & 8§
gl@xb)yrc] = g(@%b)og(c)
= [B@og®)og(c)] - (1)
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glax@®=*c)] = g@og®*c)
= g@o[g®)og©)] s (2)
But in S, (a*b)*c = a*(bxc)yVa,b,c €S
gl@*b)*cl = glar(dsc)]
= [g@)og®)] og (©) = g(@)o[g®)og(c)]
. The property of associativity is preserved.

Property 2 : A semigroup homomorphism preserves idempotency.
Solution : Let ¢ € S be an idempotent element.
axa= g
g@*a) = g(a)
g@og(a@) = g(a)
This shows that g (@) is an idempotent element in T.

. The property of idempotency is preserved under semigroup
homomorphism.

Property 3 : A semigroup homomosphism preserves commutativity.
Solution : Let a, b € S.

Assume that a*b= psg
g(@a*b) = g(b+a)
8@ og®) = g®)og(a)
This means that the operation o is commutative in T.
~. The semigroup homomorphism preserves commutativity.

Property 4 : Show that every finite semigroup has an idempotent
element.

Solution : Consider the subsemigroup S generated by s G.e.,)
S == {S S2 S3 Sﬂ} Wh = . . - b
s §7 5 8, e » Where maisofinite. S is a finite subset of a finite

semigroup G. Therefore there exist r,, r, such that s = s Without
loss of generality, we assume that ry>r.
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e LR AL R R TR E T ]

Now we have two cases.
Case 1 : Suppose rnn—2p20 .

Put » = r =2

Now

Srl SI‘ — Srz sr — Sr1 — I3

- rHtr o= r2+r1-bz =y —ity)

sr1+r - S2(I‘1 _1'2)

This implies that s has an idempotent,

Case 2 : Suppose 7, — 2r, <0
Put Py —ry = y

sTigh — shat+r = ¥

T -+ r
ststst = ghtr . on

Proceeding in this way, we can find an integer 7

"= 2ry such that
s = T

which leads to case 1.

Thus we have

proved that S has an idem
implies that the sem

igroup G has an idempotent.

Problems under semj

potent which inturn

-group and monoid
Example 1. Give an example of a semi-group which is not a monoid,

[A.U. M/J 2009
Selution : Let p — 1o —4, =2, 0, 2 4, i b

(D, -)is a semi-group but not a monoid since multiplicative identi y
is 1, but 1 ¢ p &
Example 2. Give an

e¢xample of a monoid which is not a group.
Solution : (Z*

»+) i1s a monoid which is not a group.
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;’ since VaGG,-‘lz%G

bwnple 3. What do you call a homomotrphism of a semi-group into
faell? [A.U. A/M 2003]

wlution : A  homomorphism of a semi-group into itself is called a
~in proup endomorphism.

fvnmple 4. If (Z, +) and (E, +) where Z is the set all integers and
I i~ the set of all even integers, show that the two semi groups (Z, +)
ad (E, +) are isomorphic. [A.U. N/D 2010]

Solution 3
Wep 1 We define the function
G:Z - E given by g(a) =2a where a € Z
Wep 2 @ Suppose g (aq) = g (ay) where a,a, €Z
Then 2a; = 2a, ie., a) =a,
Hence mapping by g is one-to-one.
“tep 3 ¢ Suppose b is an even integer
Let a =b/2. Then a € Z and
g@y=g®/2) = 2.b/2 = b
ie., every element b in E has a preimage in Z.
So mapping by g is onto.
Stiecp 4 2 Leta and beZ
ga+b) = 2(a+b)
= 2a + 2b
= g(a) +g®)
Hence, (Z, +) and (E, +) are isdmdrphic semigroups.

Example 5. If * is a binary operation on the set R of real numbers
defined by a*b =a + b + 2ab,

(1) Find <R, *> is a semigroup.
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3

Solution -

D @*b)sc -
a#* (b *c)

Hence, (g« b) xc

Le., #* js associative,

(2) If the identity elemeng exists, let it be ¢,
Then for any a € R.

axe =

= a
LE, 2te+2qe = 4
EE, e(l+22) = g
€ =0, since 1+2a =0, for any a € R
() Let 41 be the inverse of an element 4 €R. Then g+ 51 _ ¢
e a+a‘l+2a.a_1 =0
ie., a—l.(1+2a) = g
a”l = 1 +a2a
If @ # = then 4 oo r2e —E
1 -+2a

[AU a/m 2011]
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Wlution : Let b and ¢ be elements of M

wih that a+*bh= b*xag = e and
a*c = c*xag = e, -
since b = b=xe
= bx*x(a=*c)
= (b=xa)+*c
= e=x¢
= ;¢

lxample 7. Show that a semi-group with more than one idempotents

mnnot be a group. Give an example of a semi-group which is not a
group. [A.U N/D 2014]

Volution : Let (S, *) be semi-group.
Let @,b are two idempotents
“axa = g and bxb = p

Let us assume that (S, *) is group then each element has the

mnverse.

(@*a)y+*a” ! = ax*(@*a 1)
ILHS = (@*a)*a ! = gxaq ! [ a*xa=a]
= e
(@axa)+a” ' = ¢ s L)
lso RHS = a*(a*a ) = gxe = a s 102D

From (1) & (2), we get a = ¢

Similarly we can prove that b = e

In a group we can not have two identities and hence (S, *) cannot
e group.

This contradiction is due to an assumption that (S, *) has two
denpotents.

Example : Let § = {a,b,c} under the operation =
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et R RR I I T
—— e
Now for x, y A¥

E8() = g@() « x R y

SO that the congruence relation R jg induced by the bomomorphis, I

Example 15, fr - is the operatiop defined on § — Q X Q, the set
ordered pairs of  rational numbers and given hy
(a, b) = (%, Y) = (ax, ay + b), show that (S,%) is a semi group. Iy |
Commutative? Algg find the identity element of §, [A.U N/D 2013)

Selution : Given - (a,b) * xy) = (ax, WER) .. ()
To prove - (8, %) is a semigrOUp.
{(a, by » @, y)} (, d)
= (ax+ay+b)-(cd) by (1)
= (acx, adyx + ay + b) s (2) by (1)
@ b) * {(r,3) * (c, )}
(a,b)*{cx,dx-i—y}
= (acx, adx + gy + b - (3)

From (2) & 3), * is associative on §.

i T s
[ To prove (S, %) is not commutative
—RQ

B2 * (@, b8) = (ax, by + ) - (4
(a,b) * (x,y) = = (ax, ay + b) - (8)
(4) = &) {S }. is not commutative,

To ﬁnd the xdentlty elemenr of (S, =) ’
LSl oy i)

Let (el €3) be the 1denuty clement of (S, ), ¥ (aq, b)yes
» (@ D)* (e e) = (g b)
(ae;, ae, + b) = (a, b)

= ae; = Q2 aey+p = p

Downloaded from EnggTree.com


http://www.PDFWatermarkRemover.com/buy.htm

EnggTree.com

$el=1, ae?_:O
62=O

< (1,0) is the identity element of {S, *}

MONOID : v

Example 1 : Let X be any given set and P (X) is its power set. Then
lind the zeros of the semigroups (P (X), M) and (P (X), U). Are
these monoids ? If so, what are the identities ?

Solution : Let X be any given set. Then its power set r (X

containg 2% subsets of X,

If Z € p (X) is zero with respect to the operation N for ? (X),
then Z N X; = X1 N Z = Z implies that Z = ¢, empty set.

The zero Z of (p (X), U) is such that Z UXg =XUuzZz =2
for all X; € p (X), implies that Z = the whole set X.

The identity of (p (X), N) is given by the set S, such that
SNS =8NS = S for all § € p (X).

Therefore S, = X, the whole set.

The identity of (p (X), U) is S,, which satisfies the property that
S=8S. US =8 u Se. Therefore S, is the empty set ¢.

With this it is clear that @(X) N X) and (p(X)U @) are monoids.

Example 2 : Let V = {a, b} and A be set of all sequences on V
including A beginning with a. Show that (A, o A ) is a monoid.

Solution : Let V = {q, b} and A be set of all sequence on V
including A beginning with ¢. Then A={NA, a,ab,aa, ab , aba, abb, ...}.
Let o be a concatenation operation on the sequences in A. Clearly for
any two clements o, b € A.

aoff = aff also belongs to A and hence (A, o) is closed. Also <’

is associative. Because
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@oB)or = afy = a.(@By)
= (@ofioy)
A is identity as A o o — @o A =& for all ¢ € A,

Therefore (A, , A) is a monoid, *

Example 3 : Show that the set N of natural numbers is a semigrou)
under the operation **y = max {x, y}. Is it a monoid 2

Selution : Let N = 10, 3, & o}
Define the operation ¥*y = max {x, y} forx,y € N.
Clearly (N, *) is closed because X%y = max {x, y} € N and
* is associative as
(c*y)*z = max {xxy, 2)
= max {max {x, y}, z}
= max {x, y, z}
= max {x, max {v, z}
= max {x, max Wz}
= x* (y * z)
Therefore, (N, *) is semigroup.

The identity ¢ of (W, *) must satisfy the property that
X*e = e+x = ¢. But as x v e = €*X = max {x, ¢}, e = x, » (the
infinity). Therefore (N, #, o) is monoid.

Example 4 Every monoid M, =, e) is isomorphic to (MM, s, A)
where A is the identity mapping to M.

Solution : Define 3 mapping f from M fo MM by
f(@) = f, where fo € MM
defined by fa®) = a+b for any b € M
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Now

f@=*b) = f,.,, where
faxv(€) = (@a*b)*c = a=x(b*c)
= kv =5 ©
Therefore,  f,.p, = f,ofy, which implies that
f@*b) = fauv = faofo = f@)of(b)
Therefore f is a homomorphism.
Clearly f is one-one and onto and hence f1s an isomorphism from

M onto MM.

Il’xample 5 : Prove that monoid homorphism preserves invertibility
and monoid epimorphism preserves zero element (f it exists).
[A.U. N/D 2003]
Sol. Let (M, *, ep) and (T, A, er) be any two monoids and let
g: M - T be a monoid homomorphism. If g € M is invertible, let

@~ ! be the inverse of a in M. We will now show that g (a_l) will be
an inverse of g (a) in T.

ara”l = g7lag = emMm (By definition of inverse)

So g@*al = g(a = a) = g(en)

Hence g (a) Ag (@) = g(@ ) Ag(@) = glem)
(since g is a homomorphism)

But glen) = ep (since g is a monoid hmomorphism)
- g@AgE) = g@Ag@ = er
This means g(a_l) 1s an inverse of g(a) ie., g(a) is invertible.

Thus the property of invertibility is preserved wunder monoid
homomorphism.
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Assume g is monoid epimorphism
tAg(z) = gb)Agz) = gb=2)=g(2)
and  g@) AL = g@Ag(B) = g*b) = g @)
<. g(z) 1s zero element of T.

Example 6 : On the set Q of all rational numbers, the operation »
's defined by a*b = a + b — ab. Show that, under this operation, Q
is a commutative monoid.

Solution : Since @ + b — ab is rational number for all rational
Wmbers a, b the given operation * is a binary operation on Q.

We note that, for all @, b, ¢ € Q.
(@=b)y*xc= (a+b —ab)*c
= (@+b—ab)+c—(a+b—ab)c
= a+b—ab+c—ac —bc + abc
= @+ (0 ¢ =€) —ag b+ t— be)
= a*(({b +c — bc)
= ax*(b*c)
Hence # is associative.
We check that, for any @ € Q,
a¥0 = a+0—a.0 = a
and 0*a = 0+a—0.a = a
As such, 0 is the identity clement in Q under the given *.
The definition of * itself indicates that * is commutative.

Thus, under the given *, Q is a commutative monoid with 0 as
the identity.
EXample 7: Let V = {a, b}. Show that (V', », A ) is an infinite
honoid.

Solution : While defining alphapet and set of strings V", we proved
hat (V*, e, A ) is a monoid where A is a empty string. So, it is
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mough to show that V* is an infinite set. As a is an element of V,
4, ua, aaa, aaaa, ...b, bb, bbb, bbbb, ... ab, abb , abbb, ... are the
' ements of V¥ and hence V™ contains infinitely many strings including
smply set.

xample 8. Let (M, *) be a monoid. Prove that there exists a subset
I C M™ such that (M, #) is isomorphic to the monoid (T, 0) ; here

MM denotes the set of all mappings from M to M and "O" denotes
(he composition of mappings. [A.U M/J 2014]

I'roof : Va GM, let g (a) =.fa where fa = MM is defined by
fa(®) =ax*b for any b € M.

