ANNA UNIVERSITY, CHENNAI NON-AUTONOMOUS COLLEGES AFFILIATED TO ANNA UNIVERSITY REGULATIONS 2021 CHOICE BASED CREDIT SYSTEM B. E. ENVIRONMENTAL ENGINEERING CURRICULA AND SYLLABI FOR SEMESTER I & II

SEMESTER I

S.	COURSE	COURSE TITLE	CATE-	PERIODS PER WEEK			TOTAL CONTACT	CREDITS			
NO.	CODE		GORT	L	Т	Р	PERIODS				
1.	IP3151	Induction Programme	-	-	-	-	-	0			
THEC	THEORY										
2.	HS3151	Professional English - I	HSMC	3	1	0	4	4			
3.	MA3151	Matrices and Calculus	BSC	3	1	0	4	4			
4.	PH3151	Engineering Physics	BSC	3	0	0	3	3			
5.	CY3151	Engineering Chemistry	BSC	3	0	0	3	3			
6.	GE3151	Problem Solving and Python Programming	ESC	3	0	0	3	3			
PRAC	CTICALS			- /							
7.	GE3171	Problem Solving and Python Programming Laboratory	ESC	0	0	4	4	2			
8.	BS3171	Physics and Chemistry Laboratory	BSC	0	0	4	4	2			
			TOTAL	15	2	8	25	21			

SEMESTER II

S.	COURSE	COURSE TITLE	CATE-	PERIODS PER WEEK			TOTAL CONTACT	CREDITS			
NO.	CODE		GORY	L	Т	Ρ	PERIODS				
THEC	THEORY										
1.	HS3251	Professional English - II	HSMC	3	1	0	4	4			
2.	MA3251	Statistics and Numerical Methods	BSC	3	1	0	4	4			
3.	BE3252	Basic Electrical, Electronics and Instrumentation Engineering	ESC	3	0	0	GE 3	3			
4.	GE3251	Engineering Graphics	ESC	2	0	4	6	4			
5.	BE3255	Basic Civil and Mechanical Engineering	ESC	3	0	0	3	3			
6.		NCC Credit Course Level 1*	-	2	0	0	2	2			
PRAC	CTICALS										
7.	GE3271	Engineering Practices Laboratory	ESC	0	0	4	4	2			
8.	BE3272	Basic Electrical, Electronics and Instrumentation Engineering Laboratory	ESC	0	0	4	4	2			
			TOTAL	13	2	12	28	22			

*NCC Credit Course level 1 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

IP3151 INDUCTION PROGRAMME

This is a mandatory 2 week programme to be conducted as soon as the students enter the institution. Normal classes start only after the induction program is over.

The induction programme has been introduced by AICTE with the following objective:

"Engineering colleges were established to train graduates well in the branch/department of admission, have a holistic outlook, and have a desire to work for national needs and beyond. The graduating student must have knowledge and skills in the area of his/her study. However, he/she must also have broad understanding of society and relationships. Character needs to be nurtured as an essential quality by which he/she would understand and fulfill his/her responsibility as an engineer, a citizen and a human being. Besides the above, several meta-skills and underlying values are needed."

"One will have to work closely with the newly joined students in making them feel comfortable, allow them to explore their academic interests and activities, reduce competition and make them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and build character. "

Hence, the purpose of this programme is to make the students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature.

The following are the activities under the induction program in which the student would be fully engaged throughout the day for the entire duration of the program.

(i) Physical Activity

This would involve a daily routine of physical activity with games and sports, yoga, gardening, etc.

(ii) Creative Arts

Every student would choose one skill related to the arts whether visual arts or performing arts. Examples are painting, sculpture, pottery, music, dance etc. The student would pursue it everyday for the duration of the program. These would allow for creative expression. It would develop a sense of aesthetics and

also enhance creativity which would, hopefully, grow into engineering design later.

(iii) Universal Human Values

This is the anchoring activity of the Induction Programme. It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, take decisions with courage, be aware of relationships with colleagues and supporting stay in the hostel and department, be sensitive to others, etc. A module in Universal Human Values provides the base. Methodology of teaching this content is extremely important. It must not be through do's and dont's, but get students to explore and think by engaging them in a dialogue. It is best taught through group discussions and real life activities rather than lecturing.

Discussions would be conducted in small groups of about 20 students with a faculty

mentor each. It would be effective that the faculty mentor assigned is also the faculty advisor for the student for the full duration of the UG programme.

(iv) Literary Activity

Literary activity would encompass reading, writing and possibly, debating, enacting a play etc.

(v) Proficiency Modules

This would address some lacunas that students might have, for example, English, computer familiarity etc.

(vi) Lectures by Eminent People

Motivational lectures by eminent people from all walks of life should be arranged to give the students exposure to people who are socially active or in public life.

(vii) Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the under privileged.

(viii) Familiarization to Dept./Branch & Innovations

They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities.

(ix) Department Specific Activities

About a week can be spent in introducing activities (games, quizzes, social interactions, small experiments, design thinking etc.) that are relevant to the particular branch of Engineering/Technology/Architecture that can serve as a motivation and kindle interest in building things (become a maker) in that particular field. This can be conducted in the form of a workshop. For example, CSE and IT students may be introduced to activities that kindle computational thinking, and get them to build simple games. ECE students may be introduced to building simple circuits as an extension of their knowledge in Science, and so on. Students may be asked to build stuff using their knowledge of science.

Induction Programme is totally an activity based programme and therefore there shall be no tests / assessments during this programme.

References:

Guide to Induction program from AICTE

PROFESSIONAL ENGLISH - I

OBJECTIVES:

HS3151

- To improve the communicative competence of learners
- To help learners use language effectively in academic /work contexts
- To build on students' English language skills by engaging them in listening, speaking and grammar learning activities that are relevant to authentic contexts.
- To develop learners' ability to read and write complex texts, summaries, articles, blogs, definitions, essays and user manuals.
- To use language efficiently in expressing their opinions via various media.

INTRODUCTION TO EFFECTIVE COMMUNICATION

What is effective communication? (There are many interesting activities for this.) Why is communication critical for excellence during study, research and work? What are the seven C's of effective communication? What are key language skills? What is effective listening? What does it involve? What is effective speaking?

L T P C 3 1 0 4

What does it mean to be an excellent reader? What should you be able to do? What is effective writing?

How does one develop language and communication skills?

What does the course focus on? How are communication and language skills going to be enhanced during this course? What do you as a learner need to do to enhance your English language and communication skills to get the best out of this course?

UNIT I INTRODUCTION TO FUNDAMENTALS OF COMMUNICATION

Listening –for general information-specific details- conversation: Introduction to classmates - Audio / video (formal & informal); Telephone conversation; Listening to voicemail & messages; Listening and filling a form

Speaking - Self Introduction; Introducing a friend; Conversation - politeness strategies; Telephone conversation; Leave a voicemail; Leave a message with another person; asking for information to fill details in a form.

Reading - Reading brochures (technical context), telephone messages / social media messages relevant to technical contexts and emails.

Writing - Writing emails / letters introducing oneself

Grammar - Present Tense (simple and progressive); Question types: Wh/Yes or No/ and Tags

Vocabulary - Synonyms; One word substitution; Abbreviations & Acronyms (as used in technical contexts).

UNIT II NARRATION AND SUMMATION

Listening - Listening to podcast, anecdotes / stories / event narration; documentaries and interviews with celebrities.

Speaking - Narrating personal experiences / events; Interviewing a celebrity; Reporting / and summarising of documentaries / podcasts/ interviews.

Reading - Reading biographies, travelogues, newspaper reports, Excerpts from literature, and travel & technical blogs.

Writing - Guided writing-- Paragraph writing Short Report on an event (field trip etc.)

Grammar –Past tense (simple); Subject-Verb Agreement; and Prepositions

Vocabulary - Word forms (prefixes& suffixes); Synonyms and Antonyms. Phrasal verbs.

UNIT III DESCRIPTION OF A PROCESS / PRODUCT

Listening - Listen to a product and process descriptions; a classroom lecture; and advertisements about a products.

Speaking – Picture description; Giving instruction to use the product; Presenting a product; and Summarising a lecture.

Reading – Reading advertisements, gadget reviews; user manuals.

Writing - Writing definitions; instructions; and Product /Process description.

Grammar - Imperatives; Adjectives; Degrees of comparison; Present & Past Perfect Tenses. Vocabulary - Compound Nouns, Homonyms; and Homophones, discourse markers (connectives & sequence words)

UNIT IV CLASSIFICATION AND RECOMMENDATIONS

Listening – Listening to TED Talks; Scientific lectures; and educational videos.

Speaking – Small Talk; Mini presentations and making recommendations.

Reading – Newspaper articles; Journal reports –and Non Verbal Communication (tables, pie charts etc,.)

Writing – Note-making / Note-taking (*Study skills to be taught, not tested); ; Writing recommendations; Transferring information from non verbal (chart , graph etc, to verbal mode)

Grammar – Articles; Pronouns - Possessive & Relative pronouns.

Vocabulary - Collocations; Fixed / Semi fixed expressions.

UNIT V EXPRESSION

Listening – Listening to debates/ discussions; different viewpoints on an issue; and panel discussions.

Speaking –group discussions, Debates, and Expressing opinions through Simulations & Roleplay. Reading – Reading editorials; and Opinion Blogs;

12

12

12

12

Writing – Essay Writing (Descriptive or narrative).

Grammar – Future Tenses, Punctuation; Negation (Statements & Questions); and Simple, Compound & Complex Sentences.

Vocabulary - Cause & Effect Expressions – Content vs Function words.

TOTAL: 60 PERIODS

OUTCOMES :

At the end of the course, learners will be able

- To listen and comprehend complex academic texts
- To read and infer the denotative and connotative meanings of technical texts
- To write definitions, descriptions, narrations and essays on various topics
- To speak fluently and accurately in formal and informal communicative contexts
- To express their opinions effectively in both oral and written medium of communication

TEXT BOOKS :

- 1. English for Engineers & Technologists Orient Blackswan Private Ltd. Department of English, Anna University, (2020 edition)
- English for Science & Technology Cambridge University Press, 2021. Authored by Dr. Veena Selvam, Dr. Sujatha Priyadarshini, Dr. Deepa Mary Francis, Dr. KN. Shoba, and Dr. Lourdes Joevani, Department of English, Anna University.

REFERENCES:

- 1. Technical Communication Principles And Practices By Meenakshi Raman & Sangeeta Sharma, Oxford Univ. Press, 2016, New Delhi.
- 2. A Course Book On Technical English By Lakshminarayanan, Scitech Publications (India) Pvt. Ltd.
- 3. English For Technical Communication (With CD) By Aysha Viswamohan, Mcgraw Hill Education, ISBN : 0070264244.
- 4. Effective Communication Skill, Kulbhusan Kumar, RS Salaria, Khanna Publishing House.
- 5. Learning to Communicate Dr. V. Chellammal, Allied Publishing House, New Delhi, 2003.

MA3151

MATRICES AND CALCULUS

L	Т	Ρ	С
3	1	0	4

OBJECTIVES :

- To develop the use of matrix algebra techniques that is needed by engineers for practical applications.
- To familiarize the students with differential calculus.
- To familiarize the student with functions of several variables. This is needed in many branches of engineering.
- To make the students understand various techniques of integration.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their applications.

UNIT I MATRICES

Eigenvalues and Eigenvectors of a real matrix – Characteristic equation – Properties of Eigenvalues and Eigenvectors – Cayley - Hamilton theorem – Diagonalization of matrices by orthogonal transformation – Reduction of a quadratic form to canonical form by orthogonal transformation – Nature of quadratic forms – Applications : Stretching of an elastic membrane.

UNIT II DIFFERENTIAL CALCULUS

Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules (sum, product, quotient, chain rules) - Implicit differentiation - Logarithmic differentiation - Applications : Maxima and Minima of functions of one variable.

9+3

9+3

UNIT III FUNCTIONS OF SEVERAL VARIABLES

Partial differentiation – Homogeneous functions and Euler's theorem – Total derivative – Change of variables - Jacobians - Partial differentiation of implicit functions - Taylor's series for functions of two variables -Applications : Maxima and minima of functions of two variables and Lagrange's method of undetermined multipliers.

UNIT IV **INTEGRAL CALCULUS**

Definite and Indefinite integrals - Substitution rule - Techniques of Integration : Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals - Applications : Hydrostatic force and pressure, moments and centres of mass.

MULTIPLE INTEGRALS **UNIT V**

Double integrals - Change of order of integration - Double integrals in polar coordinates - Area enclosed by plane curves – Triple integrals – Volume of solids – Change of variables in double and triple integrals - Applications : Moments and centres of mass, moment of inertia.

TOTAL : 60 PERIODS

OUTCOMES:

At the end of the course the students will be able to

- Use the matrix algebra methods for solving practical problems.
- Apply differential calculus tools in solving various application problems. •
- Able to use differential calculus ideas on several variable functions.
- Apply different methods of integration in solving practical problems. •
- Apply multiple integral ideas in solving areas, volumes and other practical problems.

TEXT BOOKS :

- 1. Kreyszig.E, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition, New Delhi. 2016.
- 2. Grewal.B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44th Edition, 2018.
- 3. James Stewart, "Calculus : Early Transcendentals", Cengage Learning, 8th Edition, New Delhi, 2015. [For Units II & IV - Sections 1.1, 2.2, 2.3, 2.5, 2.7 (Tangents problems only), 2.8, 3.1 to 3.6, 3.11, 4.1, 4.3, 5.1 (Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem), 5.5, 7.1 - 7.4 and 7.8].

REFERENCES:

- 1. Anton. H, Bivens. I and Davis. S, " Calculus ", Wiley, 10th Edition, 2016
- 2. Bali. N., Goyal. M. and Watkins. C., "Advanced Engineering Mathematics", Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009.
- lyengar. S.R.K., "Advanced 3. Jain. R.K. and Engineering Mathematics", Narosa Publications, New Delhi, 5th Edition, 2016.
- 4. Narayanan. S. and Manicavachagom Pillai. T. K., "Calculus" Volume I and II, S. Viswanathan Publishers Pvt. Ltd., Chennai, 2009.
- 5. Ramana. B.V., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd, New Delhi, 2016.
- 6. Srimantha Pal and Bhunia. S.C, "Engineering Mathematics "Oxford University Press, 2015.
- 7. Thomas. G. B., Hass. J, and Weir. M.D, "Thomas Calculus ", 14th Edition, Pearson India, 2018.

9+3

9+3

PH3151

ENGINEERING PHYSICS

LTPC 3 0 0 3

9

9

9

OBJECTIVES:

- To make the students effectively to achieve an understanding fmechanics.
- To enable the students to gain knowledge of electromagnetic waves and its applications.
- To introduce the basics of oscillations, optics and lasers. •
- Equipping the students to be successfully understand the importance of quantum physics.
- To motivate the students towards the applications of quantum mechanics.

UNIT I **MECHANICS**

Multiparticle dynamics: Center of mass (CM) - CM of continuous bodies - motion of the CM kinetic energy of system of particles. Rotation of rigid bodies: Rotational kinematics - rotational kinetic energy and moment of inertia - theorems of M .I -moment of inertia of continuous bodies -M.I of a diatomic molecule - torque - rotational dynamics of rigid bodies - conservation of angular momentum - rotational energy state of a rigid diatomic molecule - gyroscope - torsional pendulum - double pendulum - Introduction to nonlinear oscillations.

UNIT II ELECTROMAGNETIC WAVES

The Maxwell's equations - wave equation; Plane electromagnetic waves in vacuum, Conditions on the wave field - properties of electromagnetic waves: speed, amplitude, phase, orientation and waves in matter - polarization - Producing electromagnetic waves - Energy and momentum in EM waves: Intensity, waves from localized sources, momentum and radiation pressure - Cell-phone reception. Reflection and transmission of electromagnetic waves from a non-conducting mediumvacuum interface for normal incidence.

OSCILLATIONS, OPTICS AND LASERS UNIT III

Simple harmonic motion - resonance -analogy between electrical and mechanical oscillating systems - waves on a string - standing waves - traveling waves - Energy transfer of a wave - sound waves - Doppler effect. Reflection and refraction of light waves - total internal reflection interference -Michelson interferometer -Theory of air wedge and experiment. Theory of laser characteristics - Spontaneous and stimulated emission - Einstein's coefficients - population inversion - Nd-YAG laser, CO₂ laser, semiconductor laser –Basic applications of lasers in industry.

BASIC QUANTUM MECHANICS UNIT IV

Photons and light waves - Electrons and matter waves -Compton effect - The Schrodinger equation (Time dependent and time independent forms) - meaning of wave function -Normalization -Free particle - particle in a infinite potential well: 1D,2D and 3D Boxes-Normalization, probabilities and the correspondence principle.

UNIT V **APPLIED QUANTUM MECHANICS**

The harmonic oscillator(qualitative)- Barrier penetration and quantum tunneling(qualitative)-Tunneling microscope - Resonant diode - Finite potential wells (qualitative)- Bloch's theorem for particles in a periodic potential –Basics of Kronig-Penney model and origin of energy bands.

TOTAL: 45 PERIODS

OUTCOMES:

After completion of this course, the students should be able to

- Understand the importance of mechanics.
- Express their knowledge in electromagnetic waves. •
- Demonstrate a strong foundational knowledge in oscillations, optics and lasers.
- Understand the importance of quantum physics.
- Comprehend and apply quantum mechanical principles towards the formation of energy • bands.

9

TEXT BOOKS:

- 1. D.Kleppner and R.Kolenkow. An Introduction to Mechanics. McGraw Hill Education (Indian Edition), 2017.
- 2. E.M.Purcell and D.J.Morin, Electricity and Magnetism, Cambridge Univ.Press, 2013.
- 3. Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, Concepts of Modern Physics, McGraw-Hill (Indian Edition), 2017.

REFERENCES:

- 1. R.Wolfson. Essential University Physics. Volume 1 & 2. Pearson Education (Indian Edition), 2009.
- 2. Paul A. Tipler, Physic Volume 1 & 2, CBS, (Indian Edition), 2004.
- 3. K.Thyagarajan and A.Ghatak. Lasers: Fundamentals and Applications, Laxmi Publications, (Indian Edition), 2019.
- 4. D.Halliday, R.Resnick and J.Walker. Principles of Physics, Wiley (Indian Edition), 2015.
- 5. N.Garcia, A.Damask and S.Schwarz. Physics for Computer Science Students. Springer-Verlag, 2012.

CY3151

ENGINEERING CHEMISTRY

L T P C 3 0 0 3

OBJECTIVES:

- To inculcate sound understanding of water quality parameters and water treatment techniques.
- To impart knowledge on the basic principles and preparatory methods of nanomaterials.
- To introduce the basic concepts and applications of phase rule and composites.
- To facilitate the understanding of different types of fuels, their preparation, properties and combustion characteristics.
- To familiarize the students with the operating principles, working processes and applications of energy conversion and storage devices.

UNIT I WATER AND ITS TREATMENT

Water: Sources and impurities, Water quality parameters: Definition and significance of-colour, odour, turbidity, pH, hardness, alkalinity, TDS, COD and BOD, flouride and arsenic. Municipal water treatment: primary treatment and disinfection (UV, Ozonation, break-point chlorination). Desalination of brackish water: Reverse Osmosis. Boiler troubles: Scale and sludge, Boiler corrosion, Caustic embrittlement, Priming &foaming. Treatment of boiler feed water: Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning) and External treatment – Ion exchange demineralisation and zeolite process.

UNIT II NANOCHEMISTRY

Basics: Distinction between molecules, nanomaterials and bulk materials; **Size-dependent properties** (optical, electrical, mechanical and magnetic); **Types of nanomaterials**: Definition, properties and uses of – nanoparticle, nanocluster, nanorod, nanowire and nanotube. **Preparation of nanomaterials**: sol-gel, solvothermal, laser ablation, chemical vapour deposition, electrochemical deposition and electro spinning. **Applications** of nanomaterials in medicine, agriculture, energy, electronics and catalysis.

UNIT III PHASE RULE AND COMPOSITES

Phase rule:Introduction, definition of terms with examples. One component system - water system; Reduced phase rule; Construction of a simple eutectic phase diagram - Thermal analysis; Two component system: lead-silver system - Pattinson process.

Composites: Introduction: Definition & Need for composites; Constitution: Matrix materials (Polymer matrix, metal matrix and ceramic matrix) and Reinforcement (fiber, particulates, flakes and whiskers). Properties and applications of: Metal matrix composites (MMC), Ceramic matrix composites and Polymer matrix composites. Hybrid composites - definition and examples.

9

9

UNIT IV FUELS AND COMBUSTION

Fuels: Introduction: Classification of fuels; **Coal and coke**: Analysis of coal (proximate and ultimate), Carbonization, Manufacture of metallurgical coke (Otto Hoffmann method). **Petroleum and Diesel:** Manufacture of synthetic petrol (Bergius process), Knocking - octane number, diesel oil - cetane number; **Power alcohol and biodiesel.**

Combustion of fuels: Introduction: Calorific value - higher and lower calorific values, Theoretical calculation of calorific value; **Ignition temperature**: spontaneous ignition temperature, Explosive range; **Flue gas analysis** - ORSAT Method. **CO**₂ **emission and carbon foot print.**

UNIT V ENERGY SOURCES AND STORAGE DEVICES

Stability of nucleus: mass defect (problems), binding energy;Nuclear energy: light water nuclear power plant, breeder reactor. **Solar energy conversion:** Principle, working and applications of solar cells; **Recent developments in solar cell materials. Wind energy; Geothermal energy;Batteries:** Types of batteries, Primary battery - dry cell, Secondary battery - lead acid battery and lithium-ion-battery; **Electric vehicles-working principles;Fuel cells:** H₂-O₂ fuel cell, microbial fuel cell; **Supercapacitors:** Storage principle, types and examples.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the students will be able:

- To infer the quality of water from quality parameter data and propose suitable treatment methodologies to treat water.
- To identify and apply basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for engineering and technology applications.
- To apply the knowledge of phase rule and composites for material selection requirements.
- To recommend suitable fuels for engineering processes and applications.
- To recognize different forms of energy resources and apply them for suitable applications in energy sectors.

TEXT BOOKS:

- 1. P. C. Jain and Monica Jain, "Engineering Chemistry", 17th Edition, DhanpatRai Publishing Company (P) Ltd, New Delhi, 2018.
- 2. Sivasankar B., "Engineering Chemistry", Tata McGraw-Hill Publishing Company Ltd, New Delhi, 2008.
- 3. S.S. Dara, "A text book of Engineering Chemistry", S. Chand Publishing, 12th Edition, 2018.

REFERENCES:

- 1. B. S. Murty, P. Shankar, Baldev Raj, B. B. Rath and James Murday, "Text book of nanoscience and nanotechnology", Universities Press-IIM Series in Metallurgy and Materials Science, 2018.
- 2. O.G. Palanna, "Engineering Chemistry" McGraw Hill Education (India) Private Limited, 2nd Edition, 2017.
- 3. Friedrich Emich, "Engineering Chemistry", Scientific International PVT, LTD, New Delhi, 2014.
- 4. ShikhaAgarwal, "Engineering Chemistry-Fundamentals and Applications", Cambridge University Press, Delhi, Second Edition, 2019.
- 5. O.V. Roussak and H.D. Gesser, Applied Chemistry-A Text Book for Engineers and Technologists, Springer Science Business Media, New York, 2nd Edition, 2013.

9

Q

GE3151 PROBLEM SOLVING AND PYTHON PROGRAMMING

OBJECTIVES:

- To understand the basics of algorithmic problem solving.
- To learn to solve problems using Python conditionals and loops.
- To define Python functions and use function calls to solve problems.
- To use Python data structures lists, tuples, dictionaries to represent complex data.
- To do input/output with files in Python.

UNIT I COMPUTATIONAL THINKING AND PROBLEM SOLVING

Fundamentals of Computing – Identification of Computational Problems -Algorithms, building blocks of algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion). Illustrative problems: find minimum in a list, insert a card in a list of sorted cards, guess an integer number in a range, Towers of Hanoi.

UNIT II DATA TYPES, EXPRESSIONS, STATEMENTS

Python interpreter and interactive mode, debugging; values and types: int, float, boolean, string, and list; variables, expressions, statements, tuple assignment, precedence of operators, comments; Illustrative programs: exchange the values of two variables, circulate the values of n variables, distance between two points.

UNIT III CONTROL FLOW, FUNCTIONS, STRINGS

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values, parameters, local and global scope, function composition, recursion; Strings: string slices, immutability, string functions and methods, string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.

UNIT IV LISTS, TUPLES, DICTIONARIES

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: simple sorting, histogram, Students marks statement, Retail bill preparation.

UNIT V FILES, MODULES, PACKAGES

Files and exception: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs: word count, copy file, Voter's age validation, Marks range validation (0-100).

OUTCOMES:

Upon completion of the course, students will be able to

CO1: Develop algorithmic solutions to simple computational problems.

CO2: Develop and execute simple Python programs.

CO3: Write simple Python programs using conditionals and looping for solving problems.

- CO4: Decompose a Python program into functions.
- CO5: Represent compound data using Python lists, tuples, dictionaries etc.

CO6: Read and write data from/to files in Python programs.

TEXT BOOKS:

- 1. Allen B. Downey, "Think Python : How to Think like a Computer Scientist", 2nd Edition, O'Reilly Publishers, 2016.
- 2. Karl Beecher, "Computational Thinking: A Beginner's Guide to Problem Solving and programming", 1st Edition, BCS Learning & amp; Development Limited, 2017.

9

9

TOTAL: 45 PERIODS

9

9

9

L T P C 3 0 0 3

REFERENCES:

- 1. Paul Deitel and Harvey Deitel, "Python for Programmers", Pearson Education, 1st Edition, 2021.
- 2. G Venkatesh and Madhavan Mukund, "Computational Thinking: A Primer for Programmers and Data Scientists", 1st Edition, Notion Press, 2021.
- John V Guttag, "Introduction to Computation and Programming Using Python: With Applications to Computational Modeling and Understanding Data", Third Edition, MIT Press 2021
- 4. Eric Matthes, "Python Crash Course, A Hands on Project Based Introduction to Programming", 2nd Edition, No Starch Press, 2019.
- 5. https://www.python.org/
- 6. Martin C. Brown, "Python: The Complete Reference", 4th Edition, Mc-Graw Hill,2018.

GE3171 PROBLEM SOLVING AND PYTHON PROGRAMMING LABORATORY LTPC

0 0 4 2

OBJECTIVES:

- To understand the problem solving approaches.
- To learn the basic programming constructs in Python.
- To practice various computing strategies for Python-based solutions to real world problems.
- To use Python data structures lists, tuples, dictionaries.
- To do input/output with files in Python.

EXPERIMENTS:

Note: The examples suggested in each experiment are only indicative. The lab instructor is expected to design other problems on similar lines. The Examination shall not be restricted to the sample experiments listed here.

- 1. Identification and solving of simple real life or scientific or technical problems, and developing flow charts for the same. (Electricity Billing, Retail shop billing, Sin series, weight of a motorbike, Weight of a steel bar, compute Electrical Current in Three Phase AC Circuit, etc.)
- 2. Python programming using simple statements and expressions (exchange the values of two variables, circulate the values of n variables, distance between two points).
- 3. Scientific problems using Conditionals and Iterative loops. (Number series, Number Patterns, pyramid pattern)
- 4. Implementing real-time/technical applications using Lists, Tuples. (Items present in a library/Components of a car/ Materials required for construction of a building –operations of list & tuples)
- 5. Implementing real-time/technical applications using Sets, Dictionaries. (Language, components of an automobile, Elements of a civil structure, etc.- operations of Sets & Dictionaries)
- 6. Implementing programs using Functions. (Factorial, largest number in a list, area of shape)
- 7. Implementing programs using Strings. (reverse, palindrome, character count, replacing characters)
- 8. Implementing programs using written modules and Python Standard Libraries (pandas, numpy. Matplotlib, scipy)
- 9. Implementing real-time/technical applications using File handling. (copy from one file to another, word count, longest word)
- 10. Implementing real-time/technical applications using Exception handling. (divide by zero error, voter's age validity, student mark range validation)
- 11. Exploring Pygame tool.
- 12. Developing a game activity using Pygame like bouncing ball, car race etc.

TOTAL: 60 PERIODS

OUTCOMES:

On completion of the course, students will be able to:

- CO1: Develop algorithmic solutions to simple computational problems
- CO2: Develop and execute simple Python programs.
- CO3: Implement programs in Python using conditionals and loops for solving problems..
- CO4: Deploy functions to decompose a Python program.
- CO5: Process compound data using Python data structures.

CO6: Utilize Python packages in developing software applications.

TEXT BOOKS:

- 1. Allen B. Downey, "Think Python : How to Think like a Computer Scientist", 2nd Edition, O'Reilly Publishers, 2016.
- 2. Karl Beecher, "Computational Thinking: A Beginner's Guide to Problem Solving and Programming", 1st Edition, BCS Learning & Development Limited, 2017.

REFERENCES:

- 1. Paul Deitel and Harvey Deitel, "Python for Programmers", Pearson Education, 1st Edition, 2021.
- 2. G Venkatesh and Madhavan Mukund, "Computational Thinking: A Primer for Programmers and Data Scientists", 1st Edition, Notion Press, 2021.
- 3. John V Guttag, "Introduction to Computation and Programming Using Python: With Applications to Computational Modeling and Understanding Data", Third Edition, MIT Press, 2021
- 4. Eric Matthes, "Python Crash Course, A Hands on Project Based Introduction to Programming", 2nd Edition, No Starch Press, 2019.
- 5. https://www.python.org/
- 6. Martin C. Brown, "Python: The Complete Reference", 4th Edition, Mc-Graw Hill, 2018.