Clearly, g is a function from M to MM,

Now, g(@*b) =f,+p Where fr.p(c) = (@a*b)*c
= ax({b=*c) [ Associative law]

= fa(®*c)
= (faofp) (©)
faro = faolfe
llence, g(@*b) = faxp
= faofo
= g(a)og ()
. gla=b) = g@og® VabeEM
- g:M—-> MM is a homomorphism.

Corresponding to an element ¢ € M, the function f, is completely

Jotermined from the entries in the row corresponding to the element
4 in the composition table of (M, *).

Since, f, = g (a), every row of such a table determines the image

of ‘@’ under the homomorphism g.
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Let g (M) be the image of M under the homomorphism g sl
that g (M) C MM,

Let a,b €M, then g(a) =f, and g®) =1, are elementn In
g (M). .

Also, foof, = f(a=*b) E‘g(M) since, a * b € M.

- (M) is closed under the operation, composition of functions

The mapping g: M - g (M) is onto size (M, =) is a monoid. Ny
two rows of the composition table can be identical.

= Two functions defined by these rows will be identical.

- The mapping g: M - g (M) is one-to-one and onto.

- 1M =g (M) is an isomorphism. If ¢ is the identity element
M then we define f, (@) =a V a € M.

Clearly, this function f, € T = g (M)
Now, Je = 8()
Also faofe = g(a)og(e)
= g(@xe) = g(a)
~faofe = g(a) = f(a).

This shows that f, is the identity element of T =g M), sin
folo €T, faof, €T.
- T'1s closed under the operation composition of functions.
S T'=g (M) is a monoid.
Further, g: M > 7 is a isomorphism.

Hence, (M, =) is isomorphic to the monoid (7, o).
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4.2.(b) Groups

Theorem 1.

If @ and b are any two elements of a group (G, *), then show
that G is an abelian group.if and only if

(a * b)? = a® * b* [A.U A/M 2003, A/M 2011,
N/D 2010, M/J 2013]

Proof : | If part

Given : G is an abelian group
=V a,beG, thenaxb=>b=*a e 1)
To prove : (a=i=b)2 = a® % b?
(@+b)®> = (a*b)*(axb)
=ax{(b*a)*b
= g#+(@a*b)*b by (1)
= (axa)* (b +b)

= g% *b?
Only if part
Given (a*b)’ = a®=b? . (2
To prove : axb= b*a
2 = (@a*b)? = @+ b?

> (a*b)*(@*b) = (axa)=*(b*b)
> ax[bx(arb)] = axlax(®*b)]

= b*(axb) = a=*(b=*b) [Left cancellation law]
= (b*a)*b =.(axb)=b [Associative law]
= b=*a= a=+b [Right cancellation law]

= (G is an abelian.

Downloaded from EnggTree.com


http://www.PDFWatermarkRemover.com/buy.htm

EnggTree.com

Theorem 2,
If every element in 2 group is its own inverse, then (I T
must be abelian, o
(OR)
For any group (G, %) if > =¢ with @ # ¢ then G is an abe L

Proof :
Given g = g1 for all ¢ € .
Let a,b € G. Then ¢ = 2! and p = b1
Now (a = b) = (axb)!
e, axb = p1,,-1
= G is abelian.

Theorem 3 -
The identity element of a group is unique. [A.U. M/J 2014

Proof :
Let (G, *) be a group.

Let e; and ¢, be two identity clements in ¢,

Then
e1*ey; = ¢ [ ey is the identity]
e1*e; = e, [ e; is the identity]

Thus ¢; = e
Hence the identity is unique.

Theorem 4 :
For any element 4 in a group G, the inverse is unique.
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It '« be any element of a group G.
Il possible let @’ and @'’ be two inverses of a.

| hen

axa’ = a' xa = e . (D)
a*a’'’ = a''*a = e o L)
' =a'xe = a' x(axa'Y=(a'*a)*a'"" = exa'’ =a'"
v, the inverse 1s unique.
(a*b)*(b_l*awl) = a=l=(b=l=b”1)=i=a”1
= gxe*a ! = axa l=¢
ad " lxaYHx@xb) = b lealxaxbp
= b_l*e*b
=p lep = ¢
(@*b)”l = p7lag™!

Iheorem 5.

The identity element is the only idempotent element of a group.
olution : Given (G, #) is a group.

Since ¢ * ¢ = ¢, e 1s indempotent.

Let @ be any idempotent element of G.

Then @ *a = a.

e*xaq=aq, [ e 1s th_e identity element]

It follows that @ xa = ¢ * a.

By right cancellation law, we have @ =e¢ and so e is the only
wlempotent element.
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Now let ¢ € B,,. Then g5 o ¢ € A,, and
f(@ooq) = g0 (gooq). = (@ooqo) = a0 g = g,

which means that f is an, onto function. Since F Ay = B, inwm

to one and onto, we conclude that A, and B, have the samc numls

of elements. Note that A, N B, = ¢ since no permutation can I
both even and odd. Also, by Theorem |A, U B,| = nl
nl=| A UB, |=|A, | +|B, |—|ALNB, | = 2| A, |

We then have

7!

IAnl = IBnl :_i.—

PROBLEMS BASED ON GROUP

Example 1. State any two properties of a group. [AU N/D 2000

Solution : (i) The identity element of a group is unique.

(i) The inverse of each eclement is unique.

Example 2. In a group G prove that an element a € G such that

az=e,a¢eiﬁ‘a=a_l

Solution : Let us assume that @ = a !

Then o = a*a = a*a” ' = ¢
Conversely assume that a® = e with a = e.
That is axa= e

18 exa = a

1B a = a
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lixample 3. Determine whether the set

* =1 1
—1 | g4z -1
1 -1 1
With the binary operation form a group. [A.U June 2011]
Solution : Yes. ‘1’ is the identity element.

Inverse of each element is the element itself.

Ilxample 4. Define the homomorphism of two groups.
[A.U June 2011]

Solution : Let (G, *) and (H, A) be any two groups.
A mapping f: G - H is said to be a homomorphism if
f(axb)=f(a) Af(b), for any a,b € G
I'xample 5. If any group (G, *) and ¢ € G, then (cfl)_1 =a

Solution : Given : @~ ! is the inverse of a.

= g is the inverse of @~}
ie., @hHl=a
I'xample 6. If any group (G, *), show that (a * b)_1 =p lxgl
Solution : Given : (G, *) is a group.
VaeG=>a 'EGasoa*a '=at*a=e
VbeEG=>bleGalsob*b '=b'xb=e¢
I'o prove : (@*b) "+ = b sq !
\c, To prove : (axb)*(d '+a ") = (b '*a Hx(@*b) = e
(@*b)y (" *.all) = a+@*b Hxral

= gxexq !
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= aga*a [ a*c -
= e . (D
G lea Y g *b) = b la@ lea)ep
= b lsexp
= b lup [exh b
= e ss (2)

By (1) and (2), we get
(@xb)* p~lag~ly G'va Y w@xb) = e
F (a*b)7! = plagd

Example 7. Every gr Qup of order 4 is abelian.

Soluti 2 2
3 = {e“(:O;l i SI.—JCE (G,' *) be a group of order 4 wihi,,
26U 01 SIMCGe G is of even order, thcre exists at least o
clement (say) @ such that ¢ 1=,

Then two cases Jyrise
@67 =b, e ¢ (i) p~1= ¢ ¢ 1 =p.
Case (i) : e l=¢, g1 _ a, b l=p 1=
Every elemeryt a4 jis own inverse.
The (G, *) iss abelian,
-1

Case (ii) : a "=a, plo¢ 7l

2

0 M
@ =6 brc=¢ cxp=g¢

__* e a b c
€ e b c
a a e C
b b & a e
¢ c e a
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since (G, *) is a group, its elements will appear in a row (column)
u'\‘ once.

Since, @, e appears in the second row and b appears in the third
limin, ¢ will appear as (2, 3)th element.

(2, 4)th element is b
(3, 3)th element is a
(3, 2)th element is ¢
(4, 2)th elecment is b
(4, 49)th element is a

a 0

| u|lllll]e 8. Show that G = { (0 0

) taz0e R} is an abelian group

wnder matrix multiplication.

mlution 3

(1) Closure law

Tt A = (“ 0),3 - (b 0) &6

0 O 0 O
_ (ab O
Then AB = ( 0 0) e G.

(1) Commutative Law : AB = BA is true V 4, B € G, since

AB = BA = (ag 8) [ ab = ba is true in R]

(i) Matrix multiplication is associative.

1 0
0 0

THEIRE

%

() Idemtity : [ = ( ) € G is the identity in G, since

a 0} _
5 9 -avaca

(1v) Imnverse : If

A, == (‘é 8) € G. Then 471 = (1/0 O) e G.

is the inverse of A4, since
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A4 = ((1) 8) = g (Ca=0ER=1/a=0a N

Hence G is an abelian group under matrix multiplication

Example 9. Show that the set S = {1, 5, 7, 11} is a group wi i

multiplication modulo 12. ' *

Solution : The composition tables of S w.r.t O,, of as follows

012 1 5 7 11
1 1 5 7 11
2 5 1 11 7
4 7 11 1
11 11 7 2 1|

Here 5 O,, 7 = 35, which on division by 12 gives the remuainidi
11, 11 0O,, 7 = 77, which on division by 12 gives the remainder 4 ¢

Hence S is a group, in which 1 is the identity and each clemn
of § is its own inverse.

Example 10. Show that the set of matrices

G = {(c?soc —Ssin a)’ ac R} forms a group under mafyiy
sin « Cos @
multiplication.

Solution : (i) Closure law

Let 4, = (cosa —sma) €G and 45 = (cosﬁ —sm/ﬁ)( (i

sin & cos a sin B cos f8
Cosa  —sina) {cos —sin
Then Aa*Aﬁ = : ; B p
sin & cosa) | sin B cos
A Ay = |C0sacosB — sinasinf —{cos a sin B + sin & cos ff)
B sina cos B + cos @ sin 8 Cos @ cos B — sin « sin [}

0s (@ + B)  wsin (@ + )] .
BE18 et - hpea

Note that AgAg = Ay + we: {1)
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(i) We know that the matrix multiplication is associative.

(ii1) Identity : [, = ((1) (1)) is the identity in G.

Since 4,1y = IyA, = dg for A, €G.
(iv) Imverse : A_, is the inverse of A4, for each 4, € G, since

Ap A = Ay yf—ay =Ag=lp, using (1)
Example 11. Find the left cosets of {[0], [3]} in the addition modular
group (Zg, +¢)- [MCA, N/D. 2002] [A.U N/D 2010]
Solution : Let Zg = {[0], [1], [2], [3], [4], [5], [6]} be a group and
H = {[0], [3]} be a sub-group of Zg under +4 (addition mod 6)

The left cosets of H are

[0] + H = {[0], B} = H

[1] + H = {}1]; [41}
2] + H = {[2}, [5]}
3] + H = {[3], [6]} = {[3], [0]} = {[0], 3]} = H
[4 + H = {[4], [71} = {[4, (1]} = [1] + H
51 + H = {[5], [8]} = {[5), 2I} = [2] + H
[0 + H=[3] + H=H
and M + H=[4 + H, [2] + H=[5] + H

are the distinct left cosets of H in Zg4

Example 12. If f: G = G’ is a group homomorphism from {G, *} to

{G’, A} then prove that for any a € G, fa ) = [f(a)]_1
[A.U N/D 2012]

Solution : V ¢ € G and V a;1~ =
f@+a™y = f@Af@™
o, fle) = f@Af@h
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iie, e’ = f@Af@ w (1)
1% f@*a) = f@) af @)
ie., fle) =f@hHarw

e’ = f@)Af() (2

From (1) & (2), we get
f@Af@™ = f@YAf(a)

2> (a*l) is the inverse of f (a)

ie, f@™) = [f@)!
Example 13. Let G be a group and a € G. Let f : G » G be given

by f(x) = axa™! for all x & G. Prove that f is an isomorphism of
G on to G. [A.U. A/M. 2005, N/D 2010)

Solution : The map f is a homomorphism if x vV € G, then

fOf®) = (@a™Y (@a™1

= ax (@ la) ya !

= axya~ !

=amal = f).
So f is a homomorphism.
1

fis one-to-ome : If f(x) = f (), then axa™ ! = aya -, so by lell

cancellation, we have xa~1 = ya =l again by right cancellation we gel
x = y.
fis onto : Let y € G, then ¢} ya € G and f(a‘lya)
= a (avlya) a D
= (aa™ )y (aa™")
= y. So f(x) = y for some x € G.

¢

Thus f is an isomorphism.

Downloaded from EnggTree.com


http://www.PDFWatermarkRemover.com/buy.htm

EnggTree.com

PERMUTATION FUNCTIONS

Definition :
A bijection from a set A to itself is called a permutation of A.

Example 14 : Let A=R and let f: A - A be defined by

[(a) = 2a+ 1. Since f is onc to one and onto, it follows that fis a
permutation of A.

Example 15 : Let A = {1, 2, 3}. Then all the permutations of

A are

(o= (¥ 2 3 A 23 12 3
A 1 2 g P1= 11 3 2p P2 = o 1 3/
. = |1 23 _ (@ 3 _fa 2 B
3 % B 1P P4—312’ 25 = {a =2 A

Using the permutations of compute
-1
(@) pa” ;5 (b) p3op,
Solution : (a) Viewing P4 as a function, we have

= 11, 3), 2, D, G, D}

Then p4—1 = 443D, (. 2), @& 3)}

or, when written in increasing order of the first component of each
ordered pair, we have

Pa = {(19 2)7 (2; 3): (3: 1)}

- - 1
I'hus pi = (2 % i) = Ps

(b) The function p, takes 1 to 2 and p3 takes 2 to 3, so p3op, takes
1 to 3. Also, p, takes 2 to 1 and pj3 takes 1 to 2, so p3op, takes

2 to 2. Finally, p, takes 3 to 3 and p; takes 3 to 1, sO p3op2
takes 3 to 1. Thus

= 1k 2 3
Paop2 (3 > 1)
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We may view the process of forming p;op, as shown in fig,

Observe that p3op, = ps.

1 2 3 1. 2. 3
; [¢
3 2

L) (&3 )

Theorem : If A = {a;, a,, ... a,} is a set containing n elements,

then there are

n! = n.(n—1) .. 2.1 permutations of A

Definition : Cyclic permutation
Let by, by, ... b, be r distinct elements of the set A = {a;, a5, ...a,}.
The permutation p : A - A defined by

p (1) = by
p (b2) = b3

p by -1) = by
p ) = by
px) = x ifx € A, x & {by, by, ... b} is called a cyclic

permutation of length r, or simply a cycle of length r, and will be
denoted by (b4, by, ... by).

Example 16: Let A = {1, 2, 3, 4, 5}. The cycle (1, 3, 5) denotes
the permutation
1 2 3 4 5
3 2 5 4 1
Example 17: Let A = {1, 2, 3, 4, 5, 6}. Compute (4, 1, 3, 5) o

(5, 6, 3) and (5, 6, 3) o (4, 1, 3, 5).

Solution : We have
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i 2 3 4 5 6
{1 2 3. 4 5 6
&, 6.3) = (1 2 5 4 s 3)
fhin (4, 1, 3: 5) Q (5’ 6> 3)
1 23 4 5 6 1 2 3 4 5 6
3 251 4 6/°11 2 5 4 6 3

1 2 3 4 5 6
3 2 4 1 6 5

i
A,
W =
NN
A W
- A
Hon
W N
. i

Hheerve that

(4: 1, 3, 5) ° (5’ 6, 3) = (53 6, 3) Q (4s 1, 3, 5)
| that neither product is a cycle.
hefinition -

Two cycles of a set A are said to be disjoint if no element of A

(ppears in both cycles.

Example 18 : Let A = {1, 2, 3, 4, 5, 6}. Then the cycles (1, 2, 5)
wd (3, 4, 6) are disjoint, wherecas the cycles (1, 2, 5) and (2, 4, 6)

e not.

Theorem : A permutation of a finite set that is not the identity
. a cycle can be written as a product of disjorint cycles of length = 2.

3 4 6 521 87
o the set A = {1, 2, 3, 4,5,6,7, 8 as a prroduct of disjoint cycles.

i : 1 7 8
Example 19: Write the permutation p= ( 2 3 456 )
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Solution : We start with 1 and find that p (1) = 3 P (Y
and p (6) = 1, so we have the cycle (1, 3, 6). Next we choou ||,
first element of A that has not appeared in a previous cycle. We (o,
2, and we have p (2)y=4 @ = .5 and p (5)=2, s0 we obtuin i
cycle (2, 4, 5). We now choose .'.?, the first element of A that hiy 14
appeared in a previous cycle. Since 2(7)=8 and p (8)=7, we ol
the c'yclc (7, 8). We can then write p as product of disjoint cyclcy,

P =(780(24 5., 3, 06).

Definition : Even and Odd Permutations
A cycle of length 2 is called g transposition. That is, a transpositigg

15 a cycle p = (a;, a;), where p (@) = a; and p (a)) = a.

Obscerve that if p = (@i, a;) is a transposition of A, thenpop |,

the identity permutation of A.

Every cycle can be written as a product of transpositions. In .

(b'l 5 b2 P — br) = (bl 5 bl) o (bl 5 bl‘ _ 1) 0 ...0 (b’lﬂ b’i) o (b'la bZ)

This case can be verified by induction on 1, as follows :

Basis Step
If » = 2, then the cycle is just (b, b,), which already has ()

proper form.

Induction Step

We use P (k) to show P (k+1). Let (bys D25 by, by 4 1) be 4
cycle  of  length 4 +1. Then (b, by, ... by, by )
(B, by )o(by, By s oo By BE may be wverilied by computing the
composition. Using P(k), (b, ,bo, o D) =(by, b)) » (by, B = 1) @ ..,
o (b1, by). Thus, by substitution,
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(D1s b2 e by 1 1) = (b1, b +1) o (b1, D)o .. o(by, b3) (b1, b2).

This completes the induction step. Thus, by the principle of
mathematical induction, the result holds for every cycle. For example,

(1: 2: 3’ 4, 5) = (1’ 5) 24 (1’ 4) 24 (17 3) o (1: 2)
Corollary 1 : Every permutation of a finite set with atleast two
clements can be written as a product of transpositions.

Theorem : If a permutation of a finite set can be written as a
product of an even number of transpositions, then it can never be

written as a product of an odd number of transpositions, and conversely.

A permutation of a finite set is called even if it can be written
as a product of an even number of transpositions, and it is called odd
if it can be written as a product of an odd number of transpositions.

Example 20 : Is the permutation

_fa 2z 3 4 & & 7
B=ls a4 & 7 & 8 1

even or odd ?

Solution : We first write p as a product of disjoint cycles, obtaining
P =350 24 7).

Next we write each of the cycles as a product of transpositions :

(1, 2, 4, 7) 5= (1, 7) o (1, 4) o (1, 2)
(3,5 6) = (3,6) - (3,5

Then p = (3, 6) o (3,5 o (1, 7) o (1, 4) o (1, 2). Since p is a
product of an odd number of transpositions, it is an odd permutation.

Note : From the definition of even and odd permutations, it follows.

(a) The product of two even permutation is even.

(b) The product of two odd permutations is even.
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(¢) The product of an ¢ven and an odd permutation
is odd.

Example 21 : Show that the permufation

1 2 3 4 35 6) . .
(5 6 2 4 1 3| s odd, while the

1 2 3 4 - 6
3 4

permutation ( 6 5 5 1) is even.

Solution :
(1 2 3 4 5 6)

I

5 6 2 4 1 3 (1 5) 26:3)

= (15) (26) (23)

The given permutation can be expressed as the product of an odid
number of transpositions and hence the permutation is odd. Again

1 2 3 4 5 ¢ _
(6 3 4 5 2 1) = (162345
=(16) (23) (24 (2 5)
Since it is a product of even number of transposition, thc
permutation is an even permutation.

Example 22 : Express the permutation

1 2 3 < 5 6
6 5 2 4 3 1

transposition.

) as a product of

Solution ;

1 2 3 4 5 ¢
(6 5 > a4 3 1)=(16)(253)=(16)(25)(23)

Example 23 ; Find the inverse of the permutation,

1 2 3 4
2 3 1 5 4

W 1 2 3 4 5
Solution : Given (2 3 1 5 4)

Let the inverse of the permutation be (
x ¥y L u v
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v (L2 3 4 5\(1 2 3 4 5\_ (1 2 3 4 5
2 3 1 5 4\x y =z u_ vy 1 2 3 4 5
.t 2 3 4 5 _(r* 2 3 4 5

y Z 5 4 1% u 1- 2 3 4 5

>y=1’z=2,x=3,v=4,u=5.

'linee the inverse permutation is (; i

N W
(AR
U

fvample 24 : IfA = (12345),B = (23) @4 5). Find AB.
wlution : Given A = (123 45), B = (2 3) (4 5

AB - (1 2 3 4 5 (1 2 3 4 s
2 3 4 5 1Yyl 3 2 5 24
1 2 3 4 5
3 2 5 4 1
= {13 5

'wample 25 : If A = {1, 2, 3, 4, 5, 6, 7, 8} then express the following
rermutations as a product of disjoint cycles.

_ (1 2z 3 4 5 ¢ 7 g
@ p (6 5 7 8 4 3 2 1)
_(t 2 3 4 5 § 7 g
b -
B p (2 3 1 4 6 7 8 5)

wolution

P (1)=6,p(6)=3,p3)=7, p(N=2, p(2)=S5, p (5)=4, p (4)=8,
B (8y=1, :

Sp o =A(Q,6,3,7, 2, 5, 4, 8} .,

M p1) =2,p@2) =3, pG =1= (1, 2, 3)
2B =6,p®6) = 7, p() = 8, p(B) = 5= (5 6, 7, 8)
P =156 7 86 (1 2, 3)
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Example 26 : Let A = {1, 2, 3, 4, 5, 6} and

=1 2 3 4 5
p‘(z 4 "3 1 3 6)bea

Permutation of A,
(a) Write p as a product of disjoint cycles.

(b) Compute p~1

(c) Compute p2
(d) Find the period of b, that is, the smallest positive integor

k such that p* = 1,.

Solution :

4 3 1 5 6

Since p (1) = 2,p(2) =4 and p (4) = 1, we write p = (1, 2, 1)
as the other elements are fixed. ‘

1204 3 105 6\ _ (1 2 3 4 5
(b)l’*(123456)‘(413256)

(a) Given B = (; : 3 4 3 6)

5 (1 2 3 a4 5
© p ‘p°p*(4 1 3 2 5 6)
Seplop= [l 2 3 4 5 g
@ 7" = plop = | 2 3 4 3 6)“11*
p4 = B p5 = p2 etc.

Il

The period of p = 3,

-1_ (1 2 3 4 5
(1"201’1)“(5 6 2 1 4 3)

- -1 -
Prop)~! = P1 op;
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1
ixample 27 = If £ = (3 g ‘;’ :J il
(1 2 3 a4 i
g = 5 3 4 1] are permutations,
prove that (gof) ! = flogl.
. _ 3
Solution @ 7 - (1 g ; 2) and
-1 _ {1 2 3 4
& = (4 1 2 3)
1 .-t . {1 2 3 4
f leg " = (4 3 2 1)
_ (1 2 3 4 1 2 B 4
Seof '(2 3 4 1)0(3 2 1 4
5 . fL B = #
&oh) - (4 3 2 1)
llence (gof)—1 =f—log—1.
) (1 2 3 4 5 6 7
lxample 28 : =
Ryniple Let py (7 3 2 1 4 s 6)‘“‘"
b = (1 2 3 4 5 6 7
2 6 3 2 1 5 4 7

(a) Compute p; o p,
(b) Compute p; L

(¢) Is p; an even or odd permutation ? Explain.

Solution :

' _(1 23 4 5 6 7 1 2 3
(a) pyop2 (7 321 45 6) ° (6 3 2
_(r 2 3 4 5 6 7
5 2 3 7 .4 1 6
-1 _ (1 P 3 4 5 6 7
(B} x” = (4 3 2 5 6 7 1)

(C) P1 = (17 7, 6) 5’ 4) o (23 3)
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() Closure : Let hEH = b le g
~ Fora,b€EH = ab leH
= a* (b—'l-)“—lhe H
> axbEH
<. H is closed under the operation "s"
(i) Associative : Since H C G, the elements of H are also the elements
of G.
Since #* is associative in G, it must also be associative in H.
(iii) Identity : Let a€H, = g+a '€ H
= e E€EH
. e is the identity element of H.
(iv) Existence of inverse : Let e €E H, ac H
> exale H
=alen
. Every element of H has an inverse in H.
<. H itself is a group under the operation * in G.