BS3171

PHYSICS AND CHEMISTRY LABORATORY

L T P C 0 0 4 2

PHYSICS LABORATORY : (Any Seven Experiments)

OBJECTIVES:

- To learn the proper use of various kinds of physics laboratory equipment.
- To learn how data can be collected, presented and interpreted in a clear and concise manner.
- To learn problem solving skills related to physics principles and interpretation of experimental data.
- To determine error in experimental measurements and techniques used to minimize such error.
- To make the student as an active participant in each part of all lab exercises.
- 1. Torsional pendulum Determination of rigidity modulus of wire and moment of inertia of regular and irregular objects.
- 2. Simple harmonic oscillations of cantilever.
- 3. Non-uniform bending Determination of Young's modulus
- 4. Uniform bending Determination of Young's modulus
- 5. Laser- Determination of the wave length of the laser using grating
- 6. Air wedge Determination of thickness of a thin sheet/wire
- 7. a) Optical fibre -Determination of Numerical Aperture and acceptance angleb) Compact disc- Determination of width of the groove using laser.
- 8. Acoustic grating- Determination of velocity of ultrasonic waves in liquids.
- 9. Ultrasonic interferometer determination of the velocity of sound and compressibility of liquids

- 10. Post office box -Determination of Band gap of a semiconductor.
- 11. Photoelectric effect
- 12. Michelson Interferometer.
- 13. Melde's string experiment
- 14. Experiment with lattice dynamics kit.

TOTAL: 30 PERIODS

OUTCOMES:

Upon completion of the course, the students should be able to

- Understand the functioning of various physics laboratory equipment.
- Use graphical models to analyze laboratory data.
- Use mathematical models as a medium for quantitative reasoning and describing physical reality.
- Access, process and analyze scientific information.
- Solve problems individually and collaboratively.

CHEMISTRY LABORATORY: (Any seven experiments to be conducted)

OBJECTIVES:

- To inculcate experimental skills to test basic understanding of water quality parameters, such as, acidity, alkalinity, hardness, DO, chloride and copper.
- To induce the students to familiarize with electroanalytical techniques such as, pH metry, potentiometry and conductometry in the determination of impurities in aqueous solutions.
- To demonstrate the analysis of metals and alloys.
- To demonstrate the synthesis of nanoparticles
- 1. Preparation of Na₂CO₃ as a primary standard and estimation of acidity of a water sample using the primary standard
- 2. Determination of types and amount of alkalinity in water sample.
- Split the first experiment into two
- 3. Determination of total, temporary & permanent hardness of water by EDTA method.
- 4. Determination of DO content of water sample by Winkler's method.
- 5. Determination of chloride content of water sample by Argentometric method.
- 6. Estimation of copper content of the given solution by lodometry.
- 7. Estimation of TDS of a water sample by gravimetry.
- 8. Determination of strength of given hydrochloric acid using pH meter.
- 9. Determination of strength of acids in a mixture of acids using conductivity meter.
- 10. Conductometric titration of barium chloride against sodium sulphate (precipitation titration)
- 11. Estimation of iron content of the given solution using potentiometer.
- 12. Estimation of sodium /potassium present in water using flame photometer.
- 13. Preparation of nanoparticles (TiO₂/ZnO/CuO) by Sol-Gel method.
- 14. Estimation of Nickel in steel
- 15. Proximate analysis of Coal

OUT COMES :

TOTAL : 30 PERIODS

- To analyse the quality of water samples with respect to their acidity, alkalinity, hardness and DO.
- To determine the amount of metal ions through volumetric and spectroscopic techniques
- To analyse and determine the composition of alloys.
- To learn simple method of synthesis of nanoparticles
- To quantitatively analyse the impurities in solution by electroanalytical techniques

TEXT BOOKS :

1. J. Mendham, R. C. Denney, J.D. Barnes, M. Thomas and B. Sivasankar, Vogel's Textbook of Quantitative Chemical Analysis (2009).

OBJECTIVES :

HS3251

- To engage learners in meaningful language activities to improve their LSRW skills
- To enhance learners' awareness of general rules of writing for specific audiences
- To help learners understand the purpose, audience, contexts of different types of writing

PROFESSIONAL ENGLISH - II

- To develop analytical thinking skills for problem solving in communicative contexts
- To demonstrate an understanding of job applications and interviews for internship and placements

UNIT I MAKING COMPARISONS

Listening – Evaluative Listening: Advertisements, Product Descriptions, -Audio / video; Listening and filling a Graphic Organiser (Choosing a product or service by comparison)

Speaking – Marketing a product, Persuasive Speech Techniques.

Reading - Reading advertisements, user manuals, brochures;

Writing – Professional emails, Email etiquette - Compare and Contrast Essay; Grammar – Mixed Tenses, Prepositional phrases

Vocabulary – Contextual meaning of words

UNIT II EXPRESSING CAUSAL RELATIONS IN SPEAKING AND WRITING

Listening - Listening to longer technical talks and completing– gap filling exercises. Listening technical information from podcasts – Listening to process/event descriptions to identify cause & effects - Speaking – Describing and discussing the reasons of accidents or disasters based on news reports.

Reading - Reading longer technical texts- Cause and Effect Essays, and Letters / emails of complaint,

Writing - Writing responses to complaints.

Grammar - Active Passive Voice transformations, Infinitive and Gerunds Vocabulary – Word Formation (Noun-Verb-Adj-Adv), Adverbs.

UNIT III PROBLEM SOLVING

Listening – Listening to / Watching movie scenes/ documentaries depicting a technical problem and suggesting solutions.

Speaking – Group Discussion(based on case studies), - techniques and Strategies,

Reading - Case Studies, excerpts from literary texts, news reports etc.,

Writing – Letter to the Editor, Checklists, Problem solution essay / Argumentative Essay

Grammar -- Error correction; If conditional sentences

Vocabulary - Compound Words, Sentence Completion.

UNIT IV REPORTING OF EVENTS AND RESEARCH

Listening – Listening Comprehension based on news reports – and documentaries – Precis writing, Summarising, Speaking –Interviewing, Presenting an oral report, Mini presentations on select topics;

Reading –Newspaper articles; Writing – Recommendations, Transcoding, Accident Report, Survey Report Grammar – Reported Speech, Modals Vocabulary – Conjunctions- use of prepositions

12

12

12

12

L T P C 3 1 0 4

UNIT V THE ABILITY TO PUT IDEAS OR INFORMATION COGENTLY

Listening – Listening to TED Talks, Presentations, Formal job interviews, (analysis of the interview performance);

Speaking – Participating in a Role play, (interview/telephone interview), virtual interviews, Making presentations with visual aids;

Reading – Company profiles, Statement of Purpose, (SOP), an excerpt of interview with professionals; Writing – Job / Internship application – Cover letter & Resume; Grammar – Numerical adjectives, Relative Clauses Vocabulary – Idioms.

TOTAL: 60 PERIODS

12

OUTCOMES:

At the end of the course, learners will be able

- To compare and contrast products and ideas in technical texts.
- To identify cause and effects in events, industrial processes through technical texts
- To analyse problems in order to arrive at feasible solutions and communicate them orally and in the written format.
- To report events and the processes of technical and industrial nature.
- To present their opinions in a planned and logical manner, and draft effective resumes in context of job search.

TEXT BOOKS :

- 1. English for Engineers & Technologists (2020 edition) Orient Blackswan Private Ltd. Department of English, Anna University.
- 2. English for Science & Technology Cambridge University Press 2021. Authored by Dr. Veena Selvam, Dr. Sujatha Priyadarshini, Dr. Deepa Mary Francis, Dr. KN. Shoba, and Dr. Lourdes Joevani, Department of English, Anna University.

REFERENCES:

- 1. Raman. Meenakshi, Sharma. Sangeeta (2019). Professional English. Oxford university press. New Delhi.
- 2. Improve Your Writing ed. V.N. Arora and Laxmi Chandra, Oxford Univ. Press, 2001, NewDelhi.
- 3. Learning to Communicate Dr. V. Chellammal. Allied Publishers, New Delhi, 2003
- 4. Business Correspondence and Report Writing by Prof. R.C. Sharma & Krishna Mohan, Tata McGraw Hill & Co. Ltd., 2001, New Delhi.
- 5. Developing Communication Skills by Krishna Mohan, Meera Bannerji- Macmillan India Ltd. 1990, Delhi.

MA3251

STATISTICS AND NUMERICAL METHODS

L T P C 3 1 0 4

OBJECTIVES:

- This course aims at providing the necessary basic concepts of a few statistical and numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology.
- To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems.
- To introduce the basic concepts of solving algebraic and transcendental equations.
- To introduce the numerical techniques of interpolation in various intervals and numerical techniques of differentiation and integration which plays an important role in engineering and technology disciplines.
- To acquaint the knowledge of various techniques and methods of solving ordinary differential equations.

UNIT I TESTING OF HYPOTHESIS

Sampling distributions - Tests for single mean, proportion and difference of means (Large and small samples) – Tests for single variance and equality of variances – Chi square test for goodness of fit – Independence of attributes.

UNIT II DESIGN OF EXPERIMENTS

One way and two way classifications - Completely randomized design – Randomized block design – Latin square design - 2^2 factorial design.

UNIT III SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS

Solution of algebraic and transcendental equations - Fixed point iteration method – Newton Raphson method- Solution of linear system of equations - Gauss elimination method – Pivoting - Gauss Jordan method – Iterative methods of Gauss Jacobi and Gauss Seidel - Eigenvalues of a matrix by Power method and Jacobi's method for symmetric matrices.

UNIT IV INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICAL INTEGRATION

Lagrange's and Newton's divided difference interpolations – Newton's forward and backward difference interpolation – Approximation of derivates using interpolation polynomials – Numerical single and double integrations using Trapezoidal and Simpson's 1/3 rules.

UNIT V NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 9+3 Single step methods: Taylor's series method - Euler's method - Modified Euler's method - Fourth order Runge-Kutta method for solving first order differential equations - Multi step methods: Milne's and Adams - Bash forth predictor corrector methods for solving first order differential equations.

TOTAL: 60 PERIODS

OUTCOMES:

Upon successful completion of the course, students will be able to:

- Apply the concept of testing of hypothesis for small and large samples in real life problems.
- Apply the basic concepts of classifications of design of experiments in the field of agriculture.
- Appreciate the numerical techniques of interpolation in various intervals and apply the numerical techniques of differentiation and integration for engineering problems.
- Understand the knowledge of various techniques and methods for solving first and second order ordinary differential equations.
- Solve the partial and ordinary differential equations with initial and boundary conditions by using certain techniques with engineering applications.

TEXT BOOKS:

- 1. Grewal, B.S., and Grewal, J.S., "Numerical Methods in Engineering and Science", Khanna Publishers, 10th Edition, New Delhi, 2015.
- 2. Johnson, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 8th Edition, 2015.

REFERENCES:

- 1. Burden, R.L and Faires, J.D, "Numerical Analysis", 9th Edition, Cengage Learning, 2016.
- 2. Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi, 8th Edition, 2014.
- 3. Gerald. C.F. and Wheatley. P.O. "Applied Numerical Analysis" Pearson Education, Asia, New Delhi, 7th Edition, 2007.
- 4. Gupta S.C. and Kapoor V. K., "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi, 12th Edition, 2020.
- 5. Spiegel. M.R., Schiller. J. and Srinivasan. R.A., "Schaum's Outlines on Probability and Statistics ", Tata McGraw Hill Edition, 4th Edition, 2012.
- 6. Walpole. R.E., Myers. R.H., Myers. S.L. and Ye. K., "Probability and Statistics for Engineers and Scientists", 9th Edition, Pearson Education, Asia, 2010.

9+3

9+3

9+3

9+3

BE3252 BASIC ELECTRICAL, ELECTRONICS AND INSTRUMENTATION L T P C ENGINEERING 3 0 0 3

OBJECTIVES :

- To introduce the basics of electric circuits and analysis
- To impart knowledge in domestic wiring
- To impart knowledge in the basics of working principles and application of electrical machines
- To introduce analog devices and their characteristics
- To introduce the functional elements and working of sensors and transducers.

UNIT I ELECTRICAL CIRCUITS

DC Circuits: Circuit Components: Conductor, Resistor, Inductor, Capacitor – Ohm's Law - Kirchhoff's Laws – Simple problems- Nodal Analysis, Mesh analysis with Independent sources only (Steady state)

Introduction to AC Circuits and Parameters: Waveforms, Average value, RMS Value, Instantaneous power, real power, reactive power and apparent power, power factor – Steady state analysis of RLC circuits (Simple problems only), Three phase supply – star and delta connection – power in three-phase systems

UNIT II MAGNETIC CIRCUITS AND ELECTRICAL INSTALLATIONS

Magnetic circuits-definitions-MMF, flux, reluctance, magnetic field intensity, flux density, fringing, self and mutual inductances-simple problems.

Domestic wiring , types of wires and cables, earthing ,protective devices- switch fuse unit-Miniature circuit breaker-moulded case circuit breaker- earth leakage circuit breaker, safety precautions and First Aid

UNIT III ELECTRICAL MACHINES

Construction and Working principle- DC Separately and Self excited Generators, EMF equation, Types and Applications. Working Principle of DC motors, Torque Equation, Types and Applications. Construction, Working principle and Applications of Transformer, Three phase Alternator, Synchronous motor and Three Phase Induction Motor.

UNIT IV ANALOG ELECTRONICS

Resistor, Inductor and Capacitor in Electronic Circuits- Semiconductor Materials: Silicon &Germanium – PN Junction Diodes, Zener Diode –Characteristics Applications – Bipolar Junction Transistor-Biasing, JFET, SCR, MOSFET,IGBT – Types, I-V Characteristics and Applications, Rectifier and Inverters, harmonics

UNIT V SENSORS AND TRANSDUCERS

Sensors, solenoids, pneumatic controls with electrical actuator, mechatronics, types of valves and its applications, electro-pneumatic systems, proximity sensors, limit switches, piezoelectric, hall effect, photo sensors,Strain gauge, LVDT, differential pressure transducer,optical and digital transducers, Smart sensors, Thermal Imagers.

TOTAL: 45 PERIODS

OUTCOMES :

After completing this course, the students will be able to

- **CO1:** Compute the electric circuit parameters for simple problems
- **CO2:** Explain the concepts of domestics wiring and protective devices
- **CO3:** Explain the working principle and applications of electrical machines
- **CO4:** Analyze the characteristics of analog electronic devices
- **CO5:** Explain the types and operating principles of sensors and transducers

TEXT BOOKS:

- 1. D P Kothari and I.J Nagarath, "Basic Electrical and Electronics Engineering", McGraw Hill Education (India) Private Limited, Second Edition, 2020
- 2. A.K. Sawhney, Puneet Sawhney 'A Course in Electrical & Electronic Measurements & Instrumentation', Dhanpat Rai and Co, 2015.