Theorem 2 :
Let (G, *) be a finite group, and H is non-empty subset of G and
H is closed under *. Then H is a subgroup of G.

Proof : (G, *) is a finite group and H is a subset of G which is
closed under =*.

ie, a,bEH = a*xb € H.
Let O(G) = n
Now agq,a € H

Then axa = a°€H
a’, a€H. Then a’?+a=a>€ H and so on.
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Since G is finite there exists a 7’ with 1 <m <5 such thul
a™ = ee€H
That is e € H
Hence identity exists. -._',
Let a € H, then a™ le g
ie, a® 1l = oMy lepy
iec,exa leny
ie,a leH.
= inverse exists.
Since every element of H is.G, associative property is truc in M
Hence (H, *) is a group and so H is a subgroup of G.

Theorem 3.

The kernal of a homomorphism g from a group <G, »» (i
<H,A> is a subgroup of <G, *>.

Proof : Since g (eg) = epy, eg € ker (9]
Also , if a,b € ker (g),
ie, g(@a) = g) = ey, then
g@*b) = g@Ag®) = eyAey = ey
so that a * b € ker (g).

Finally, if a &€ ker (g), then g (™) = [g (a)]! = el = en

Hence ¢! € ker (g) and ker (g) is a subgroup of <G, >,
Theorem 4. ]
Every cyclic group is abelian. [A.U. M/J 2013, N/D 2013]
Solution:Let (G, =) be a cyclié ‘group generated by an element ge(y
G.ed G =dad
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Then for any two elements x,y € G

We have x = a", y = @™, where m,n are integer.

- +

lherefore x*y = a"*a™ = a"™™
s am+n ______"al?'l*an
C— y*x

Thus, (G, *) is abelian.
Problems based on sub group

Example 1. Is the union of two subgroups of a group, a subgroup
of G? Justify your answer.

Solution : The union of two subgroups of a group need not be
a subgroup of G.

Let the group (Z, +)

Let H = 3Z = {0, £3,%6, ...}
Let K = 2Z = {0, x£2, 4, ..}

= H and K are subgroups of (Z, +).

= 3€3Z€3ZU2Z = HUK
= 2€2Z2e€22 U372 = HUK
But 3+2=5&2ZU3Z

- HUXK is not a subgroup of (Z, +)

Example 2. The identity element of a subgroup is same as that of the
group. [AU N/D 2012]

Solution : Let H be the subgroup of the group G and e¢ and e’
be the identity elements of G and H respectively.

Now if ¢ € H, then a € G and age = a, because ¢ is the identity
clement of G. -

e

Again a €H, then ae’ = a since e’ is the identity element
of H.
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Thus ae = ge’ which gives ¢ = ¢’

Example 3. If H and K are subgroup of G, prove that H U K inn
subgroup of G if and only if eithe?‘ HCK or KCH.

[A.U N/D 2014)

Solution : Given H and X are two subgroups of G and I/ C A
or KCH.

If HC K then H UK = K which is a subgroup of G.
If KC H then H UK = H which is a subgroup of G.
Conversely suppose X ¢ & and H Z.K.

Then there exists g € and @ € K and there exists a b € K anl
b & H.

Now a,b € H UK. Because H UK is a subgroup, it follows (ha
a*b€HUK. Hence a+b €H or ax*b ek,

Case (i) : Ifa+xp e H

Then a1 « ‘axbye H

That is b € H which is a contradiction.
Case (ii) : If axbEK

Then a+xb+b ek

ie, @ €K which is a contradiction.

Thus either HC K or K C.H

Example 4. Prove that the intersection of two subgroups of a group

is a subgroup of G. [A.U M/J 2013, N/D 2013, N/D 2014]
Solution : Given H and K are subgroups of G.

Leteq,bEHNK > a.b€H and a,b €K

= axb '€Handaxbleg (as H and K are subgroups)
= axb leynk
Thus HNK is a subgroup of G.
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Ii’xample S. Show that the set of all elements a of a group (G, *)

such that a *x=x+*a for every x € G is a subgroup of G.
[A.U N/D 2010]

Solution : Let H = {a€G| ax=xa, V x € G}
Asey = ye = y, VyeEG, e €G, H is non empty.
Let x and z in H
Then x¥ = y and zy=yz for all yE G
@y =x@2) = x)z=y@x2), VYEGC
xzEH, YxzeH
xEH @ xy = ¥, VyeaG
ex 1oyx ! =x1mxl, vyec
e @ e = &Y eExTH
e p !l =xly
s> xleH
. H is a subgroup.
Example 6. If ‘a’ is a generator of a cyclic group G, then show that
b s also a generator of G. [A.U M/J 2012]

2

‘a
Solution : Let G = (@) be a cyclic generated by ‘a
If x € G, then x = a" for some n € Z
“x=a"=@ H™, (-n € 2)
~ ‘@ v is also a generator of G.
Example 7. Find all the subgroups of (zg, +9) [A.U M/J 2014]
Solution : Zg = {0, 1, 2, 3, 4, 5, 6, 7, 8}
The operation is addition modulo 9.
Consider the subss'é;s

Hl S— {0, 2, 4, 6, 8}
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—
HZ = {O’_ 3’ 6}
H; = {0, 4, 8}
Hy = {0, 5}

The improper subgroups of (Zy, +9) are [{0}, +9] and [Z,, Ful

+9 ’ 0 5 +g 0 4 8
0 0 5 0 0 4 8.

5 5 1 4 4 8 3

8 8 3 i/

[/, is closed] [H3 is closed]

+9 | 0 3 6 +9 | 0 2 4 6 8

0 0 3 6 0 0 2 4 6 8

3 3 6 0 2 2 4 6 8 1

6 6 0 3 4 4 6 8 1 3

6 6 8 1 3 5

[H is closed] 8 8 1 3 5 7

[H; is closed]
The operation tables shows that
H,, Hy, H; and Hy are closed for +9
The possible proper subgroups of (Z,, +9) are (Hy, +9),
(Hy, +9), (H3, +9) and (H,, +)
Example 8. Any cyclic group of order » is isomorphic to the additive
group of residue classes of integers modulo 7.

Proof :

Let G = {a,d? .. a" = e} be a cyclic group of order n generated
by a. v

We know that (Z,, +,) is the additive group of residue classes

modulo 7.
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= Z, = {1}, 2}, .., [#] = [0]}
Let f: G = Z, defined by f(a") = [r] for all a" € G.

For all [r] € Z,,, there exists a a;e G such that f(a") = [r]
= [ is onto.

For r # s, [r] = [s] and hence f (a") = f (c®)
= f is one-to-one.

For all af, a* €G, f(@.a°) = f@™®) = [r+s] = [r] + [s]

= f(@) +n f(@)
= f is a homomorphism. Hence (G, ‘) is isomorphic to (Z,, +,)

w1

Ixnmple 9. Prove that every finite group of order "n" is isomorphic
ln & permutation group of degree n. [A.U M/J 2013]

(OR)
Nate and prove Cayley’s theorem on permutation groups.
[MCA, Nov, 93, May 95]

Proof : Let G be the given group and A (G) be the group of all
permutations of the set G.

For any a € G, define a map f : G - G such that f(x) =ax.
I, is well defined :

Letx =y = ax = ay = f, x) = f,®). Thus f, is well defined.
f, Is 1 -1 2

Again f,(x) = fa () = ax = x = y. Thus f, is 1 — 1.
,is onto : For any y € G, f, (a—lj’) = aaly
=y € GG

Thus we find a preimage @~ 'y for any "y" in G. Thus fa 1s onto.
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Hence f, is permutation. (i.e.,) fa € A (G).

Let K be the set of all such permutations. We can show (hal I
is a subgroup of A (G). Sincé ¢ & G, fo € K. Thus K is non ST

Let f,, f, € K. |
Then (fofa D (x) = fu(e 1x)

= aa 1y

= ex
= fe @)
Thus the inverse of f, is f7 !
Faofo) ® = fa (o @)
= Jo (bx)
= abx
= fab @)
= faclo = fun € K.
Thus K is a subgroup of A (G).

Next we will show that G is isomorphic to K.

Define a map : ¥ : G - K such that x (@) = f,.
X is well defined :

Fora,b € G,a = b & axr = bx
*fal) = fo®
*fa = Jo
*x @ =x
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X 1s one-one and onto.
% is a homomorphism :
x (@) = fap =faofo =x (@) .x )

Thus x is a homomorphism and hence an isomorphism which
proves the theorem.

Example 10. Show that every cyclic group of order m is isomorphic
to (Z,, +,)
Solution : Let (G,0) be a cyclic group of order n.

The clement of G are {a,d? a ..., a" =e}.

The elements of Z, are {[0], [1], [2], ..., [z — 1]}.

Define
f : -D=.Z; by

f(e)=[0] and f(a’) = [i] for i <n where f is one-one and onto.
Then f(a'd) = f(a'™) = [i +]]

=[] +, [

= ey *af (@)

Hence f is an isomorphism.

Example 11. Define : Symmetric group, Dihedral group. Show that if
(G, *) is a cyclic group, then every sub group of (G, *) must be cyclic.’

(OR) [MCA, May 93, M.U]
Show that every subgroup of a cyclic group is cyclic.

Solution : Let (G, *) be a cyclic group generated by "a", and let
H be a subgroup of G. If H contains the identity element alone, then
trivially H is cyclic and H = (e). Suppose that H = (e). Since

H C G, any clement of H is of the form a* for some integer K. Lel
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(ii) Group homomorphism Dreserves inverse

Since a xa™ 1 = ec = a l+a we have

glaxa™) = geg) = g@a ' xa)
> E@Ag@™) = ey = g@ Hag@
= g(a—l) is the inverse of g (a)
8@ = g@]
(iii) Group homomorphism
Let S be a subgroup of (G, %)
To show that g () = {x€H/x =g (@) for some a G}
is a subgroup of (H, A)
(D) As e € 8, g(eg) = ey Eg(s)
(i) For each x € g(s), 3 @ €s such that g(a) = x
Since s is a sub group of G,

for eachaes, g7 leg

8@ = @I eg(s)
=x"leg(s)
(iii) For x,y €g(s), 3 a,b€Es
Such that g (@) = x and gd) =y
As 5 is a subgroup, ¢ *b € 5
= 8(@*b) = g(a)Ag(®d)
= xAy €g(s)
. g(s) is a subgrc‘)ap of H.
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4.3 NORMAL SUB-GROUP AND COSETS -
LAGRANGE’S THEOREM :

Definition 1 : Left coset of H in G.

Let (H, *) be a subgroup of (G, *). For any a € G, the set aH
defined by

aH = {a*h/h € H} is called the left coset of H in G determined
by the element a € G.

The element a is called the representative element of the left coset
a H.

Note : The left coset of H in G determined by a € G is the
same as the equivalence class [@] determined by the relation left coset
modulo H.

Definition 2 : Index of H in G [ig (H)]

Let (H, *) be a subgroup of (G, *), then the number of different
left (or right) cosets of H in G is called the index of H in G.

Definition 3. Normal sub-group

A subgroup (H, *) of (G, *) is called a normal sub-group if for
anya € G, a H = H a. .

Definition 4. Quotient group (or) factor group :
Let N be a normal subgroup of a group (G, =).
The set of all right cosets of N in G be denoted by
G/N = {Na | ¢ € G}
Now, define ® as binary operatioﬁ on G/N as
Na®Nb = N (a*b)

Then (G/N ®} will form a group, called quotient group (or) factor
group.
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Definition s, Direct product

Let (G, +) and (H, A) be two groups. The direct produc o i
two groups is the algebraic structure (G X H, o) in which the Bing
operation o on G x H is given by

&1, 1) o (g, h) = (g1+g,, h1 o Ahy)
for any (g, n,), &2, 72) € G x H.

Definition 6, Group homomorphism

Let (G, *) and (G, -) be two groups. A mapping f: (; » (,' |
called a group homomorphism if

VabEG, favb)=f(@).r (b

Definition 7. Kernel of group homomorphism 2

Let' (G, =) and (G', *) be two groups with e’ as the identiny
element of G

Let f:G > G’ pe a homomorphism.
ker f = {a ECG|f@=ec }
Statement 1 : [Lagrange’s theorem] [A.U A/M 2004, 2005, N/D 2004

The order of a subgroup of 2 finite group divides the order ol
the group. (OR) If G is a finite group, then 0H) | 0(G), for ul
sub-group H of G,

Statement 2 . Fundamental theorem on homomorphism of groups

If fis a homomorphism of G onto G’ with kernal &, (hy
G/K=G,

————

Theorem 1 -

Let (H, *) be a subgroup of (G, *). The set of left cosets of ||
in G form a partition of G¢Every element of G belongs to onc anl
only one left coget of H in G.

Proof : (i) 70 prove . Every element of G belongs to one an(l
only one left coget of H in G,
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Let H be a subgroup of a group G. Let a € G. Then a H = H
il and only if ¢ € H.

Proof : Let a € G "
aH=H=aeéH=H$aEH

Conversely assume that ¢ € H

Then ah € H, for all » € H.

Soa HCH ws 1)

Given anyy € H, ¢ 'y € H andy = a(a 'y) € H.
Soy €a Hfor ally € H.

(ie,) HECE e H o (2)

From (1) and 2) H = ¢ H

Hence every element of G belongs to one and only one left coset
of H in G.

(i) To prove : The set of left cosets of H in G form a partition
of G.

Let a, b € G and H be a sub group of G.
IfaHNHa= ¢
letc€EaHNHa
Asc € a Hwe have cH = g H

[." Let H be a subgroup of a group G. Leta, b € G if
b € a H, then p H = a H]

Asc € b H, we have cH = b H

SoaH =cH =b H '

ThusifaHﬂbH¢¢g,-thénaH =b H.

Therefore any two distinct left cosets are disjoint. Hence the set
of all (distinct) left cosets of H in G forms a partition of G.
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Theorem 2 - [Lagrange’s theorem]

[AU A/M 2004, 2005, N/Iy i M
[A.U A/M 2011, jupe 20185 M/J 2012, M/J 201 Y, M/ M

The order of a subgroup of ‘a finite group divides (he wiiber o

the group. (OR) If G is g finite group, then O | Oy, bl
sub-group H of G.

Solutior : Statement ¢ If G is a finite group and I'F i wibigriiy
of G, then order of H is a divisor of order of G.

Proof -
Let 0(G) = n, (Here 5 is finite)
Let G = {ay = e, @ @3, .. @y} and let H be o sulyteomp ok
Consider the left Cosets as follows
¢e*H = {exn\ H}
@+ H = lax+ H\ n € 1}
@ * H = {a,* h\ h € H}

Otherwise if a*hi = a*hl for l?é], by cancellation law
would have #; = hj, which is a contradiction.

Let there be & — disjoint cosets of H in K. Clearly tholi ko
equals G (ie,) G = (@1*+ H) U (@2+*H) U .. U (ay + 1)

- 0(G) = 0 (e *H) + O(az*H) T oo+ O(ey *+ 1)
= 0H) + o(H) + _ . 0(H)

|

—,1 -.'\. L&
K - times

0(G) = K . 0(H)
This implies O(H) is a divisor of 0(G).
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Trvvem 3 2 Let (G, *) and (H, A) be groups and £: 8 G = H he g
tinomorphism. Then the Kernel of g is a mormal sub-gworoup.
[A.U. N/D, 2004] [A.U A/M 2011, M/J 2012 2, M/J 2013]

holution : Let K be the Kernel of the homomorphipism g (ie.,)
Pl G\gx) = e, where e’ € H is the identity eleement of H}

lo prove that K is a subgroup :

tite,y € K, theng®) = ¢ and g(y) = e .
lal ' —1
4l vk y e K

I'v dclinition of homomorphism,
- ~ -1
ey =g AR = 2@ A go)]
= ¢’ A (e’)!
= e’ Ae’" = ¢,

Hewee x+y~! € K and this proves K is a sub-group of G by a
‘v for sub-groups.
"oprove that K is normal : Let x € K, f € G, then gEx) = e’
il - frxxfl e K
) = g (g ) xg Y
_ =1 |
=80 .e [gD]

=g [g(H]1?

1

= ¢
S frxxfl e kK

' 1. a normal subgroup of G.
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GK = G, [AU June 2011, N/D 2018

Letf:G - G’ be a homomorphism from the group ((3, ) |
the group (G > Ak
Then K = Ker () = x e | f(x) = ¢’}
i1s a normal sub-group of (G, =)
Also we know that the quotient set (G/K, ®) is a group.
Define ¢ : G/K - G’ is mapping from the group (G/K, @) tu
the group (G ', A), given by
¢ (Ka) = f(a), for any ¢ € G
Since, if Ka =Kp
=a+bl ek
> flaxb™h = ¢
Lf@D ALY =p
T@ALF®™ = ¢
T@OALOTT Alf@)] = o' app)
= f@Ae’ = fp)
e f@ =r@)
= ¢ (Ka) = ¢ (Kp)
@ is we:Il_ defined,

@~

Claim : ¢ is a homomorphism.

Let Ka, K p G/K
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Now ¢ (Kea @ Kb) = ¢ K (@+b)]
= fl(@*b)]
= /@ Af®)
= ¢ (Ka) A (K b)

~ ¢ is a homomorphism.
Claim : ¢ js one-to-one.
If ¢ (Ka) = ¢ (K b)
then fa) = f@®)
F@Af@e™ = reyare™y
F@*b™) = foxb™ = fe) = ¢
“axpTl e g = Ka = Kb»p
- @ is one-to-one.
Claim ' ¢ is onto.

Let y be any element of G ',

Si . I 3
e lnc.:e fJ:G—>G'is a homomorphism from G onto G ’, therefore
CIC exists an element ¢ € G such that f(a) = y.

For every a € G, K a € G/K
We get ¢ (K @) = f(a), for all fa) = y € G’
¢ is onto.
?:G/K > G’ is an isomorphism
G/K = G .

Th 3 .
€orém S : Prove that the lptersection of two mormal sulygroups s
g %o . [MCA May, 91, MU][A.L] N B RUERY

R normgj subgroup.
subgroups of 4 g UL S

‘SOIution : Let H and K be any two normal
We have to prove that H N K is normal in (}.
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Smce H and K are subgroups of G, e € Hande K.
Hence e € H n K. Thus H N K js 4 non-empty set,

v

Leta, b € H N K €
Claim : ap~! ¢ g N K

Since, 2, b € N K, both 4, p being to H and K.

Since H and K are subgroups of G, gp~! € Hand ap™! €

so that ab™! € g n K.

Hence H N K js 3 subgroup of G, by a criterion for subgroup,
To prove : H N K is normal :

LethHﬁK,andlethH

Since x € H N Kand x € H and » € K.

Since ¥ € H, E8E€G »gxgl ek (as H is normal)

Likewise x K,gege gxglek (as K is normal)

Hence x € H N Kand g € G =gz e wn K.

This H N K is a normal subgroup of G.

Theorem 6 : Every subgroup of an abelian group is a normal subgroup.
[AU N/M 2013]

Proof : Let (G, *) be an abelian group and (N, *) be 3 subgroup
of G.
Let g be any element in G and let n € N,

Now, grnsg™ = (rng)eg [ G is abelian]

= n*(g*g_l)_': \‘
= R *e

= ne&N
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S~ VAge€ Gandn N genxg7l e nN
<+ (N, *) is a normal subgroup.
Theorem 7 : Let < H, * > be a subgroup of < G, * >, Then show

that < H, *+ > js a normal subgroup iff a+h+a ! = H, V¥V aegG.
e [MCA, Nov., 93, May 92, MU]

Solution : Let H be normal in G.
Then by definition ¢ + H = H * q, for all ¢ € G,
Then a+ H = g1 = a*(a‘l*H)
= (a *a—l) * H
= exH
= H
Conversely let a1+ H + g = H, for all ¢ € G.
(ie,) a* (@ 1+H *a) = gxH)
(ie,) (@*a™1) « (H *a) = g+ H
(ie,) e * (H = @) = ax H
(le.) H=xqg = g+ H
Thus H is a normal subgroup.

Theorem 8 : Let < A, * > be a group. Let H = {a/a € G and
a*b =bxqVp e G}. Show that H is a normal subgroup.
[MCA May, 1990, March, 96, MUj

Solution : H = {4 € G | @b = bsrg, Vp e G}
Since e*q = gre = a, ¥V a &€ G, we have ¢ H.
H is non-empty

Let x, y € H. Thesi
AR = X%y N 2 E 6 and ax*y = yxq, Vy @ 0
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4.4 DEFINITIONS AND EXAMPLES OF RINGS AND

FIELDS

Definition 1 : Ring [A.U M/J 2014]

An algebraic system (S, +, .) is called a ring if the binary operationg

+ and . on S satisfy the followmg three properties :

1. (S, +) is an abelian group
2. (S, .) is a semigroup

3. The operation . is distributive over + ; that is, for
anya; b, ¢c € S,

a.b+c) =a.b+a.c and B+c).a =b.a+c.a

Examples :

1.

@,

(i1)

The set of all integers Z, the set of all rational numbers R™Y, the
set of all real numbers R are rings under the usual addition and

usual multiplication.

The set of all n X n matrices M, is a ring under the matrix

addition and matrix multiplication.

If » is a positive integer, then Z, = {0, T, .. n — 1} is a ring
under +,, the addition modulo »n and Xy, the multiplication

modulo r.

Let (R, +, .) be a ring and X be a non-empty set. Let A be the
set of all functions from X to R. (ie.,) A = {f|f: X>R is a
function} we define @ and . on A as follows :

if f, g € A,:'thenf@g:X-»Risgivenby
g & = fx) +g&) for all x € X.

iff,gEXthenf.g:X»RisgiVenby
-8 =fx.gk) for all x € X.
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Definition 2 : Integral domain.

A commutative ring (S, +, ) with identity and without divisors
of zero is called can integral domain.

Definition 3 : Field

A commutative ring (S, +, ) which has more than one element
such that every non-zero element of S has a multiplicative inverse in
S is called a field.

Definition 4 : Sub ring.

A subset R © S where (S, +, ) is a ring is called a subring if
(R, +, o) is itself with the operations + and e restricted to R.

Examples :
I.  The ring of integers Z is a subring of the ring of all rational

numbers Q.

2. In Z the ring of all integers the set of all even integers is a

subring.

Definition 5 : Ring homomorphism

Let (R, +, ») and (S, & ©) be rings. A mapping g : R = S is
called a ring homomorphism from (R, +, «) to (S, @, O) if for any
a, b € R.

gl@a+b) = g(a) @ g() and
ga.b) = g(a) O g(®)

Examples :
I.  The ring M, of all non-matrices is not commutative and has

non-zero zero divisors. For example : Let n = 2, then if
(0o 1 (1 o (o o

A = (0 O) and B = (0 0) then AB = (0 O) and

BA = (8 é) . So AB # BA and A is non-zero zero divisor.
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R &

2. The ring Q of all rational numbers, and the ring R of real numbers
are fields.

3. The ring (Z7,' +7, X5) is a field.

4. The ring (Z,,, +10, X10) is not an integral domain. (as 5 x192 = )
yet 5#0, 2 # 0 in Z,,).

5. The ring Z of all integers is an integral domain but not a field

Definition 6. Commutative Ring :

A ring (R, +, codt) is said to be commutative
ifa.b=b.aV a,b R

Theorem 1 : Every finite integral domain is a field.

Proof : Let (R, +, o) be a finite integral domain,
To prove (R — {0}, o) is a group
ie., to prove
(i) there exists an element 1 € R such that
l.a =a.1 =gq,foralla R 1 e R is an identity)

(D) for every element of 02aE€R, there exists an element a1 @ |
such that

a.at =471 4 =1
Let R — {0} = {a, Q, as, .. a,}

Let a € R - {0}, then the elements aay, aay, ... aa, are all Iy
R - {0} and they are all distinct.

(i.e.,) If a.a; = a.a,i #j
then a.(@—a) =0
Since R is an integral domain and g = 0, we must have q; — a; =)

(le.) g = a; which is a contradiction.
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“ R - {0} has exactly n elements, and R is a commutative ring
with cancellation law

S.owe get a = q -a;, for some iy (since 2 € R - {0}
Le.; a -4, = a;,.a (Since R is ’c;)‘mmutative)
Thus, let x = a.q; for same @, €R — {0}, and

y.-a, = a.q, = (ai.az)ai0 =@ .a =a.q =y

~ Hence a; is an unity R - {0}. We write it as 1.
1p :

Since 1 € R - {0}, therefore there exists an clement aq;, € R-{0}
such that

aay = 1

ba = ab = 1 (let g, = b)

b is the inverse of @, and conversely.
Herce (R, +, o) is é field.

Thereom 2 : Every field is an integral domain, but the converse need
not be true.

Proof .
Let (F, +, o) is a field.
(i.e.,) F is a commutative ring with unity.