9

9

9

~

- 3. S.K. Bhattacharya, Basic Electrical Engineering, Pearson Education, 2019
- 4. James A Svoboda, Richard C. Dorf, Dorf's Introduction to Electric Circuits, Wiley, 2018

REFERENCES:

- 1. John Bird, "Electrical Circuit theory and technology", Routledge; 2017.
- 2. Thomas L. Floyd, 'Electronic Devices', 10th Edition, Pearson Education, 2018.
- 3. Albert Malvino, David Bates, '**Electronic Principles**, McGraw Hill Education; 7th edition, 2017
- 4. Muhammad H.Rashid, "Spice for Circuits and electronics", 4th Edition., Cengage India, 2019.
- 5. H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw-Hill, New Delhi, 2010

BE3255 BASIC CIVIL AND MECHANICAL ENGINEERING L T P C

OBJECTIVES:

• To provide the students an illustration of the significance of the Civil and Mechanical Engineering Profession in satisfying the societal needs.

3003

5

4

9

9

q

- To help students acquire knowledge in the basics of surveying and the materials used for construction.
- To provide an insight to the essentials of components of a building and the infrastructure facilities.
- To explain the component of power plant units and detailed explanation to IC engines their working principles.
- To explain the Refrigeration & Air-conditioning system.

UNIT I PART A: OVERVIEW OF CIVIL ENGINEERING

Civil Engineering contributions to the welfare of Society - Specialized sub disciplines in Civil Engineering – Structural, Construction, Geotechnical, Environmental, Transportation and Water Resources Engineering – National building code – terminologists: Plinth area, Carpet area, Floor area, Buildup area, Floor space index - Types of buildings: Residential buildings, Industrial buildings.

UNIT I PART B: OVERVIEW OF MECHANICAL ENGINEERING

Overview of Mechanical Engineering - Mechanical Engineering Contributions to the welfare of Society –Specialized sub disciplines in Mechanical Engineering – Manufacturing, Automation, Automobile and Energy Engineering - Interdisciplinary concepts in Mechanical Engineering.

UNIT II SURVEYING AND CIVIL ENGINEERING MATERIALS

Surveying: Objects – Classification – Principles – Measurements of Distances and angles – Leveling – Determination of areas– Contours.

Civil Engineering Materials: Bricks – Stones – Sand – Cement – Concrete – Steel - Timber - Modern Materials, Thermal and Acoustic Insulating Materials, Decorative Panels, Water Proofing Materials. Modern uses of Gypsum, Pre-fabricated Building component (brief discussion only)

UNIT III BUILDING COMPONENTS AND INFRASTRUCTURE

Building plans – Setting out of a Building - Foundations: Types of foundations - Bearing capacity and settlement – Brick masonry – Stone Masonry – Beams – Columns – Lintels – Roofing – Flooring – Plastering.

Types of Bridges and Dams – Water Supply Network - Rain Water Harvesting – Solid Waste Management - Introduction to Highways and Railways - Introduction to Green Buildings.

UNIT IV INTERNAL COMBUSTION ENGINES AND POWER PLANTS

Classification of Power Plants- Working principle of steam, Gas, Diesel, Hydro -electric and Nuclear Power plants- Internal combustion engines as automobile power plant – Working principle of Petrol and Diesel Engines – Four stroke and two stroke cycles – Comparison of four stroke and two stroke engines. Working principle of Boilers-Turbines, Reciprocating Pumps (single acting and

double acting) and Centrifugal Pumps, Concept of hybrid engines. Industrial safety practices and protective devices

UNIT V **REFRIGERATION AND AIR CONDITIONING SYSTEM**

Terminology of Refrigeration and Air Conditioning. Principle of vapour compression and absorption system-Layout of typical domestic refrigerator-Window and Split type room Air conditioner. Properties of air - water mixture, concepts of psychometric and its process.

OUTCOMES:

- CO1: Understanding profession of Civil and Mechanical engineering.
- CO2: Summarise the planning of building, infrastructure and working of Machineries.
- CO3: Apply the knowledge gained in respective discipline
- CO4: Illustrate the ideas of Civil and Mechanical Engineering applications.
- CO5: Appraise the material, Structures, machines and energy.

TEXT BOOKS:

1. G Shanmugam, M S Palanichamy, Basic Civil and Mechanical Engineering, McGraw Hill Education; First edition, 2018

REFERENCES:

- 1. Palanikumar, K. Basic Mechanical Engineering, ARS Publications, 2018.
- 2. Ramamrutham S., "Basic Civil Engineering", Dhanpat Rai Publishing Co.(P) Ltd, 2013.
- 3. Seetharaman S., "Basic Civil Engineering", Anuradha Agencies, 2005.
- 4. Shantha Kumar SRJ., "Basic Mechanical Engineering", Hi-tech Publications, Maviladuthurai, 2000.

GE3251

ENGINEERING GRAPHICS

LTPC 2044

OBJECTIVES:

The main learning objective of this course is to prepare the students for:

- 1. Drawing engineering curves.
- 2. Drawing freehand sketch of simple objects.
- 3. Drawing orthographic projection of solids and section of solids.
- 4. Drawing development of solids
- 5. Drawing isometric and perspective projections of simple solids.

CONCEPTS AND CONVENTIONS (Not for Examination)

Importance of graphics in engineering applications — Use of drafting instruments — BIS conventions and specifications - Size, layout and folding of drawing sheets - Lettering and dimensioning.

UNIT I PLANE CURVES AND FREEHAND SKETCHING

Basic Geometrical constructions, Curves used in engineering practices: Conics - Construction of ellipse, parabola and hyperbola by eccentricity method — Construction of cycloid — construction of involutes of square and circle — Drawing of tangents and normal to the above curves.

UNIT II **PROJECTION OF POINTS, LINES AND PLANE SURFACE**

Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes -Determination of true lengths and true inclinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III **PROJECTION OF SOLIDS**

Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes and parallel to the other by rotating object method. Visualization concepts and Free Hand sketching: Visualization principles ---Representation of Three Dimensional objects — Layout of views- Freehand sketching of multiple views from pictorial views of objects.

Practicing three dimensional modeling of simple objects by CAD Software(Not for examination)

Downloaded from EnggTree.com

6+12

6+12

6+12

TOTAL: 45 PERIODS

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES

Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other — obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids — Prisms, pyramids cylinders and cones. Practicing three dimensional modeling of simple objects by CAD Software(Not for examination)

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS

Principles of isometric projection — isometric scale —Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions - Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method.

Practicing three dimensional modeling of isometric projection of simple objects by CAD Software(Not for examination)

OUTCOMES:

TOTAL: (L=30+P=60) 90 PERIODS

On successful completion of this course, the student will be able to

- Use BIS conventions and specifications for engineering drawing.
- Construct the conic curves, involutes and cycloid.
- · Solve practical problems involving projection of lines.
- Draw the orthographic, isometric and perspective projections of simple solids.
- Draw the development of simple solids.

TEXT BOOKS:

- 1. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 53rd Edition, 2019.
- 2. Natrajan K.V., "A Text Book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2018.
- 3. Parthasarathy, N. S. and Vela Murali, "Engineering Drawing", Oxford University Press, 2015

REFERENCES:

- 1. Basant Agarwal and Agarwal C.M., "Engineering Drawing", McGraw Hill, 2nd Edition, 2019.
- 2. Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Publications, Bangalore, 27th Edition, 2017.
- 3. Luzzader, Warren.J. and Duff,John M., "Fundamentals of Engineering Drawing with an introduction to Interactive Computer Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.
- 4. Parthasarathy N. S. and Vela Murali, "Engineering Graphics", Oxford University, Press, New Delhi, 2015.
- 5. Shah M.B., and Rana B.C., "Engineering Drawing", Pearson Education India, 2nd Edition, 2009.
- 6. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2008.

Publication of Bureau of Indian Standards:

- 1. IS 10711 2001: Technical products Documentation Size and lay out of drawing sheets.
- 2. IS 9609 (Parts 0 & 1) 2001: Technical products Documentation Lettering.
- 3. IS 10714 (Part 20) 2001 & SP 46 2003: Lines for technical drawings.
- 4. IS 11669 1986 & SP 46 2003: Dimensioning of Technical Drawings.
- 5. IS 15021 (Parts 1 to 4) 2001: Technical drawings Projection Methods.

Special points applicable to University Examinations on Engineering Graphics:

- 1. There will be five questions, each of either or type covering all units of the syllabus.
- 2. All questions will carry equal marks of 20 each making a total of 100.
- 3. The answer paper shall consist of drawing sheets of A3 size only. The students will be permitted to use appropriate scale to fit solution within A3 size.
- 4. The examination will be conducted in appropriate sessions on the same day

6+12

6+12

NCC Credit Course Level 1*

NX3251	(ARMY WING) NCC Credit Course Level - I	L 2	Т 0	P 0	C 2
NCC GEN	NERAL				6
NCC 1	Aims, Objectives & Organization of NCC				1
NCC 2	Incentives				2
NCC 3	Duties of NCC Cadet				1
NCC 4	NCC Camps: Types & Conduct				2
NATIONA	AL INTEGRATION AND AWARENESS				4
NI 1	National Integration: Importance & Necessity				1
NI 2	Factors Affecting National Integration				1
NI 3	Unity in Diversity & Role of NCC in Nation Building				1
NI 4	Threats to National Security				1
PERSON	ALITY DEVELOPMENT				7
PD 1	Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving				2
PD 2	Communication Skills				3
PD 3	Group Discussion: Stress & Emotions				2
	SHIP				5
L 1	Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour Code				3
L 2	Case Studies: Shivaji, Jhasi Ki Rani				2
SOCIAL	SERVICE AND COMMUNITY DEVELOPMENT				8
SS 1	Basics, Rural Development Programmes, NGOs, Contribution of Youth				3
SS 4	Protection of Children and Women Safety				1
SS 5	Road / Rail Travel Safety				1
SS 6	New Initiatives				2
SS 7	Cyber and Mobile Security Awareness				1

TOTAL: 30 PERIODS

NCC Credit Course Level 1*

NX3252	(NAVAL WING) NCC Credit Course Level - I	L 2	Т 0	P 0	C 2
NCC GEN	ERAL				6
NCC 1	Aims, Objectives & Organization of NCC				1
NCC 2	Incentives				2
NCC 3	Duties of NCC Cadet				1
NCC 4	NCC Camps: Types & Conduct				2
NATIONA	L INTEGRATION AND AWARENESS				4
NI 1	National Integration: Importance & Necessity				1
NI 2	Factors Affecting National Integration				1
NI 3	Unity in Diversity & Role of NCC in Nation Building				1
NI 4	Threats to National Security				1
PERSON	ALITY DEVELOPMENT				7
PD 1	Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving				2
PD 2	Communication Skills				3
PD 3	Group Discussion: Stress & Emotions				2
LEADERS	SHIP				5
L 1	Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour Code				3
L 2	Case Studies: Shivaji, Jhasi Ki Rani				2
SOCIAL S	ERVICE AND COMMUNITY DEVELOPMENT				8
SS 1	Basics, Rural Development Programmes, NGOs, Contribution of Youth				3
SS 4	Protection of Children and Women Safety				1
SS 5	Road / Rail Travel Safety				1
SS 6	New Initiatives				2
SS 7	Cyber and Mobile Security Awareness				1

TOTAL : 30 PERIODS

NCC Credit Course Level 1*

NX3253	(AIR FORCE WING) NCC Credit Course Level - I	L	т	Ρ	С
		2	0	0	2
NCC GEN	ERAL				6
NCC 1	Aims, Objectives & Organization of NCC				1
NCC 2	Incentives				2
NCC 3	Duties of NCC Cadet				1
NCC 4	NCC Camps: Types & Conduct				2
NATIONA	L INTEGRATION AND AWARENESS				4
NI 1	National Integration: Importance & Necessity				1
NI 2	Factors Affecting National Integration				1
NI 3	Unity in Diversity & Role of NCC in Nation Building				1
NI 4	Threats to National Security				1
PERSONA					7
PD 1	Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving				2
PD 2	Communication Skills				3
PD 3	Group Discussion: Stress & Emotions				2
LEADERS					5
L 1	Leadership Capsule: Traits, Indicators, Motivation, Moral				3
L 2	Case Studies: Shivaji, Jhasi Ki Rani				2
SOCIAL S	ERVICE AND COMMUNITY DEVELOPMENT				8
SS 1	Basics, Rural Development Programmes, NGOs, Contribution of Youth				3
SS 4	Protection of Children and Women Safety				1
SS 5	Road / Rail Travel Safety				1
SS 6	New Initiatives				2
SS 7	Cyber and Mobile Security Awareness				1

TOTAL: 30 PERIODS

GE3271

ENGINEERING PRACTICES LABORATORY

L T P C 0 0 4 2

15

15

OBJECTIVES:

The main learning objective of this course is to provide hands on training to the students in:

- 1. Drawing pipe line plan; laying and connecting various pipe fittings used in common household plumbing work; Sawing; planing; making joints in wood materials used in commonhousehold wood work.
- 2. Wiring various electrical joints in common household electrical wire work.
- 3. Welding various joints in steel plates using arc welding work; Machining various simple processes like turning, drilling, tapping in parts; Assembling simple mechanical assembly of common household equipments; Making a tray out of metal sheet using sheet metal work.
- 4. Soldering and testing simple electronic circuits; Assembling and testing simple electronic components on PCB.

GROUP – A (CIVIL & ELECTRICAL)

PART I CIVIL ENGINEERING PRACTICES

PLUMBING WORK:

- a) Connecting various basic pipe fittings like valves, taps, coupling, unions, reducers, elbows and other components which are commonly used in household.
- b) Preparing plumbing line sketches.
- c) Laying pipe connection to the suction side of a pump
- d) Laying pipe connection to the delivery side of a pump.
- e) Connecting pipes of different materials: Metal, plastic and flexible pipes used inhousehold appliances.

WOOD WORK:

- a) Sawing,
- b) Planing and
- c) Making joints like T-Joint, Mortise joint and Tenon joint and Dovetail joint.

Wood Work Study:

- a) Studying joints in door panels and wooden furniture
- b) Studying common industrial trusses using models.

PART II ELECTRICAL ENGINEERING PRACTICES

- a) Introduction to switches, fuses, indicators and lamps Basic switch board wiring with lamp, fan and three pin socket
- b) Staircase wiring
- c) Fluorescent Lamp wiring with introduction to CFL and LED types.
- d) Energy meter wiring and related calculations/ calibration
- e) Study of Iron Box wiring and assembly
- f) Study of Fan Regulator (Resistor type and Electronic type using Diac/Triac/quadrac)
- g) Study of emergency lamp wiring/Water heater

GROUP – B (MECHANICAL AND ELECTRONICS)

PART III MECHANICAL ENGINEERING PRACTICES

WELDING WORK:

- a) Welding of Butt Joints, Lap Joints, and Tee Joints using arc welding.
- b) Practicing gas welding.

BASIC MACHINING WORK:

- a) (simple)Turning.
- b) (simple)Drilling.
- c) (simple)Tapping.

ASSEMBLY WORK:

- a) Assembling a centrifugal pump.
- b) Assembling a household mixer.
- c) Assembling an airconditioner.

SHEET METAL WORK:

a) Making of a square tray

FOUNDRY WORK:

a) Demonstrating basic foundry operations.

PART IV ELECTRONIC ENGINEERING PRACTICES

SOLDERING WORK:

a) Soldering simple electronic circuits and checking continuity.

ELECTRONIC ASSEMBLY AND TESTING WORK:

a) Assembling and testing electronic components on a small PCB.

ELECTRONIC EQUIPMENT STUDY:

- a) Study an elements of smart phone..
- b) Assembly and dismantle of LED TV.
- c) Assembly and dismantle of computer/ laptop

TOTAL : 60 PERIODS

OUTCOMES:

Upon completion of this course, the students will be able to:

- 1. Draw pipe line plan; lay and connect various pipe fittings used in common household plumbing work; Saw; plan; make joints in wood materials used in common household wood work.
- 2. Wire various electrical joints in common household electrical wire work.
- Weld various joints in steel plates using arc welding work; Machine various simple processes like turning, drilling, tapping in parts; Assemble simple mechanical assembly of common household equipments; Make a tray out of metal sheet using sheet metal work.
- 4. Solder and test simple electronic circuits; Assemble and test simple electronic components on PCB.

BE3272 BASIC ELECTRICAL, ELECTRONICS AND INSTRUMENTATION ENGINEERING LABORATORY

L T P C 0 0 4 2

OBJECTIVES:

- To train the students in conducting load tests electrical machines
- To gain practical experience in experimentally obtaining the characteristics of electronic devices and rectifiers
- To train the students to measure three phase power and displacement

List of Experiments

- 1. Verification of ohms and Kirchhoff's Laws.
- 2. Three Phase Power Measurement
- 3. Load test on DC Shunt Motor.
- 4. Load test on Self Excited DC Generator
- 5. Load test on Single phase Transformer
- 6. Load Test on Induction Motor
- 7. Characteristics of PN and Zener Diodes
- 8. Characteristics of BJT, SCR and MOSFET
- 9. Design and analysis of Half wave and Full Wave rectifiers
- 10. Measurement of displacement of LVDT

TOTAL: 60 PERIODS

OUTCOMES:

After completing this course, the students will be able to

- **CO1:** Use experimental methods to verify the Ohm's law and Kirchhoff's Law and to measure three phase power
- **CO2:** Analyze experimentally the load characteristics of electrical machines
- CO3: Analyze the characteristics of basic electronic devices
- **CO4:** Use LVDT to measure displacement

PROGRESS THROUGH KNOWLEDGE

ANNA UNIVERSITY, CHENNAI NON-AUTONOMOUS AFFILIATED COLLEGES REGULATIONS 2021

B. E. ENVIRONMENTAL ENGINEERING

CHOICE BASED CREDIT SYSTEM

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) :

- I. To prepare students for successful careers in Environmental Engineering field that meets the needs of National and International organisations.
- II. To develop the confidence and ability among students to synthesize data and technical concepts and thereby apply it in real world problems.
- III. To develop students to use modern techniques, skill and mathematical engineering tools for solving problems in Environmental Engineering.
- IV. To provide students with a sound foundation in mathematical, scientific and engineering fundamentals necessary to formulate, solve and analyse environmental problems and to prepare them for graduate studies.
- V. To promote students to work collaboratively on multi-disciplinary projects and make them engage in life-long learning process throughout their professional life.

PROGRAM OUTCOMES (POs)

PO# Graduate Attribute

- 1 **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2 **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of Mathematics, natural sciences, and engineering sciences.
- 3 **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4 **Conduct** investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5 **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6 **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7 **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8 **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9 **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

- 10 **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11 **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12 **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

Graduates of the programme B.E Environmental Engineering will be able to

PSO1 Knowledge of Environmental Engineering discipline

Demonstrate in-depth knowledge Environmental Engineering discipline, with an ability to evaluate, analyze and synthesize existing and new knowledge.

PSO2 Critical analysis of Environmental Engineering problems and innovation Critically analyze complex Environmental Engineering problems, apply independent judgment for synthesizing information and make innovative advances in a theoretical, practical and policy context.

PSO3 Conceptualization and evaluation of engineering solutions to Environmental Engineering Issues Conceptualize and solve Environmental Engineering problems, evaluate potential solutions and arrive at technically feasible, economically viable and environmentally sound solutions with due consideration of health, safety, and socio-cultural factors

ANNA UNIVERSITY, CHENNAI NON-AUTONOMOUS AFFILIATED COLLEGES REGULATIONS 2021 CHOICE BASED CREDIT SYSTEM B. E. ENVIRONMENTAL ENGINEERING CURRICULUM FOR SEMESTERS I TO VIII AND SYLLABI FOR SEMESTERS III AND IV

SEMESTER I

S.	COURSE COURSE TITLE CATE-		CATE-	PERIODS PER WEEK			TOTAL CONTACT	CREDITS		
NO.	CODE		GURT	L	Т	Ρ	PERIODS			
1.	IP3151	Induction Programme	-	-	-	I	-	0		
THEC	THEORY									
2.	HS3151	Professional English - I	HSMC	3	0	0	3	3		
3.	MA3151	Matrices and Calculus	BSC	3	1	0	4	4		
4.	PH3151	Engineering Physics	BSC	3	0	0	3	3		
5.	CY3151	Engineering Chemistry	BSC	3	0	0	3	3		
6.	GE3151	Problem Solving and Python Programming	ESC	3	0	0	3	3		
7.	GE3152	அறிவியல் தமிழ் /Scientific Thoughts in Tamil	HSMC	1	0	0	1	1		
PRAC	CTICALS		<u> </u>	1						
8.	GE3171	Problem Solving and Python Programming Laboratory	ESC	0	0	4	4	2		
9.	BS3171	Physics and Chemistry Laboratory	BSC	0	0	4	4	2		
10.	GE3172	English Laboratory ^{\$}	EEC	0	0	2	2	1		
			TOTAL	16	1	10	27	22		

SEMESTER II

S.	COURSE	COURSE COURSE TITLE CATE- PERIODS			DS FK		CREDITS			
NO.	CODE		GORY	L	Т	P	PERIODS	UNEDITO		
THEC	THEORY									
1.	HS3251	Professional English - II	HSMC	2	0	0	2	2		
2.	MA3251	Statistics and Numerical Methods	BSC	3	1	0	4	4		
3.	BE3252	Basic Electrical, Electronics and Instrumentation Engineering	ESC	3	0	0	3	3		
4.	GE3251	Engineering Graphics	ESC	2	0	4	6	4		
5.	BE3255	Basic Civil and Mechanical Engineering	ESC	3	0	0	3	3		
6.		NCC Credit Course Level 1 [#]	-	2	0	0	2	2#		
7.	GE3252	தமிழர் மரபு /Heritage of Tamils	HSMC	1	0	0	1	1		
PRAC	CTICALS									
8.	GE3271	Engineering Practices Laboratory	ESC	0	0	4	4	2		
9.	BE3272	Basic Electrical, Electronics and Instrumentation Engineering Laboratory	ESC	0	0	4	4	2		
10.	GE3272	Communication Laboratory / Foreign Language ^{\$}	EEC	0	0	4	4	2		
			TOTAL	14	1	16	31	23		

* NCC Credit Course level 1 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

^{\$} Skill Based Course

S.	6. COURSE COURSE TITLE		CATE	PERIODS PER WEEK			TOTAL CONTACT	CREDITS
NO.	CODE		GORT	L	Т	Ρ	PERIODS	
THEO	RY							
1.	MA3391	Probability and Statistics	BSC	3	1	0	4	4
2.	EN3301	Environmental Chemistry	PCC	3	0	0	3	3
3.	EN3302	Environmental Microbiology	PCC	3	0	0	3	3
4.	EN3303	Sustainable Development	PCC	3	0	0	3	3
5.	EN3304	Fluid Mechanics and Hydraulics	PCC	3	0	0	3	3
6.	CE3351	Surveying and Levelling	PCC	3	0	0	3	3
PRAC	TICALS							•
7.	EN3311	Environmental Fluid Mechanics Laboratory	PCC	0	0	3	3	1.5
8.	CE3361	Surveying and Levelling Laboratory	PCC	0	0	3	3	1.5
9.	GE3361	Professional Development \$	EEC	0	0	2	2	1
		1 (N	TOTAL	18	1	8	27	23

^{\$} Skill Based Course

SEMESTER IV

S. NO.	COURSE CODE	COURSE TITLE	CATE GORY	PERIODS PER WEEK		DS EEK P	TOTAL CONTACT PERIODS	CREDITS
THEO	THEORY							
1.	EN3401	Environmental Legislations	PCC	3	0	0	3	3
2.	EN3402	Water Supply Engineering	PCC	3	0	0	3	3
3.	EN3403	Environmental Management Systems	PCC	3	0	0	3	3
4.	EN3404	Municipal Solid Waste Management	PCC	3	0	0	3	3
5.	EN3405	Fate and Transport of Contaminants in the Environment	PCC	3	0	0	3	3
6.	CCE331	Air and Noise Pollution Control Engineering	PCC	3	0	0	3	3
7.		NCC Credit Course Level 2 [#]	-	3	0	0	3	3 #
PRAC	TICALS							
8.	EN3411	Environmental Chemistry and Microbiology Laboratory	PCC	0	0	4	4	2
			TOTAL	18	0	4	22	20

[#] NCC Credit Course level 2 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER V

S.	COURSE COURSE TITLE CATE		CATE	PERIODS PER WEEK			TOTAL CONTACT	CREDITS	
NO.	CODE		GORT	L	Т	Р	PERIODS		
THEC	THEORY								
1.	EN3501	Soil Mechanics and Foundation Engineering	PCC	3	0	0	3	3	
2.	EN3502	Life Cycle Assessment	PCC	3	0	0	3	3	
3.	EN3503	Wastewater Engineering	PCC	3	0	0	3	3	
4.		Professional Elective I	PEC	3	0	0	3	3	
5.		Professional Elective II	PEC	3	0	0	3	3	
6.		Professional Elective III	PEC	3	0	0	3	3	
7.		Mandatory Course-I ^{&}	MC	3	0	0	3	0	
PRAC	CTICALS								
8.	EN3511	Environmental Engineering Laboratory	PCC	0	0	4	4	2	
9.	EN3512	Environmental Engineering Design and Drawing	PCC	0	0	4	4	2	
			TOTAL	21	0	8	29	22	

[&] Mandatory Course-I is a Non-credit Course (Student shall select one course from the list given under MC-I)

SEMESTER VI

S.	COURSE	COURSE TITLE	CATE	P PE	ERIC ER W	DDS /EEK	TOTAL CONTACT	CREDITS
NO.	CODE		GORY	L	Т	Р	PERIODS	
THEC	DRY							
1.	EN3601	Environmental Monitoring Instruments	PCC	3	0	0	3	3
2.	CCE334	Industrial Wastewater Management	PCC	3	0	0	3	3
3.		Professional Elective IV	PEC	3	0	0	3	3
4.		Professional Elective V	PEC	3	0	0	3	3
5.		Professional Elective VI	PEC	3	0	0	3	3
6.		Professional Elective VII	PEC	3	0	0	3	3
7.		Open Elective – I*	OEC	3	0	0	3	3
8.		Mandatory Course-II ^{&}	MC	3	0	0	3	0
9.		NCC Credit Course Level 3 [#]		3	0	0	3	3 #
PRAC	CTICALS					•		
10.	EN3611	Environmental Instrumentation Laboratory	PCC	0	0	4	4	2
			TOTAL	24	0	4	28	23

*Open Elective - I shall be chosen from the emerging technologies

[&] Mandatory Course-II is a Non-credit Course (Student shall select one course from the list given under MC-II)

[#] NCC Credit Course level 3 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER VII/VIII*

S.	COURSE COURSE TITLE CATE		CATE	PERIODS PER WEEK			TOTAL CONTACT	CREDITS
NO.	CODE		GONT	L	Т	Ρ	PERIODS	
THEO	RY							
1.	CCE333	Environmental Impact Assessment	PCC	3	0	0	3	3
2.	CCE332	Environmental Health and Safety	PCC	3	0	0	3	3
3.	GE3791	Human Values and Ethics	HSMC	2	0	0	2	2
4.	GE3753	Engineering Economics and Financial Accounting	HSMC	3	0	0	3	3
5.		Open Elective – II**	OEC	3	0	0	3	3
6.		Open Elective – III***	OEC	3	0	0	3	3
7.		Open Elective – IV***	OEC	3	0	0	3	3
		-	TOTAL	20	0	0	20	20

*If students undergo internship in Semester VII, then the courses offered during semester VII will be offered during semester VII.