To prove F is an integral domain it is enough to show that it has
non zero divisor.

Let a, b € F, such that ¢.b = 0

Let @+ 0, then ¢! & F
o Bl 2

= a—l.(a.b) = @™ B
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5.1 PARTIAL ORDERING-POSETS
- LATTICES AS POSETS

Def. Par.al order relation

A binary relation R in a set P is called a partial order relation
or a partial ordering in P iff R is reflexive, antisymmetric, and transitive.

Def. Poset
A set P together with a partial ordering R 1s called a partially
ordered set or a poset.

Note : It is conventional to denote a partial ordering by the symbol
<. This symbol does not necessarily mean "lessthan or equal to" as i

used for real numbers.

Def. Totally ordered set.

Let (P, <) be a partially ordered set. If for every x,y € P we
have either x <y V y <x, then < is called simple ordering or linear
ordering on P and (P, <) is called a totally ordered or simply ordered

set or a Chain

Example : The poset (Z, <) 1s totally ordered, since a <b or
b < a whenever ¢ and b are integers.

Def. Let (P, <) be a partially ordered set and let A € P. Any
element x€ P is an upper bound for A if for all ¢€ A, asx.
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Similarly, any element x € P is a lower bound for A if for all g € A,
xX=a

Def. Let (P, <) be a pértially ordered set and let A € P. Any
element x € P is a least upper bound or supremum, for A if x is an
upper bound for A and x < y where y is any upper bound for A.
Similarly, then greatest lower bound, or infimum, for A is an element
x€ P such that x is a lower bound and y=x for all lower

. bounds y. ‘

Def. Well-ordered

A partially ordered set is called well-ordered if every nonempty
subset of it has a least member.

Def.' Hasse diagram or partially ordered set diagram.

A partial ordering < on a set P can be represented by means of
a diagram known as a Hasse diagram or a partially ordered set diagram
of (P, <). In such a diagram, each element is represented by a small

circle or a dot.

The circle for x € P is drawn below the circle for yve P if
X <y, and a line is drawn between x and y if y covers x.

If x <y but y does not cover x, then x and y are not connected
directly by a single line. However, they are connected through one ore
more elements of P. It is possible to obtain the set of ordered pairs
in = from such a diagram. '

Example : Let P = {1, 2, 3, 4} and < be the relation "lessthan
or equal to" then the Hasse diagram is
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Note :

1. Hasse diagram, named after the twentieth - Century German
mathematlcxan Helmut Hasse.

2. In a digraph we apply the followmg rules then we get Hasse
diagram.

(i) Each vertex of A must be related to itself. So the arrows from a
vertex to itself are not necessary.

(ii) If a vertex b appears above vertex a and if vertex a is connected
to vertex b by an edge, then aRb, so direction arrows are not
necessary.

(iii) If vertex C is above a and if ¢ is connected to a by a sequence
of edges then arc.

(iv) The vertices are denoted by points rather than by circles.
Example. Let A = {a,b} ~ Hasse diagram
B = P(A) = {{¢}5{a}9{b},{a’b}} {a b

"Then C is a relation an a whose
diagraph is as follows

e

{b}

@>»
&

Example 1. Show that the "greater than or equal’ relation (=) is a
partial ordering on the set of ilitegers.

Solution : Since a =a fqr every integer a, = is reflexive. If
a=b and b = @, then a = b. Hence, = is antisymmetric. Finally, = 1S
transitive since @ = b and b = ¢ imply that @ = c. It follows that = is
a partial ordering on the set of integers and (Z, =) is a poset.
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Example 2. Show that the inclusion relation C is a partial ordering
on the power set of a set S.
Solution : Since A C A whenever A is a subset of S, C is

reflexive. It is antisymmetric since A € B and B C A imply that
A = B. Finally C is transitive, since A € B and B C C imply that
A & C. Hence, C is a partial ordering on P(S), and P(S), €)is a
poset.

Example 3. Let R be a binary relation on the set of all positive integers

such that R = {(a, b)/a = b*»}. Is R reflexive ? Symmetric ?
Antisymmetric ? Transitive ? An equivalence relation ? A partial
ordering relation ? [MCA, MU, Nov. 1990, Dec. 1992]

Solution : R = {(a,b)/a,b are positive integers and a = bz}. For
R to be reflexive, we should have a R a for all positive integers a.

But aRa holds only when a = a? by hypothesis. Now @ = @ is not true
for all positive integers. Infact only for the positive integer @ = 1, we

have a = 4% Hence R is not reflexive.

For R to be symmetric, if aRb then we should have bRaz. But
aRb implies a = b2, But @ = b2 does not imply b = 4 always for positive
integers. For instance 16 = 42 but 4 = 162. Hence aRb does not imply
bRa. Hence R is not symmetric.

For R to be anti-symmetric, for positive integers a,b if @ R, b
and bRa hold, then @ =b. aRb implies a =b?> and bRa implies
b =a2, So if @ = b2 and b =a2, then ¢ = b? = (a:2)2=a4 1€, a4—-a=0,
ie, a@@ - 1) =0. Since a is not a positive integer, @ # 0 so that
@—-1 =0 1., ad=1 ie., a =1. This means b = a* = 1. Thus aRb
and bRa imply @ =b = 1. Hence R is anti-symmetric.

For R to be transitive, if aRb holds and bRc holds, the aRc should
hold. ' Py

ie., aRb implies @ = b* and bRc implies b = ¢,

So that @ = b2 = ¢* Hence aRc does not hold.
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For example, 256 = 16> and 16 = 4% but 256 = 4> (in fact 256= A%,
Thus R is not transitive.

Also, R is not an equivalence relation as an equivalence relation
is reflexive, symmetric and transitive. R is also not a partial ordering
relation, as a partial ordering relation is reflexive, anti-symmetric and
transitive.

Example 4. Let X = {2, 3, 6, 12, 24, 36} and the relation =< be such
that x < y if x divides y. Draw the Hasse diagram of (x, =)

Solution :

s 24 36
The relation

R = {xy) /x|y x=y
= {(2, 6), (2, 12), (2, 29), (2, 306),
3, 6), (3, 12), (3, 24), (3, 36),
6, 12), (6, 24), (6, 36)
(12, 24), (12, 36)} 6

The Hasse diagram is
2 3

Example 5. Let A be a given finite set and P(A) its power set. Let
C be the inclusion relation on the elements of p(A). Draw Hasse
diagram of P (4),C) for (a) A = {a} ®) A = {a,b}

(c) A = {a,b,c} () A = {ab;cd}
Solution :
fa} - o
{b}
{a} {b} ta)
g ¢ @

(a) (b)
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Example 6. Give a relation which is both a partially ordering relation
and an equivalence relation on a set.
Solution : Equality, similarity of triangles are the examples of

-

relation which are both a partial ordering relation and an equivalence

relation.

Example 7. Which elements of the poset {{2, 4, 5, 10, 12, 20, 25}, |}
are maximal, and which are minimal?

Solution : Draw Hasse diagram

From the figure this poset $hows that the maximal clements are
12, 20 and 25 and the minimal elements are 2 and 5. As this example
shows, a poset can have more than one maximal element and more

than one minimal element.
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Example 8. Determine whether the posets represents by each of the
Hasse diagrams in the following figure, have a greatest element and
a least element.

(a) (b) (c) (d)

Solution : The least element of the poset with Hasse diagram
(a) is a. This poset has no greatest clement. The poset with Hasse
diagram (b) has neither a least not a greatest element. The poset with
Hasse diagram (c) has no least element. Its greatest element is d. The
poset with Hasse diagram (d) has least element @ and greatest element d.

Example 9. Let S be a set. Determine whether there is a greatest
clement and a least element in the poset P(S), ).

Solution : The least element is the empty set since ¢ € T for
any subset T of S. The set S is the greatest element in this poset.
Since T € S whenever T is a subset of S.

Example 10. Is there a greatest element and a least element in the
poset (Z",1) 2

Solution : The integer 1 is the least element since 1/n whenever
n is a positive integer. Sinfije',p}{en is no integer that is divisible by all
positive integers, there is no greatest element.
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5.2 Properties of Lattices - Lattices as Algebraic
Systems - Sublattices - Direct Product and
Homomorphism - Some Special Latiices

In order to emphasize the role of an ordering relation, a lattice
is first introduced as a partially drdered set. Both lattices and Boolean
algebra have important applications in the theory and design of
computers. There are many other areas such as engineering and science
to which Boolean algebra is applied.

Def. Lattice

A lattice in a partially ordered set (L, =) in which every pair of

elements a,b & L has a greatest lower bound and a least upper bound.

Def. Greatest Lower Bound (GLB) and Least Upper Bound
(LUB)
The GLB of a subset {a,b} C L will be denoted by a *b and
the least upper bound by a ®b
ie, GLB {g,b} = a=b (meet or product of a and b)
LUB {a,b} = a@®b (join or sum of ¢ and b)

Note : 1. From the definition of a lattice that both * and © are
binary operations on L because of the uniqueness of the LUB and
GLB of any subset of a poset.

2. 1t is obvious that, a totally ordered set is trivially a lattice, but
not all partially ordered sets are lattices, can be concluded from Hasse
diagrams of posets.

Remark : GLB, LUB may or may-not exist for a subset.
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Solufion : Given :

@ ) (i)
(i) Deoesnot represent a lattice, because ¢ @ f does not exists.
(ii} Does not represent a lattice; because b @ ¢ does not exits.
(iiil) Does not represent a lattice, because neither d @ ¢ not b * ¢ exists.
Example 7.
Let the sets Sg, S, ..., S; be given by
So = {a,b,c,d,e.f}, S; = {a;b,c,d,e}
S, = {a,b,c,d,e,f}, S3 = {a,b,c,e}

S4 = {a,b,c} Ss = {a,b}, Sg = {a,c}
S; = {a}
Draw the diagram of (L, ) where L = {Sg, S;,S5,... » Sy}
Solution : /So
81\ >2
S3
/ L\
S5 Se
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Some properties of Lattices

PROPERTY 1 : Let (L, <) be a lattice. For any a,b,¢c € L
we have:a*a = a and aa=a

setmw T

[Idempotént law] ‘
Proof: Let a,b,c € L, by the definition of GLB of a and b we have

a*b < a s (1)
and if a <a and a = b, then
a<ax*b ... (i)
As a <a from (i) and (ii) we have
a*a<agand a=a=a |
By the antisymmetric property if follows that a =a*a
Similarly we can prove that a ®a=a

PROPERTY 2. Show that the operation of meet are join on a lattice
are associative.

Solution : To prove : (@*b)*c = a=*(b*c)
Let a,b,c € L by the definition we have
(@a*b)*c =a=*b
and (a*b)*c =c

By the definition of GLB of a and b, we have a *b <a and
a*b <b, so by transitive property of = we have

(@a*b)*c = a
and (a*b)*c = b
As (@ax*b)*c<b and (a*b)*c=c

We see that (@+b)*=c is lower bound for b and c. From the
definition of b * ¢ it follows that (@ *b) *c =b *c

As (a*b)=*c Saghd.(-a*b)*csb*c
From the definition of a = (b #c), we have

(@axby*c=a=(*c) .. ()
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Now ax(b+*c)<aand a*(b*c)<b=*c

As b*ésb, by tansitivity a * (b *c) < b

since a*(b+*c)<a, and z ?l:;(b *c) <b

We havea*(b*c)s(a*b) |

As a*(bxc)s=sb*c=c
a*(b=*c)=(a*b)*c (i)

From (i) and (ii), by antisymmetric property, if follows that
a*(b=xc)=(ax*bh)=*c
Similarly, we can prove that a @ G®c) = (@a®b)Dc
PROPERTY 3. Show that the operation of meet and join on a lattice
are commutative law. i.e, a*b =b +q and a Db = p Da
Solution : Given a,b € L both a*b and b * a are GLB of a and

b. By the uniqueness of GLB of ¢ and b, we have @ b = b * q. Similarly
a®db = bDa holds good.

PROPERTY 4. Absorption law a * (a®b)=aand ad (a*+b) = g
Solution : Let @,bE L. Then a=<a and a=<=a®b. So

a =a*(a®b). On the other hand a * (@ @ b) = a. By annisymmetric
property of < we have @ =a * (a D b)

Similarly we have a = aD@xb) Vabe L

THEOREMS

Theorem 1.

Let (I, <) be a lattice in which * and @ denotes the operations of

meet and joim respectively. For any a,b € L.
as<b<a*b=a<a®b=>b

Proof : First let us prove that ¢ < b é»'a.*b = a

Let us assume that ¢ < b and also we khow that a < a.