**Open Elective – II shall be chosen from the emerging technologies

***Open Elective III and IV (Shall be chosen from the list of open electives offered by other Programmes

SEMESTER VIII/VII*

S. NO.	COURSE CODE	COURSE TITLE	CATE GORY	PI PE L	Erio R Wi T	DS EEK P	TOTAL CONTACT PERIODS	CREDITS
PRAC	CTICALS							
1.	EN3811	Project Work/Internship	EEC	0	0	20	20	10
			TOTAL	0	0	20	20	10

*If students undergo internship in Semester VII, then the courses offered during semester VII will be offered during semester VIII

TOTAL CREDITS: 163

MANDATORY COURSES I

S.	COURSE	COURSE TITLE	CATE	PERIODS PER WEEK			TOTAL CONTACT	CREDITS
NO.	CODE		GONT	L	Т	Ρ	PERIODS	
1.	MX3081	Introduction to Women	MC	3	0	0	3	0
		and Gender Studies						
2.	MX3082	Elements of Literature	MC	3	0	0	3	0
3.	MX3083	Film Appreciation	MC	3	0	0	3	0
4.	MX3084	Disaster Management	MC	3	0	0	3	0

|--|

S.	COURSE	COURSE TITLE	CATE	PERIODS PER WEEK			TOTAL CONTACT	CREDITS
NO.	CODE		GORT	L	Т	Ρ	PERIODS	
1.	MX3085	Well Being with Traditional Practices (Yoga, Ayurveda and Siddha)	MC	3	0	0	3	0
2.	MX3086	History of Science and Technology in India	MC	3	0	0	3	0
3.	MX3087	Political and Economic Thought for a Humane Society	MC	3	0	0	3	0
4.	MX3088	State, Nation Building and Politics in India	MC	3	0	0	3	0
5.	MX3089	Industrial Safety	MC	3	0	0	3	0

PROFESSIONAL ELECTIVE COURSES : VERTICALS

VERTICAL I Water and Wastewater Engineering	VERTICAL II Air Pollution Engineering	VERTICAL III Solid Waste Management	VERTICAL IV Environmental Management	VERTICAL V Diversified Courses
Groundwater and Well Engineering	Indoor Air Quality Management	Biochemical and Thermochemical Conversion of Biomass	Surface and Groundwater Quality Modelling	Coastal Zone Management
Functional design of Rainwater Harvesting Systems	Noise Pollution Control in Industries	Biomedical Waste Management	Remote Sensing and GIS Applications in Environmental Management	Irrigation Water Quality and Wastewater Management
Operation and Maintenance of Water and Wastewater Treatment Plants	Climate Change and Adaptation	Landfill Engineering and Remediation Technology	Occupational Health, Safety and Risk Assessment	Solar and Wind Energy System
Septage Management	Low Carbon Economy	Plastic and E waste Management	Planning, Design and Management of Large Housing Complexes	Epidemiology and Control of Communicable Diseases
Marine Pollution and Control	Climatology and Meteorology	Industrial Hazardous waste Management	Energy Management in Industries	Cleaner Production
Natural Wastewater Treatment Systems	Air Quality Modelling and mapping	Resource recovery from waste	Public Health Engineering Services in Buildings	Sustainable Agriculture and Environmental Management
Design of Water and Wastewater Treatment Plants	Climate Change Modelling	Green buildings	Environmental system Engineering	Project Formulation and Implementation

Registration of Professional Elective Courses from Verticals:

Professional Elective Courses will be registered in Semesters V and VI. These courses are listed in groups called verticals that represent a particular area of specialisation / diversified group. Students are permitted to choose all the Professional Electives from a particular vertical or from different verticals. Further, only one Professional Elective course shall be chosen in a semester horizontally (row-wise). However, two courses are permitted from the same row, provided one course is enrolled in Semester V and another in semester VI. The registration of courses for B.E./B.Tech (Honours) or Minor degree shall be done from Semester V to VIII. The procedure for registration of courses explained above shall be followed for the courses of B.E./B.Tech (Honours) or Minor degree also. For more details on B.E./B.Tech (Honours) or Minor degree also. For more details on B.E./B.Tech (Honours) or Minor degree 4.10.

PROFESSIONAL ELECTIVE COURSES: VERTICALS

VERTICAL I: WATER AND WASTEWATER ENGINEERING

SL.	SL. COURSE COURSE TITLE		CATE	PERIODS PER WEEK			TOTAL CONTACT	CREDITS
NO.			GORT	L	Т	Ρ	PERIODS	
1.	CAI333	Groundwater and Well Engineering	PEC	3	0	0	3	3
2.	EN3001	Functional Design of Rainwater Harvesting Systems	PEC	3	0	0	3	3
3.	EN3002	Operation and maintenance of Water and Wastewater Treatment Plants	PEC	3	0	0	3	3
4.	EN3003	Septage Management	PEC	3	0	0	3	3
5.	EN3004	Marine Pollution and Control	PEC	3	0	0	3	3
6.	EN3005	Natural Wastewater Treatment Systems	PEC	3	0	0	3	3
7.	EN3006	Design of Water and Wastewater Treatment Plants	PEC	3	0	0	3	3

VERTICAL II : AIR POLLUTION ENGINEERING

SL.	COURSE COURSE TITLE CATE		PERIODS PER WEEK			TOTAL CONTACT	CREDITS	
NO.			GORT	L	Т	Ρ	PERIODS	
1.	EN3007	Indoor Air Quality Management	PEC	3	0	0	3	3
2.	EN3008	Noise Pollution Control in Industries	PEC	3	0	0	3	3
3.	CAI332	Climate Change and Adaptation	PEC	3	0	0	3	3
4.	EN3009	Low Carbon Economy	PEC	3	0	0	3	3
5.	EN3010	Climatology and Meteorology	PEC	3	0	0	DGE ³	3
6.	EN3011	Air Quality Modelling and Mapping	PEC	3	0	0	3	3
7.	EN3012	Climate Change Modelling	PEC	3	0	0	3	3

SL.	COURSE COURSE TITLE CATE GORY		PERIODS PER WEEK			TOTAL CONTACT	CREDITS	
NO.			GORT	L	Т	Ρ	PERIODS	
1.	CAI331	Biochemical and Thermochemical Conversion of Biomass	PEC	3	0	0	3	3
2.	EN3013	Biomedical Waste Management	PEC	3	0	0	3	3
3.	EN3014	Landfill engineering and Remediation Technology	PEC	3	0	0	3	3
4.	EN3015	Plastic and E waste Management	PEC	3	0	0	3	3
5.	EN3016	Industrial Hazardous Waste Management	PEC	3	0	0	3	3
6.	EN3017	Resource recovery from Waste	PEC	3	0	0	3	3
7.	EN3018	Green Buildings	PEC	3	0	0	3	3

VERTICAL IV: ENVIRONMENTAL MANAGEMENT

SL.	COURSE CODE	COURSE TITLE	CATE	PERIODS PER WEEK			TOTAL CONTACT	CREDITS
NO.		75/	GORT	_L	Т	Р	PERIODS	
1.	EN3019	Surface and Groundwater Quality Modelling	PEC	3	0	0	3	3
2.	EN3020	Remote sensing and GIS Applications in Environmental Management	PEC	3	0	0	3	3
3.	EN3021	Occupational Health, Safety and Risk Assessment	PEC	3	0	0	3	3
4.	EN3022	Planning, Design and Management of Large Housing complexes	PEC	3	0	0	3 10 F	3
5.	EN3023	Energy Management in Industries	PEC	3	0	0	3	3
6.	EN3024	Public Health Engineering Services in Buildings	PEC	3	0	0	3	3
7.	EN3025	Environmental System Engineering	PEC	3	0	0	3	3

SL.	SL. COURSE CODE COURSE TITLE		CATE	PERIODS PER WEEK			TOTAL CONTACT	CREDITS
NO.			GORT	L	Т	Ρ	PERIODS	
1.	EN3026	Coastal Zone Management	PEC	3	0	0	3	3
2.	CAI334	Irrigation Water Quality and Waste Water Management	PEC	3	0	0	3	3
3.	CAI335	Solar and Wind Energy System	PEC	3	0	0	3	3
4.	EN3027	Epidemiology and Control of Communicable Diseases	PEC	3	0	0	3	3
5.	EN3028	Cleaner Production	PEC	3	0	0	3	3
6.	EN3029	Sustainable Agriculture and Environmental Management	PEC	3	0	0	3	3
7.	EN3030	Project Formulation and Implementation	PEC	3	0	0	3	3

VERTICAL V: DIVERSIFIED COURSES

11 Downloaded from EnggTree.com

OPEN ELECTIVES

(Students shall choose the open elective courses, such that the course contents are not similar to any other course contents/title under other course categories)

OPEN ELECTIVE I AND II (EMERGING TECHNOLOGIES)

To be offered other than Faculty of Information and Communication Engineering

SL.	COURSE CODE	COURSE TITLE	CATE	PEF PER	RIOE WE	DS EK	TOTAL CONTACT	CREDITS
NO.			CONT	L	Т	Ρ	PERIODS	
1.	OCS351	Artificial Intelligence and Machine Learning Fundamentals	OEC	2	0	2	4	3
2.	OCS352	IoT Concepts and Applications	OEC	2	0	2	4	3
3.	OCS353	Data Science Fundamentals	OEC	2	0	2	4	3
4.	OCS354	Augmented and Virtual Reality	OEC	2	0	2	4	3

OPEN ELECTIVES – III

SL.	COURSE		CATE	PE	RIO	DS	TOTAL	
NO.	CODE	COURSE TITLE	GORY			P	PERIODS	CREDITS
1.	OHS351	English for Competitive Examinations	OEC	3	0	0	3	3
2.	OMG352	NGOs and Sustainable Development	OEC	3	0	0	3	3
3.	OMG353	Democracy and Good Governance	OEC	3	0	0	-3	3
4.	OME353	Renewable Energy Technologies	OEC	3	0	0	3	3
5.	OME354	Applied Design Thinking	OEC	2	0	2	4	3
6.	OMF351	Reverse Engineering	OEC	3	0	0	3	3
7.	OMF353	Sustainable Manufacturing	OEC	3	0	0	3	3
8.	OAU351	Electric and Hybrid Vehicle	OEC	3	0	0	3	3
9.	OAS352	Space Engineering	OEC	3	0	0	3	3
10.	OIM351	Industrial Management	OEC	3	0	0	3	3
11.	OIE354	Quality Engineering	OEC	3	0	0	3	3
12.	OSF351	Fire Safety Engineering	OEC	3	0	0	3	3
13.	OML351	Introduction to non- destructive testing	OEC	3	0	0	3	3
14.	OMR351	Mechatronics	OEC	3	0	0	3	3
15.	ORA351	Foundation of Robotics	OEC	3	0	0	3	3
16.	OAE352	Fundamentals of Aeronautical engineering	OEC	3	0	0	3	3
17.	OGI351	Remote Sensing Concepts	OEC	3	0	0	3	3
18.	OAI351	Urban Agriculture	OEC	3	0	0	3	3
19.	OCE353	Lean Concepts, Tools And Practices	OEC	3	0	0	3	3
20.	OEE352	Electric Vehicle technology	OEC	3	0	0	3	3

21.	OEI353	Introduction to PLC Programming	OEC	3	0	0	3	3
22.	OCH351	Nano Technology	OEC	3	0	0	3	3
23.	OCH352	Functional Materials	OEC	3	0	0	3	3
24.	OBT352	Biomedical Instrumentation	OEC	3	0	0	3	3
25.	OFD352	Traditional Indian Foods	OEC	3	0	0	3	3
26.	OFD353	Introduction to food processing	OEC	3	0	0	3	3
27.	OPY352	IPR for Pharma Industry	OEC	3	0	0	3	3
28.	OTT351	Basics of Textile Finishing	OEC	3	0	0	3	3
29.	OTT352	Industrial Engineering for Garment Industry	OEC	3	0	0	3	3
30.	OTT353	Basics of Textile Manufacture	OEC	3	0	0	3	3
31.	OPE351	Introduction to Petroleum Refining and Petrochemicals	OEC	3	0	0	3	3
32.	OPE352	Energy Conservation and Management	OEC	3	0	0	3	3
33.	OPT351	Basics of Plastics Processing	OEC	3	0	0	3	3
34.	OEC351	Signals and Systems	OEC	3	0	0	3	3
35.	OEC352	Fundamentals of Electronic Devices and Circuits	OEC	3	0	0	3	3
36.	OBM351	Foundation Skills in integrated product Development	OEC	3	0	0	3	3
37.	OBM352	Assistive Technology	OEC	3	0	0	- 3	3
38.	OMA352	Operations Research	OEC	3	0	0	3	3
39.	OMA353	Algebra and Number Theory	OEC	3	0	0	3	3
40.	OMA354	Linear Algebra	OEC	3	0	0	3	3

OPEN ELECTIVES – IV

SL.	COURSE CODE	COURSE TITLE	CATE	PE PE	r We	DS EK	TOTAL CONTACT	CREDITS
NO.			GONT	L	Т	Ρ	PERIODS	
1.	OHS352	Project Report Writing	OEC	3	0	0	3	3
2.	OMA355	Advanced Numerical Methods	OEC	3	0	0	3	3
3.	OMA356	Random Processes	OEC	3	0	0	3	3
4.	OMA357	Queuing and Reliability Modelling	OEC	3	0	0	3	3
5.	OMG354	Production and Operations Management for Entrepreneurs	OEC	3	0	0	3	3
6.	OMG355	Multivariate Data Analysis	OEC	3	0	0	3	3
7.	OME352	Additive Manufacturing	OEC	3	0	0	3	3

8.	OME353	New Product Development	OEC	3	0	0	3	3
9.	OME355	Industrial Design & Rapid Prototyping Techniques	OEC	2	0	2	4	3
10.	OMF352	Micro and Precision Engineering	OEC	3	0	0	3	3
11.	OMF354	Cost Management of Engineering Projects	OEC	3	0	0	3	3
12.	OAU352	Batteries and Management system	OEC	3	0	0	3	3
13.	OAU353	Sensors and Actuators	OEC	3	0	0	3	3
14.	OAS353	Space Vehicles	OEC	3	0	0	3	3
15.	OIM352	Management Science	OEC	3	0	0	3	3
16.	OIM353	Production Planning and Control	OEC	3	0	0	3	3
17.	OIE353	Operations Management	OEC	3	0	0	3	3
18.	OSF352	Industrial Hygiene	OEC	3	0	0	3	3
19.	OSF353	Chemical Process Safety	OEC	3	0	0	3	3
20.	OML352	Electrical, Electronic and Magnetic materials	OEC	3	0	0	3	3
21.	OML353	Nanomaterials and applications	OEC	3	0	0	3	3
22.	OMR352	Hydraulics and Pneumatics	OEC	3	0	0	3	3
23.	OMR353	Sensors	OEC	3	0	0	3	3
24.	ORA352	Foundation of Automation	OEC	3	0	0	3	3
25.	ORA353	Concepts in Mobile Robotics	OEC	3	0	0	3	3
26.	OMV351	Marine Propulsion	OEC	3	0	0	3	3
27.	OMV352	Marine Merchant Vehicles	OEC	3	0	0	3	3
28.	OMV353	Elements of Marine Engineering	OEC	3	0	0	DGE ³	3
29.	OAE353	Drone Technologies	OEC	3	0	0	3	3
30.	OGI352	Geographical Information System	OEC	3	0	0	3	3
31.	OAI352	Agriculture Entrepreneurship Development	OEC	3	0	0	3	3
32.	OCE354	Basics of Integrated Water Resources Management	OEC	3	0	0	3	3
33.	OEE353	Introduction to control systems	OEC	3	0	0	3	3
34.	OEI354	Introduction to Industrial Automation Systems	OEC	3	0	0	3	3
35.	OCH353	Energy Technology	OEC	3	0	0	3	3
36.	OCH354	Surface Science	OEC	3	0	0	3	3

37.	OBT353	Environment and Agriculture	OEC	3	0	0	3	3
38.	OFD354	Fundamentals of Food Engineering	OEC	3	0	0	3	3
39.	OFD355	Food safety and Quality Regulations	OEC	3	0	0	3	3
40.	OPY353	Nutraceuticals	OEC	3	0	0	3	3
41.	OTT354	Basics of Dyeing and Printing	OEC	3	0	0	3	3
42.	OTT355	Fibre Science	OEC	3	0	0	3	3
43.	OTT356	Garment Manufacturing Technology	OEC	3	0	0	3	3
44.	OPE353	Industrial safety	OEC	3	0	0	3	3
45.	OPE354	Unit Operations in Petro Chemical Industries	OEC	3	0	0	3	3
46.	OPT352	Plastic Materials for Engineers	OEC	3	0	0	3	3
47.	OPT353	Properties and Testing of Plastics	OEC	3	0	0	3	3
48.	OEC353	VLSI Design	OEC	3	0	0	3	3
49.	OEC354	Industrial IoT and Industry 4.0	OEC	2	0	2	4	3
50.	OBM353	Wearable devices	OEC	3	0	0	3	3
51.	OBM354	Medical Informatics	OEC	3	0	0	3	3

PROGRESS THROUGH KNOWLEDGE

NAME OF THE PROGRAMME										
	Subject Area			Credits Total						
			II							
1.	HSMC	4	3					5		12
2.	BSC	12	4	4						20
3.	ESC	5	14							19
4.	PCC			18	20	13	8	6		65
5.	PEC					9	12			21
6.	OEC						3	9		12
7.	EEC	1	2	1	0				10	14
	Total	22	23	163						
8.	Mandatory Course (Non credit)		\mathbf{S}	U	NI		~			

Downloaded from EnggTree.com

ENROLLMENT FOR B.E. / B. TECH. (HONOURS) / MINOR DEGREE (OPTIONAL)

A student can also optionally register for additional courses (18 credits) and become eligible for the award of B.E. / B. Tech. (Honours) or Minor degree.