~as<a=h . (D
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But, from definition of a *b, we have
a*b <a . s K2)

Hence a < b = a *b = a [From (1) .and (2)]
Next, assume that a *b = a, but it is‘l only possible if a = b.
That is a*b=a = a=<b
Combining these two results, we get

a<b e axb=a
To show that a <= b <a@®b =b in a similar way.
From a * b = a, We have

b®@+b) = bDa=adb
But b&®(@@*b) = b
Hence a@®b =>b follows that a*b =a

Theorem 2.

Let (L, <) be a lattice. For any a,b € L the following are equivalent.
@i a=<h, (ii) axb=a, (iii) a®b=D>b
Proof : At first, consider (i) < (ii)

We have @ < a, assume @ < b. Therefore @ < a * b. By the definition
of GLB, we have

a*b=a
Hence by antisymmetric property, @ *b =a
Assume that @ *b = a, but is only possible if
a<b =>axb=a=>a=bh.
Combining these two results, we h_aV; a<b e ax*b=a
Similarly, e <b ® a®b = b "
Alternatively, (ii) <> (iii) as follows :

Assume a*b =a, we have b® (@*b)=bDa=a Db, but by
absorption b @ (@ * b) = b. Hence a®b = b.
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But, from definition of a * b, we have
a*xb =a . s (2)

Hence a < b = a *b = a [From (1) .and (2)]
Next, assume that @ *b = a, but it is only possible if a = b.
That is a *b=a = a=b
Combining these two results, we get

a<=b e a*xb=a
To show that a <b<a®b =0>b in a similar way.
From a *b = a, We have

b®(a+b) = bDa=a®b
But b®(@*b) = b
Hence a@®b =>b follows that a*b =a

Theorem 2.

Let (L, <) be a lattice. For any a, b € L the following are equivalent.
@ a=<hb, (ii) axb=a, (i) a®b=>
Proof : At first, consider (i) <« (i)

We have @ < a, assume @ < b. Therefore @ < a * b. By the definition
of GLB, we have

a*xb=a
Hence by antisymmetric property, @ *b = a
Assume that @ *b = @, but is only possible if
a<b =>a*b=a=>a=>h.
Combining these two results, we ha{/? a=b <« a*b=a
Similarly, a =b < a®b = b
Alternatively, (ii) <> (iii) as follows :

Assume a*b =a, we have b®D (a*b) =bDa=a @b, but by
absorption b & (a *b) =b. Hence a®b = b.
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which is inequality (i) in 2.

Hence the theorem.

-
e
3

Theorem 4. |
In a lattice (L, <), show that (i) (a*b)®(cxd) = (@& c)*(b®dd
(i) (a*b) D (b*c)D(c*a) = (a®b)=(bDc)*(cDa), Ya.b,c € L
Proof : Let a,b,c € L

Then axb<a (oxr) b<aa®b R
a*b<a=scDa o 2)
a*b=b=bDc s £9)

Using (1), (2) and (3), we get
a*b=<(@®b)*(bDc)=*(cDa)
Similarly b *c < (@@®b) * (b Dc) * (c Da)
cxa<@®d®b)*(dDc)*(cDa)
This proves (ii)

We have a < a®@c

b=b®d
(@+b) = (@a®c)* (b ®d)
We know that c<ad®c - (4)
d<b®d .

cxd < @®c)* (b Dd)
By (4) and (5), (@ *b) ® (c xd) = (@ ®c) * (b ©d). This proves (i)
Theorem 5. o

In a lattice (L, <), prove that ,‘for a,b,c € L
) (@a*b)®d(axc)=a=* (b\e').,,(a*c))
(i) (a®b)*x(@a®c)zad (b*(adc)

Proof : We know that a*b =ag,a*c =a
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S (@*b)P@*c)<a®a = a o (D)
Also a*b <b, a*c<a=c

= (@+*b)D(a*c) =bd(a=*c) sx: (2)

From (1) and (2), (a * b) @'(a*c)<a*(b69(a*c))

This proves (i)

We know that a = a Db a<a®c
= a=axa={a®b)*(adc)

Further b = a ®b; aPc=adDc

_ = b*(@Dc)=(aDb)*(@adc)
By B & (4), a®d®=*(@dc)) < (@ Db) * (a ®c)
This proves (ii)

Theorem 6.

In a lattice if ¢ =< b < ¢, show that
(i) a®b=>b=*c (i) (a*b)@(b*c)=(a@b)*(a@c)=b

Proof : Let a<b <c _
a=b =>a®Db=b,a*xb=ag
b=c=>bDd=c,bxc=»b

=c¢c=>a®Pc=c,a*xc=a
T a®b=b=>b=x*c (i) follows
Now (@*b)D(b=*c) = a®b=>b
(@a®b)*(a@aPc)=bxc=b (ii) follows
Theorem 7.

Draw Hasse diagram of all lattices with upto five elements.

Solution : The following Hasse diagrams are the lattice with 1, 2,

3, 4 and 5 elements.
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Note :
Terminology
Computer
In logic In set theo
.gl W = Designer’s Read as
notation notation : ;
notatiomn
Y @) & joint ‘or’ sum
A N * ‘Meet’ and product
. = -5, Complement
= c = partially ordered
set.

Def. A lattice is an algebraic system (L, *, @) with two binary
operations * and @ on L which are both (1) commutative and
(2) associative and (3) satisfy the absorption laws.

Def. Sublattice R

Let (L, %, @) be a lattice and let S < L be a subset of L. The
algebra (S, *, @) is a sublattice of (L, *, @) iff S is closed under both
operations * and @
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Example 1. Let (L, <) be a lattice in which L = {ay, @y, ... ag} and
Si> S, and S; be the sublattices of L given by §; = {aj,ay, a4, ag},
S; = {aj,a5,a7, a5} and S; = {a;, a,, ;;, ag}

The diagram of (L, <) is 4o

Observe that (S;, <) and (S, <) are sublattices of (L, <), but
(S3, =) is not a sublattices because a,,a, € S; but a, *a, = ag & S3.
2> ¥4 3 2 4 3

as az

ag
Note that (S3, <) is a lattice.

Def.: Let (L, *, @) and (S, A, V) be two lattices. The algebraic
system (L XS, -, +) in which the binary operations +_and e on
L X S are such that for any (ay,b;) and (ay b,) in L X S

(@1,01) - (@2, b2) = (ay *ay, biAby)
(a1,b1) + (a3, b3) = (a1 Day, by1Vhy)
is called the direct product of the lattices (L, *, @) and (S, A, V)

Def. Lattice hoihomorphism ‘ _
Let (L, *, @) and (S, A, V) be two lattices. A mapping
g:L - S is called a lattice homomorphism from the lattice
(L, *, ®) to (S, A, V) if for any a,b € L
g(a+*b)=g(a)Ag (b) and g.(a ®b) =g (a) Vg (b).

Note : Observe that both the operations of meet and join are
preserved. These may be mappings which preserve only one of the two
operations. Such mappings are not lattice homomorphisms.

Downloaded from EnggTree.com


http://www.PDFWatermarkRemover.com/buy.htm

EnggTree.com

Def. A lattice is called complete if each of its non empty subsets
has a least upper bound and a greatest lower bound.

Def. In a bounded lattice (L, *, @, 0, 1) an element b €L iy
called a complement of an element ¢ €L if

a*bh = 0 and aé-b = 7

Def. A lattice (L, #, @, 0, 1) is said to be a complemented lattice
if every element of L has atleast one complement.

Def. A lattice (L, *, @) is called a distributive lattice if for any
a,b,ceL

ax(b®c) = (@*b)D(a+*c)
ad®=*c) = (@a®b)*(@dc)

In other words, in a distributive lattice the operations * and @
distribute over each other.

Def. Modular

A lattice (L, A, V) is called modular if for all Ey.ze€ L, x5z
= xV(yAz) = (xVy)Az (modular equations).

Note : We have (by modular inequality) if x <z = xV(yAz) <
(xVy)Az holds in any lattice. Therefore to show that a_ lattice L is
modular it is enough to show if,

xX=z = xV(yAz) = (xVy)Az holds in L.

THEOREMS

Theorem 1.

Every chain is a distributive lattice. [A.U M/J 2013]
Proof : Let (L, <) be a chain
Let a,b,c € L
Consider the following f)ossible cases
Bl & b weitis

(i) a=b and @ = ¢
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2. If a homomorphism g : L - S of two lattices (L, * @) and
(S, A, V) is bijective ie., one-to-one onto, then g is called an
isomorphism. If there exists an isomorphism between two lattices then
the lattices are called isomorphic. ’

3. A homomorphism g : L = L where (L, %, @) is a lattice is
called an endomorphism.

If g: L - L is an isomorphism, then g is called an automorphism.

4. If g : L - L is an endomorphism, then the image set of g is
a sublattice of L.

Def. Let (P, <) and (Q, =') be two partially ordered sets.
A mapping f: P = Q is said to be order-preserving relative to the
ordering < in P and =<' in Q iff for any a,b € P such that a = b,

f(@)="f() n Q
Note : If (P, =) and (Q, <') are lattices and g: P~Q is a lattice
homomorphism, then g is order-preserving.

Def. Two partially ordered sets (P, <) and (Q, < ") are called
order-isomorphic if there exists a mapping f : P = Q which is bijective

and if both f and f~! are order-preserving.

Def. Let (L, =, ©) be a lattice and S S L be a finite subset of L
where S = {ay,ay,... a,}. The greatest lower bound and the least

upper bound of S can be expressed as

n n
GLB S = = a@; and LUB S = & g wuse 10)
i=1 i=1
2 k k—1
where * a@; = a1*ay and «a = * aj*ay, k = 34,..
i=1 i=1 i=1

n
A similar representation can be given for © a; . Because of the
i=1
associativity of the operations * and , we can write

o

n N )
* Q = A1 %Ay * ... ¥Qy and
i 1 2 n

n
D aq = a,Day;® ... Da,
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We shall now show that the distributive law
ax(®c) = (a*b)d(a*c)
In case (i) @ <b or a <c then we have a*b = a

- a®a=a, a*c=a and

Q.

> a<b®c
So ax*x(bdc) = a (1)
and (@a*b)D (a*c) = ada = a as (2)
(1) + (2) we get
a*(b®c) = (a*b)D(a*c)
In case (ii)
Ifa>b and a =c then we have a*b =b, a*c=c and bDc =a
So that a* (b &c) = bDc .. (3) and
@*b)®(@*c) = b®c | . (@)
From (3) and (4) we get
a*(b®c) = (axb)d(a*c)
Theorem 2.

Let (L, *, @) be a distributive lattice. [A.U. N/D 2004]
For any a, b, c € L
(a*b=a*xc)A(@®b=a®¢c) > b =c

Proof : (a*b)Dc = (a*c)®Pc = ¢ s LX)
(a*b)Dc = (@a®c)*(bDc)
= (a@a®b)*(bDc)
= b®(a*c)
= b® (a*b)
% = . D)
From (1) and (2) b =c
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Theorem 3.
Every distributive lattice is modular. [A.U. N/D 2004]
Proof : Let (L, =) be a distribu}tﬁ{c‘_;fattice
For all a,b,c € L, we have
a®®*c) = (@adb)*(aDc)
Thus if @ < ¢, then a®c¢ = ¢ and
a®B+*c) = (@®b)*c

So if a = ¢, the modular equation is satisfied and L is modular.

Example 1. Show that the Lattices given by the diagrams are not
distributive.

as
0 0

(A) (B)
Solution : In lattice (A),
a3*(@1®ay) = az*l=a3 = (a3*ay) ® (a3 +ay)
a1 *(@;@a3) = 0 = (a;*ay) ® (a*a3)
but 'az*(al®a3) = a;*1 = a,
(@%a) @ (a%a3) = 0 Daz = a3
Hence the Lattice (A) is not distributive.

In (B), by * (by @ b3) = by while (b1 *by) ® (b *b3) = 0 which
shows that the Lattice is not distributive.
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Example 2. If D(n) denotes the lattice of all the divisors of the integer

n draw the Hasse diagrams of D(10), D(15), D(32) and D(45)
Solution : p 32

15 15 -

15

1

e

Example 3. Let L be a complemented, distributive lattice.

a, b € L the following are equivalent.