For B.E. / B. Tech. (Honours), a student shall register for the additional courses (18 credits) from semester V onwards. These courses shall be from the same vertical or a combination of different verticals of the same programme of study only.

For minor degree, a student shall register for the additional courses (18 credits) from semester V onwards. All these courses have to be in a particular vertical from any one of the other programmes, Moreover, for minor degree the student can register for courses from any one of the following verticals also.

Complete details are available in clause 4.10 of Regulations 2021.

VERTICAL I	VERTICAL II	VERTICAL III	VERTICAL IV	VERTICAL V
Fintech and Block Chain	Entrepreneurship	Public Administration	Business Data Analytics	Environment and Sustainability
Financial Management	Foundations of Entrepreneurship	Principles of Public Administration	Statistics for Management	Sustainable infrastructure Development
Fundamentals of Investment	Team Building and Leadership Management for Business	Constitution of India	Datamining for Business Intelligence	Sustainable Agriculture and Environmental Management
Banking, Financial Services and Insurance	Creativity and Innovation in Entrepreneurship	Public Personnel Administration	Human Resource Analytics	Sustainable Bio Materials
Introduction to Blockchain and its Applications	Principles of Marketing Management for Business	Administrative Theories	Marketing and Social Media Web Analytics	Materials for Energy Sustainability
Fintech Personal Finance and Payments	Human Resource Management for Entrepreneurship	Indian Administrative System	Operation and Supply Chain Analytics	Green Technology
Introduction to Fintech	Financing New Business Ventures	Public Policy Administration	Financial Analytics	Environmental Quality Monitoring and Analysis
-	-	-	-	Integrated Energy Planning for Sustainable Development
-	-	-	-	Energy Efficiency for Sustainable Development

VERTICALS FOR MINOR DEGREE (In addition to all the verticals of other programmes)

(Choice of courses for Minor degree is to be made from any one vertical of other programmes or from anyone of the following verticals)

SL.	COURSE CODE	COURSE TITLE	CATE	PEI PER	rioi We	DS EK	TOTAL CONTACT	CREDITS
NO.			GORT	L	Т	Ρ	PERIODS	
1.	CMG331	Financial Management	PEC	3	0	0	3	3
2.	CMG332	Fundamentals of Investment	PEC	3	0	0	3	3
3.	CMG333	Banking, Financial Services and Insurance	PEC	3	0	0	3	3
4.	CMG334	Introduction to Blockchain and its Applications	PEC	3	0	0	3	3
5.	CMG335	Fintech Personal Finance and Payments	PEC	3	0	0	3	3
6.	CMG336	Introduction to Fintech	PEC	3	0	0	3	3

VERTICAL 1: FINTECH AND BLOCK CHAIN

VERTICAL 2: ENTREPRENEURSHIP

SL.	COURSE COURSE TITLE		CATE	PEF		DS EK	TOTAL CONTACT	CREDITS
NO.			GORY	- L	Т	Ρ	PERIODS	
1.	CMG337	Foundations of Entrepreneurship	PEC	3	0	0	3	3
2.	CMG338	Team Building and Leadership Management for Business	PEC	3	0	0	3	3
3.	CMG339	Creativity and Innovation in Entrepreneurship	PEC	3	0	0	3 EDGE	3
4.	CMG340	Principles of Marketing Management for Business	PEC	3	0	0	3	3
5.	CMG341	Human Resource Management for Entrepreneurship	PEC	3	0	0	3	3
6.	CMG342	Financing New Business Ventures	PEC	3	0	0	3	3

SL.	COURSE CODE	COURSE TITLE	CATE	PERIODS PER WEEK		DS EEK	TOTAL CONTACT	CREDITS	
NO.			GORT	_	Т	Ρ	PERIODS		
1.	CMG343	Principles of Public Administration	PEC	3	0	0	3	3	
2.	CMG344	Constitution of India	PEC	3	0	0	3	3	
3.	CMG345	Public Personnel Administration	PEC	3	0	0	3	3	
4.	CMG346	Administrative Theories	PEC	3	0	0	3	3	
5.	CMG347	Indian Administrative System	PEC	3	0	0	3	3	
6.	CMG348	Public Policy Administration	PEC	3	0	0	3	3	

VERTICAL 3: PUBLIC ADMINISTRATION

VERTICAL 4: BUSINESS DATA ANALYTICS

SL.	COURSE CODE	COURSE TITLE	CATE GORY	PERIODS PER WEEK			TOTAL CONTACT	CREDITS	
NO.				L.	T	Ρ	PERIODS		
1.	CMG349	Statistics for Management	PEC	3	0	0	3	3	
2.	CMG350	Datamining for Business Intelligence	PEC	3	0	0	3	3	
3.	CMG351	Human Resource Analytics	PEC	3	0	0	3	3	
4.	CMG352	Marketing and Social Media Web Analytics	PEC	3	0	0	3	3	
5.	CMG353	Operation and Supply Chain Analytics	PEC	3	0	0	3	3	
6.	CMG354	Financial Analytics	PEC	3	0	0	3	3	

VERTICAL 5: ENVIRONMENT AND SUSTAINABILITY

SL.	COURSE CODE	COURSE TITLE	CATE	PERIODS PER WEEK		DDS ÆEK	TOTAL CONTACT	CREDIT	
NO.			OONT	L.	Τ.	Р	PERIODS	5	
1.	CES331	Sustainable infrastructure Development	PEC	3	0	0	3	3	
2.	CES332	Sustainable Agriculture and Environmental Management	PEC	3	0	0	3	3	
3.	CES333	Sustainable Bio Materials	PEC	3	0	0	3	3	
4.	CES334	Materials for Energy Sustainability	PEC	3	0	0	3	3	
5.	CES335	Green Technology	PEC	3	0	0	3	3	
6.	CES336	Environmental Quality Monitoring and Analysis	PEC	3	0	0	3	3	
7.	CES337	Integrated Energy Planning for Sustainable Development	PEC	3	0	0	3	3	
8.	CES338	Energy Efficiency for Sustainable Development	PEC	3	0	0	3	3	

MA3391

PROBABILITY AND STATISTICS

OBJECTIVES

- This course aims at providing the required skill to apply the statistical tools in engineering problems.
- To introduce the basic concepts of probability and random variables.
- To introduce the basic concepts of two dimensional random variables.
- To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems.
- To introduce the basic concepts of classifications of design of experiments which plays very important roles in the field of agriculture and statistical quality control.

UNIT I PROBABILITY AND RANDOM VARIABLES

Axioms of probability – Conditional probability – Baye's theorem - Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential and Normal distributions – Functions of a random variable.

UNIT II TWO- DIMENSIONAL RANDOM VARIABLES

Joint distributions – Marginal and conditional distributions – Covariance – Correlation and linear regression – Transformation of random variables – Central limit theorem (for independent and identically distributed random variables).

UNIT III ESTIMATION THEORY

Unbiased estimators - Efficiency - Consistency - Sufficiency - Robustness - Method of moments -Method of maximum Likelihood - Interval estimation of Means - Differences between means, variations and ratio of two variances

UNIT IV NON- PARAMETRIC TESTS

Introduction - The Sign test - The Signed - Rank test - Rank - sum tests - The U test - The H test - Tests based on Runs - Test of randomness - The Kolmogorov Tests .

UNIT V STATISTICAL QUALITY CONTROL

Control charts for measurements (\overline{X} and R charts) – Control charts for attributes (p, c and np charts) – Tolerance limits - Acceptance sampling. TOTAL: 60 PERIODS

OUTCOMES:

Upon successful completion of the course, students will be able to:

- Understand the fundamental knowledge of the concepts of probability and have knowledge of standard distributions which can describe real life phenomenon.
- Understand the basic concepts of one and two dimensional random variables and apply in engineering applications.
- Apply the concept of testing of hypothesis for small and large samples in real life problems.
- Apply the basic concepts of classifications of design of experiments in the field of agriculture and statistical quality control.
- Have the notion of sampling distributions and statistical techniques used in engineering and management problems

Downloaded from EnggTree.com

L T P C 3 1 0 4

9 + 3

9 + 3

9 + 3

9 + 3

9 + 3

TEXT BOOKS

- 1. Johnson. R.A., Miller. I.R and Freund . J.E, "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 9th Edition, 2017.
- 2. Milton. J. S. and Arnold. J.C., "Introduction to Probability and Statistics", Tata Mc Graw Hill, 4th Edition, 2017.
- 3. John E. Freund, "Mathematical Statistics", Prentice Hall, 6th Edition, 1998

REFERENCES:

- 1. Gupta. S.C. and Kapoor. V. K., "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi, 12th Edition, 2020.
- 2. Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi, 9th Edition, 2020.
- 3. Ross. S.M., "Introduction to Probability and Statistics for Engineers and Scientists", 5thEdition, Elsevier, 2014.
- 4. Spiegel. M.R., Schiller. J. and Srinivasan. R.A., "Schaum's Outline of Theory and Problems of Probability and Statistics", Tata McGraw Hill Edition, 4th Edition, 2012.
- 5. Walpole. R.E., Myers. R.H., Myers. S.L. and Ye. K., "Probability and Statistics for Engineers and Scientists", Pearson Education, Asia, 9th Edition, 2010.

EN3301

ENVIRONMENTAL CHEMISTRY

OBJECTIVES:

- To educate the students in the area of water, air and soil chemistry
- To explain the theoretical basis and observational methods for study of contaminants and interactions in the environment

UNIT I FUNDAMENTALS

Stoichiometry and mass balance-Chemical equilibria, acid base, solubility product(Ksp) ,heavy metal precipitation, amphoteric hydroxides, CO₂ solubility in water and species distribution – Ocean acidification, Chemical kinetics, First order- 12 Principles of green chemistry.

UNITII AQUATIC CHEMISTRY

Water and wastewater quality parameters- environmental significance and determination; Fate of chemicals in aquatic environment, volatilization, partitioning, hydrolysis, photochemical transformation– Degradation of synthetic chemicals - Metals, complex formation, oxidation and reduction, pE - pH diagrams, redox zones – sorption- Colloids, electrical properties, double layer theory, environmental significance of colloids, coagulation.

UNIT III ATMOSPHERIC CHEMISTRY

Atmospheric structure – chemical and photochemical reactions – photochemical smog. Ozone layer depletion – greenhouse gases and global warming, CO2 capture and sequestration – acid rain-origin and composition of particulates. black carbon, air quality parameters determination.

UNIT IV SOIL CHEMISTRY

Nature and composition of soil - Clays- cation exchange capacity-acid base and ion-exchange reactions in soil – agricultural chemicals in soil-reclamation of contaminated land; salt by leaching-Heavy metals by electrokinetic remediation.

UNIT V EMERGING POLLUTANTS

3003

9

9

LTPC

9

Heavy metals-chemical speciation –Speciation of Hg & As- endocrine disturbing chemicals-Pesticides, Dioxins & Furan, PCBs, PAHs and Fluro compounds toxicity- Nano materials, CNT, titania, composites environmental applications.

OUTCOMES:

On completion of the course, the student is expected to

- CO1: Gain competency in solving environmental issues of chemicals based pollution
- CO2: Determine chemicals mobility in aquatic systems
- CO3: Identify contaminating chemicals in air and their fate
- CO4: Understand the type of soil contaminants and provide remediation

CO5: Identify emerging environmental contaminants including speciation

REFERENCES:

- 1. Sawyer, C.N., Mac Carty, P.L. and Parkin, G.F., "Chemistry for Environmental Engineering and Science", Tata McGraw Hill, Fifth edition, New Delhi 2017.
- 2. Colin Baird, Environmental Chemistry, Freeman and company, New York, 5th Edition, 2012.
- 3. Manahan, S.E., "Environmental Chemistry", Eleventh Edition, CRC press, 2022.
- 4. Ronald A. Hites ,"Elements of Environmental Chemistry", Wiley, 2nd Edition, 2020.

EN3302

ENVIRONMENTAL MICROBIOLOGY

OBJECTIVES:

- The course provides a basic understanding on microbiology relevant to environmental engineering for candidates with little prior knowledge of the subject
- The morphology, behaviour and biochemistry of bacteria, fungi, protozoa, viruses, and algae are outlined.
- The microbiology of wastewater, sewage sludge and solid waste treatment processes is also provided. Aspects on nutrient removal and the transmission of disease causing organisms are also covered.
- An exposure to toxicology due to industrial products and by-products are also covered.

UNIT I FUNDAMENTALS OF MICROBIOLOGY

Classification of microorganisms – prokaryotic, eukaryotic, cell structure, characteristics, importance, introduction to water, soil and air borne pathogens and Parasites and their effects on human, animal and plant health, transmission of pathogens, transmissible diseases – bacterial, viral, protozoan, and helminths parasites, concentration and detection of virus. control of microorganisms preservation of microorganisms, DNA, RNA, replication, recombinant DNA technology, their potential applications and intellectual property rights.

UNIT II MICROBIAL DIVERSITY AND NUTRIENT TURNOVER

Distribution of microorganisms in different environments – diversity of microorganisms – fresh and marine, terrestrial – microbes in surface soil, air – outdoor and Indoor, aerosols, bio safety in laboratory – extreme environment – archae bacteria – occurrence in water supplies – problems and control. biogeochemical cycles-nitrogen, carbon, phosphorus, sulphur – Role of Microorganism in nutrient cycle.