(i)a=»> (ii) a * b’ =0 (iii) a' ® b =1
(iv) b’ < a’ where ‘1’ denotes corresponding complement.
(OR)
Show that in a distributive and complemented lattice.
a<b < a*b’' =0 a' ®b=1<b'=a
=> a®b=0>b

= (a®b)*b’ =0
=> (a*b')v(b=*b') = 0
> aqa*b’' =0

Hence (1) = (ii)
axb' =0
= (axb')=1
=a' ' ©B)=1
= a' @b =1

Hence (ii) = (iii)

Solution : a =< b

as: bxb’' =0

as bxb’' =0

For

[A.U. N/D 2004]1[A.U M/J 2013]

a'®b =1 = (@ ®b)*xb' =b’
= (@a'+*b)DD*b")=0' (distributive law)
2> a'*b'=b' as bxb’ = 0
= b'=a’
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Hence (iii) = (iv)
b'=a"=a’'+b" = p'
=>a®b = p*°
(taking complement on both sides by Demorgan’s law)
=>a=<b
Hence (iv) = (i)
Thus (i) = (i) = (@) = (iv) = ()

Example 4. Prove that the following lattice is nmot modular.

1

Solution : For this lattice when a < ¢
adB=*c) # (@a®b)*c
Since a®b*c) = ad®0 = a
but (@®b)xc = 1*¢c = ¢
. it is not a modular lattice.

Def. Enumeration : A one-to-one correspondence with the elements
of a set is called an enumeration.

Example 5. Theorem : State and prove Isotonicity property in a lattice.
Proof : Let (L, =) be a lattice. For a,b,c € L, the following
properties called isotonicity laws. :

b<c=>axb<a*c;a®b=<ad® c
(1.€:) b=c = anb=aAc ; aVvb <avc

Let us assume that b < ¢
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(1) Claim : aVb =< aVc
Let x =aVc. Then x is lub of ¢ & ¢
= x is an upper bound of ¢ & c.
7 50 M e
But b<¢,c=sx=>b=<x
Also a =x
. x is upper bound of a & b
But avb is Iub of a & b
~aVb = x = aVc
(ii) Claim : aAb =< aAc
Lety = anb = yisglbofa & b
<. y is a lower bound of ¢ & b
Yy =ay=<b
Usingb<c,y=a y=<c
. y is a lower bound of ¢ & ¢
But aAc is glb of @ and ¢
S yYy=aAc » aAb = alc

Example 6. If (L, A, V) is a complemented distributive lattice, then
the De Morgan’s laws are valid. [A.U M/J 2013]

i.e., aVb=aAb and a/\b=;VE, YVabe L
Proof : If (L, A, V) is a complemented distributive lattice. We
have the complement of any element is unique in the distributive lattice.

Let a,be L 7
Let ¢ and b are complements of a and b respectively.
~ We have ana = 0, ava = 1, bAb = 0, bvh = 1
Now, (avb)V(anb) = ((avb)Va)A((avb)Vb)

= (@V(bVa)A(aVv(bVb))
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= (aV(aVvb))A(aV1)
= ((@Va)Vb)A(aV1)
s il ==
and (aVb)A(ZAE); (éA(ZAE))v(bA(ZAE))
= ((@ana)Ab)V (b A B AD))
= (0AB)V((bADb)Aa)
= (0Ab)V(0Aa)
= 0vV0 = 0

. anb is the complement of aVvb and its unique.

Example 7. Let (L, A, V) be a distributive lattice and a, b, ¢ € L
If aAb = aAc and avb = aVe, then b = ¢
[Cancellation laws are valid in a Distributive lattice]

Proof : Let (L, A, V) be any distributive lattice and a,b,c € L,
such that

anNb = alAc

and avb = aVc
Now, (@anb)Vve = (avc)A(bVe) (. L is distributive]

= (aVb)A(bVc)
= (bVva)A(Vc)
= bV(aAc)

= bv(aqb’_)\if
= b |

and (aAb)Vc = (aAc)Ve = ¢
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Thus b= (anb)Vc = ¢
So that, aAb = aAc

and aVb = aVc¢
>h=c¢
That is, the cancellati.on law is valid in a distributive lattice.

Example 8, Theorem : A modular lattice is distributive if and only if
none of its sublattice is isomorphic to the diamond lattice M.,

Proof : We have, the diamond lattice Ms is not distributive lattice,
therefore any lattice having sublattice isomorphic to Ms cannot be

distributive.

Conversely, let (L, <) be any modular lattice but not distributive
lattice. We show that L has a sublattice isomorphic to Ms. Since (L, <)

is not distributive lattice, then we an find x,y,z € L such that
FAY)V(YAZ)V(zAX) < (xVY)A(yVZ)A(zVi)
Now let, u = (xAy)V(yA2)V(zAx)
v = (xVy)A(YV2)A(zVx)
a = uV(xAv)
b = uV(yAv) and
¢ = uV(ZAv)

Then the elements u,v,a,b,c are distinct and form a sublattice
to L, and S = {u,a,b,c,v} is isomorphic to the diamond lattice M;.
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9.3 BOOLEAN ALGEBRA
Det. Boolean Algebra

A Boolean algebra is a complemented, distributive lattice,

Note : 1. George boole in 1854 had givcﬁ 5 set of basic rules for
logic in his book "The laws of thought". Boolean algebra provides the
operations and rules working with the binary set {0, 1}

2. Electronic circuites and switching matchings are working with
the rules of Boolean algebra,

Properties

A Boolean algebra will generally be denoted by (B, +, &,',0,1)
in which (B, *, @) is a lattice with two binary operations * and @
called the meet and join respectively. The corresponding partially
ordered set will be denoted by (B, =<). The bounds of the lattice are
denoted by 0 and. 1, where 0 is the least element and 1 the greatest
clement of (B, <). Since (B, #,®) is complemented and because of
the fact that it is a distributive lattice, each element of B has a unique
complement. We shall denote the unary operatlon of complementation
by ', so that for any @ € B, the complement of a is denoted by a'€B.

Most of the properties of a Boolean algebra have been derived
in the previous section. We shall list some of the important properties
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here. It may be mentioned that the properties listed here are not

independent of each other.
A Boolean algebra (B, *, @, ', 0, 1) satisfies the following properties
in which a,b and ¢ denote any elements of the set B.
1. (B, % @) is a lattice in which the operations * and @ satisfy the
following identities “:
(L-1) a*xa = a "3 (L-1)' adba = a

(L2) a*b = bxa L2 a®b =bda
[Commutative law]

(L-3) (@axb)*c = a=*({d=c) (L-3)’ (a®b)Dc = a® (D Dc)

[Associative law]
(L-4) ax*(a®b) = a (L-4)' a®(ax=b) = a
2. (B, =, @) is a distributive lattice and satisfies these identities :
(D-1) a*b®c) = (a+b)D (a*c)
(D-2) a®Bb*c) = (adb)*(adc) ;
(D-3) (a*rb)'éB(b*c)@(c*a) = (@®b)yxdPc)*(cDa)
(D-4) axb =a»qc, andaé}b = a®c =>b=c

[Distributive laws]

3. (B, *,9, 0, 1) is a bounded lattice in which for any a € B, the
following hold : ’

B1) Osa=<1 |

(B-2) a*x0 =0 (B-2)' a®1l =1 [Dominance laws]

(B-3) ax1l = a (B-3)' a®0 = a [Identity laws]

4, (B, = &, ’, 0, 1) is a uniquely complemented lattice in which the
complement of any element @ € B is denoted by a’€ B and
satisfies the following identities :

(C-1) axa = 0 (C-1)’ a®a =1 [Complement laws}

T (C-2) 0 = 1 (C-2) ¥ =0 [Zero and one law]

(C3) (a*b)’ = a'®b  (C3) (a®b)' = a'+b’'
[De-Morgan’s laws|
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5. There exists a partial ordering relation < on B such that

(P1)  axb = GLB {a,b} (P-1)'  2®b = LUB {a,b}
(P-2) G=<b ®asb=gea®db=>»

(P3) as<bwarb’'=0®b'<a'ea'®b = 1

Example :

Let B = {0, 1} be a set. The operations *, @, %on B are defined by

* 0 1 b 0 T X x'
0 0 0 0 0 1 0 1
1 0 1 1 1 1 1 0

Clearly < B,*,@®, ', 0, 1 > is a Boolean algebra.

Example :

Let A = {a,b,c} and consider the lattice P(A4).
{a, b, c}

{a, b} _

{a}

¢
Clearly < P(),N, U > is a Boolean Algebra.
Def. Sub-Boolean algebra

Let (B, *,®, , 0, 1) be a Boolean algebra and S C B. If S contains
the elements 0 and 1 and is closed under the operations *, @ and o
then (S, +,@®, /, 0, 1) is called a sub-boolean algebra.
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Def. Join-irreducible.

Let (L, *, @) be a lattice. An element ¢ € L is called join-irreducible
if it cannot be expressed as the join of two distinct elements of L. In
otherwords a € L is join-irreducible

If for any a;,a, € L
a=a,Day > (@a=a))V(a=ay)

Def. (Direct product)

Let (L, &,*) and (S, V, A) be two lattices. Then the direct
product of L, and S is defined by (L X S, +, *) where + and * are
defined by the following manners.

(a1,b1) + (a2, b2) = (a1 D ay, b1Vhy)
(dl, bl) . (a2 ,_bz) — (01 *as, bl /\bz), v ai,ay (= L, A4 bl’ bz (S

+ Def. Lattice homomorphism

Let (L, &, *) and (S, V, A) be two lattices. A map f: L -» S
is called a homomorphism if

ga®b) = g(a)vg(b)
g(axb) = ga)yng®) ; Va,be L

Note: 1. The binary operation @ and * are preserved under Lattice
Homomorphism.

2.g:(L,®,*, =)~ (S, V, A, =')is called an order homomorphism,
thena<b = g(a) <'g(), for all a,bE L

Example 1. Theorem : In a Boolean lattice, prove that the De-Mog‘gan’s
laws. [A.U. M/J 2006]

Proof : Let (L, &, *) be Boolean lattice.
(ie,) L is a complemchtcd and distributive lattice.

The De-Morgan’s laws are

@) ¢®b=ax*b ; (i) a*b=a Db, Va abe L
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Assume that @,b € L. There exists elts

a,be L such that a®a = 1 ; ax*a =0;b®b=1;b*xh=0
() Claim : a®b=a+b
Now @ ®b) @ (a*b) = [@®b)Da]*[(aDb)Db]
= [®a®b]*[c®bDb]
= [1b]+*[a®1]
= 1%x1 = 1

@®b)*(@xb) = [(@®b)*a]*[(a®b) +b)
= [@*a)® b+ )]  [(a ) ® (b + b)]
= [0 (b *a)] * [(a * b) D 0]
= (brax(ax*b)
= b*(@*a)xb = b+x0+b = (

Hence claim (i) is proved.
(i) Claim : 2+b = 2 @b

Now (axb) @ (@a@®b) = [(a+b)Da]®D [(a+b)Db]

= [@®a)* (PO ®[(@aDb)* (b Db)]

= [1+®G®a)]®[@®b) *1]

= (092D @db)
| - b@EODDD
= bD1Ob=bGb, = 1

@*b)x @®5) = [(@+b)+a] @ [(a+b)=b]

= (a*;*b)ea[a*b*g]

Downloaded from EnggTree.com


http://www.PDFWatermarkRemover.com/buy.htm

EnggTree.com

= (0*b) @ [a*0]
= 0=*=0=20
Therefore claim (ii) is proved .

Hence the De-Morgan’s laws are proved.

Example 2. Show that (P(A), U, N, C) is a Boolean algebra.
Proof : We know that (P(A)), €) is a lattice.

For any X, Y, Z € P(A), XN (Y.UZ) =X NY)U XnZ

* XU(YﬂZ)=(XUY)ﬁ(XUZ)
Also V X E'P(A), there exists a subset X of A such that
XUX = A XNX ={}=¢
Zero elt of P(A) is { } = least elt.
The greatest elt of P(A) is A.
s (P(A),U, N, ©) is a Boolean algebra.
Exampié 3. Consider the D3y = {1, 2, 3, 5, 6, 10, 15, 30} is a lattice

(infact Boolean algebra) with relation "divides".

Solution : Now

el == 4 351 =1 5%+1 = 1
2x2 = 2 3«2 =1 v 52 =1
23 =1 3x3 =3 5«3 =1
2«5 =1 3«5 = 3 5*5 =5
26 = 2 3x6 = 3 56 =1
210 = 1 310 = 1 5«10 = 5
2%15 = 1 315 = 3 - 5«15 = 5
230 = 2 3*x30 = 3 5«30 = 5

* 2, 3, 5 are atoms in D3
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