UNIT III METABOLISM OF MICROORGANISMS

Nutrition and metabolism in microorganisms, growth phases, carbohydrate, protein, lipid metabolism – respiration, aerobic and anaerobic-fermentation, glycolysis, Kreb's cycle, hexose monophosphate pathway, electron transport system, oxidative phosphorylation, environmental factors, enzymes, bioenergetics, disruption in metabolism and disease. biodegradation of organic pollutants

UNIT IV MICROBIOLOGY OF WASTEWATER TREATMENT SYSTEMS

9

TOTAL: 45 PERIODS

LTPC 3003

9

Microbiology of biological treatment processes – aerobic and anaerobic, α -oxidation, β -oxidation, nitrification and denitrification, eutrophication. nutrients removal – BOD, nitrogen, phosphate. microbiology of sewage sludge - indicator organisms of water – coliforms - total coliforms, E-coli, streptococcus, clostridium, Bioleaching

UNIT V TOXICOLOGY

Ecotoxicology – toxicants and toxicity, factors influencing toxicity.effects – acute, chronic, test organisms – toxicity testing-lab and field testing methods, bioconcentration – Bioaccumulation, biomagnification, bioassay, biomonitoring.

OUTCOMES:

On completion of the course, the student is expected to

- **CO1** Explain the basic importance and functional elements of environmental microbiology including the potential applications in the environment and intellectual property rights.
- **CO2** Understand and describe the type of microorganisms in the environment, their importance in water supplies and the role of microorganisms in the cycling of nutrients in an ecosystem.
- **CO3** Understand the metabolic processes on carbohydrates, protein and lipids, importance of enzymes, production of energy and the various additional metabolic processes.
- **CO4** Select and apply appropriate methods for assessing the water, air and soil borne pathogens, their health implications, importance of microbes in aerobic and anaerobic cycles and deterioration of water bodies.
- **CO5** Conduct testing and research on toxicology, understand the importance of test organisms, environmental applications such as biomagnifications, biomonitoring and in developing risk based standards.

REFERENCES:

- 1. Bhatia S.C., "Hand Book of Environmental Microbiology", Part 1 and 2, Atlantic Publisher, 2008
- 2. Gabriel Bitton, Wastewater Microbiology, 3rd Edition, 2005
- 3. Raina M. Maier, Ian L. Pepper, Charles P. Gerba, "Environmental Microbiology", Academic Press,3rd Edition 2014
- 4. Volodymyr Ivanov, Environmental Microbiology for Engineers 2nd Edition, CRC Press, 2021, ISBN 9781498702126
- 5. N duka Okafor, Environmental Microbiology of Aquatic and Waste systems. Springer Publishers, 2011, ISBN 978-94-007-1459-5
- 6. Stanley E. Manahan, "Environmental Science and Technology", Lewis Publishers, 2008.
- Hurst, C.J. Manual of "Environmental Microbiology". 2nd Ed. ASM PRESS, Washington, D.C. ISBN 1-55581 - 199 - X. 2007
- 8. Frank C. Lu and Sam Kacew, LU"s Basic Toxicology, Taylor & Francis, London 5th Ed, 2009.

EN3303

SUSTAINABLE DEVELOPMENT

LTPC 3003

9

OBJECTIVES:

 To impart knowledge on environmental, social and economic dimensions of sustainability and the principles evolved through landmark events so as to develop an action mind-set for Sustainable development.

UNIT I SUSTAINABILITY AND DEVELOPMENT CHALLEGES

Definition of sustainability – environmental, economic and social dimensions of sustainability - sustainable development models – strong and weak sustainability – defining development millennium development goals – mindsets for sustainability: earthly, analytical, precautionary, action

Downloaded from EnggTree.com

9

TOTAL: 45 PERIODS

and collaborative– syndromes of global change: utilisation syndromes, development syndromes, and sink syndromes – core problems and cross cutting Issues of the 21 century - global, regional and local environmental issues – social insecurity - resource degradation –climate change – desertification.

UNIT II PRINCIPLES AND FRAME WORK

History and emergence of the concept of sustainable development - our common future - Stockholm to Rio plus 20 – Rio Principles of sustainable development – Agenda 21 natural step peoples earth charter – business charter for sustainable development – UN Global Compact – Role of civil society, business and government – United Nations' 2030 Agenda for sustainable development – 17 sustainable development goals and targets, indicators and intervention areas

UNIT III SUSTAINABLE DEVELOPMENT AND WELLBEING

The Unjust World and inequities - Quality of Life - Poverty, Population and Pollution – Combating Poverty - Demographic dynamics of sustainability - Strategies to end Rural and Urban Poverty and Hunger – Sustainable Livelihood Framework- Health, Education and Empowerment of Women, Children, Youth, Indigenous People, Non-Governmental Organizations, Local Authorities and Industry for Prevention, Precaution, Preservation and Public participation.

UNIT IV SUSTAINABLE SOCIO-ECONOMIC SYSTEMS

Sustainable Development Goals and Linkage to Sustainable Consumption and Production Investing in Natural Capital- Agriculture, Forests, Fisheries - Food security and nutrition and sustainable agriculture- Water and sanitation - Biodiversity conservation and Ecosystem integrity – Ecotourism - Sustainable Cities – Sustainable Habitats- Green Buildings – Sustainable Transportation — Sustainable Mining - Sustainable Energy– Climate Change –Mitigation and Adaptation -Safeguarding Marine Resources - Financial Resources and Mechanisms

UNIT V ASSESSING PROGRESS AND WAY FORWARD

Nature of sustainable development strategies and current practice- Sustainability in global, regional and national context –Approaches to measuring and analysing sustainability– limitations of GDP-Ecological Footprint- Human Development Index- Human Development Report – National initiatives for Sustainable Development - Hurdles to Sustainability - Science and Technology for sustainable development –Performance indicators of sustainability and Assessment mechanism – Inclusive Green Growth and Green Economy – National Sustainable Development Strategy Planning and National Status of Sustainable Development Goals

TOTAL: 45 PERIODS

OUTCOMES

On completion of the course, the student is expected to

- **CO1** Explain and evaluate current challenges to sustainability, including modern world social, environmental, and economic structures and crises.
- **CO2** Identify and critically analyze the social environmental and economic dimensions of sustainability in terms of UN Sustainable development goals.
- **CO3** Develop a fair understanding of the social, economic and ecological linkage o Human wellbeing, production and consumption.
- **CO4** Evaluate sustainability issues and solutions using a holistic approach that focuses on connections between complex human and natural systems.
- **CO5** Integrate knowledge from multiple sources and perspectives to understand environmental limits governing human societies and economies and social justice dimensions of sustainability.

REFERENCES:

- 1. Tom Theis and Jonathan Tomkin, Sustainability: A Comprehensive Foundation, Rice University, Houston, Texas, 2018
- 2. A guide to SDG interactions: from science to implementation, International Council for Science, Paris, 2017

9

9

10

8

Downloaded from EnggTree.com

- 3. Karel Mulder, Sustainable Development for Engineers A Handbook and Resource Guide, Rouledge Taylor and Francis, 2017.
- 4. The New Global Frontier Urbanization, Poverty and Environmentin the 21st Century *George* Martine,Gordon McGranahan,Mark Montgomery and Rogelio Fernández-Castilla, IIED and UNFPA, Earthscan, UK, 2008

EN3304

FLUID MECHANICS AND HYDRAULICS

OBJECTIVES:

- To introduce the students about the properties of the fluids, behaviour of fluids under static, kinematic and dynamic conditions through the control volume approach and expose them to the applications of the conservation laws and to impart basic knowledge of the dimensional analysis and model studies along with flow through pipes.
- The students will be exposed to the basic concepts of open channel flows with significance to steady uniform flows along with flow measurements in open channels.
- To expose the students to the classification of pumps the basic principles of working and to design centrifugal pump.

UNIT I FLUID PROPERTIES AND FLUID STATICS

Definition and properties of fluid - Fluid statics – Fluid pressure and measurement – Mechanical gauges - Forces on plane and curved surfaces - Buoyancy - Stability of floating bodies.

UNIT II FLUID KINEMATICS AND FLUID DYNAMICS

Classification of fluid flows - Continuum hypothesis - System and Control volume approach - Streamline, streak-line and path-lines - Application of continuity, energy and momentum - Euler's equation of motion along a stream line - Bernoulli's equation - Linear momentum equation

UNIT III FLOW THROUGH PIPES AND MODEL STUDIES

Reynolds experiment - Laminar flow through circular pipe - Darcy-Weisbach equation - Moody diagram - Major and minor losses in pipe flow – Total energy line – Hydraulic grade line – Siphon - Pipes in series and parallel- Equivalent pipes- Fundamental dimensions - Dimensional homogeneity - Buckingham Pi theorem - Dimensionless parameters - Similitude and model studies - Distorted and undistorted models.

UNIT IV OPEN CHANNEL FLOWS

Types of flow – Characteristics of open channel - Chezy's equation - Manning equation – Hydraulically efficient channel sections - Critical depth – Specific energy application to channel transitions – Flow measurement in channels and natural streams – Current meter – Classification of hydraulic jumps- momentum equation- Energy loss.

UNIT V PUMPS

Types of pumps – Efficiencies -Selection of pump capacity - Centrifugal pump – Characteristics and working principle – Types of impellers - Priming – NPSH - Cavitation – Minimum speed to start the pump - Specific speed – Submersible pump - Jet pump – Air lift pump - Sludge pump - Reciprocating pump and its working priciples.

TOTAL: 45 PERIODS

L T P C 3 0 0 3

9

9

9

9

9

TEXT BOOKS:

- 1. Chandramouli P N, Applied Hydraulic Engineering, Yes Dee Publisher, 2017
- 2. Jain A. K. Fluid Mechanics including Hydraulic Machines, Khanna Publishers, New Delhi, 2014.
- 3. Subramanya K., Flow in Open Channels, McGraw Hill Education (India) Pvt. Ltd., New Delhi, 2019.

4. Modi P.N and Seth Hydraulics and Fluid Mechanics including Hydraulic Machines, Standard Book House, New Delhi, 2019.

REFERENCES:

- 1. S K Som; Gautam Biswas and S Chakraborty, Introduction to Fluid Mechanics and Fluid Machines, McGraw Hill Education (India) Pvt. Ltd., 2017.
- 2. Ven Te Chow, Open Channel Hydraulics, McGraw Hill, New York, 2009.
- 3. Subramanya K, Fluid Mechanics and Hydraulic Machines: Problems and Solutions, McGraw Hill Education (India) Pvt. Ltd., New Delhi, 2018.

COURSE OUTCOMES:

On completion of the course, the student is expected to

- CO1 Demonstrate the properties of fluid and its behaviour in static conditions along with pressure measurements.
- CO2 Apply the conservation laws applicable to fluid flows and its application through fluid kinematics and dynamics.
- CO3 Estimate losses in pipelines for both laminar and turbulent conditions and analysis of pipes connected in series and parallel and to understand the concept of application of dimensional analysis in model studies.
- CO4 Describe the basics characteristics of open channel flows and analysis of steady uniform flow with hydraulically efficient channel sections and to measure the flows in artificial/natural channels.
- CO5 Explain the classification, design and working principles of various pumps.

CE3351

SURVEYING AND LEVELLING

OBJECTIVES:

 To introduce the rudiments of plane surveying and geodetic principles to Environmental Engineers and to learn the various methods of plane and geodetic surveying to solve the real world problems. To introduce the concepts of Control Surveying. To introduce the basics of Astronomical Surveying

UNIT I FUNDAMENTALS OF CONVENTIONAL SURVEYING

Definition – Classifications – Basic principles – Equipment and accessories for ranging and chaining – Methods of ranging – Well conditioned triangles – Chain traversing – Compass – Basic principles – Types – Bearing – System and conversions – Sources of errors and Local attraction – Magnetic declination – Dip – compass traversing – Plane table and its accessories – Merits and demerits – Radiation – Intersection – Resection – Plane table traversing.

UNIT II LEVELLING

Level line – Horizontal line – Datum – Benchmarks – Levels and staves – Temporary and permanent adjustments – Methods of leveling – Fly leveling – Check leveling – Procedure in leveling – Booking – Reduction – Curvature and refraction – Reciprocal leveling – Precise leveling - Contouring.

UNIT III THEODOLITE SURVEYING

Horizontal and vertical angle measurements – Temporary and permanent adjustments – Heights and distances – Tacheometric surveying – Stadia Tacheometry – Tangential Tacheometry – Trigonometric leveling – Single Plane method – Double Plane method.

UNIT IV CONTROL SURVEYING AND ADJUSTMENT

Horizontal and vertical control – Methods – Triangulation – Traversing – Gale's table – Trilateration – Concepts of measurements and errors – Error propagation and Linearization – Adjustment methods - Least square methods – Angles, lengths and levelling network.

9

9

LTPC

3 0 0 3

9

Q

UNIT V MODERN SURVEYING

Total Station: Digital Theodolite, EDM, Electronic field book – Advantages – Parts and accessories – Working principle – Observables – Errors - COGO functions – Field procedure and applications.GPS: Advantages – System components – Signal structure – Selective availability and antispoofing receiver components and antenna – Planning and data acquisition – Data processing – Errors inGPS – Field procedure and applications.

TOTAL 45 PERIODS

OUTCOMES:

On completion of the course, the student is expected to

- CO1 Introduce the rudiments of various surveying and its principles.
- CO2 Imparts knowledge in computation of levels of terrain and ground features
- CO3 Imparts concepts of Theodolite Surveying for complex surveying operations
- CO4 Understand the procedure for establishing horizontal and vertical control
- CO5 Imparts the knowledge on modern surveying instruments

TEXTBOOKS:

- 1. Dr. B. C. Punmia, Ashok K. Jain and Arun K Jain, Surveying Vol. I & II, Lakshmi Publications Pvt Ltd, New Delhi, Sixteenth Edition, 2016.
- 2. T. P. Kanetkarand S. V. Kulkarni, Surveying and Levelling, Parts 1 & 2, Pune Vidyarthi Griha Prakashan, Pune, 2008.

REFERENCES:

- 1. R. Subramanian, Surveying and Levelling, Oxford University Press, Second Edition, 2012.
- 2. James M. Anderson and Edward M. Mikhail, Surveying, Theory and Practice, Seventh Edition, Mc Graw Hill 2001.
- 3. Bannister and S. Raymond, Surveying, Seventh Edition, Longman 2004.
- 4. S. K. Roy, Fundamentals of Surveying, Second Edition, Prentice[^] Hall of India2010.
- 5. K. R. Arora, Surveying Vol I & II, Standard Book house, Twelfth Edition 2013.
- 6. C. Venkatramaiah, Textbook of Surveying, Universities Press, Second Edition, 2011.

EN3311

ENVIRONMENTAL FLUID MECHANICS LABORATORY

LT PC 0031.5

OBJECTIVE:

• To provide hands on experience in calibration of flow meters, performance characteristics of pumps and turbines.

LIST OF EXPERIMENTS

A. FLOW MEASUREMENT

- 1. Bernoulli's Experiment
- 2. Calibration of Rotameter
- 3. Flow through Orificemeter/Mouthpiece,
- 4. Flow through Venturimeter and Notches

B. LOSSES IN PIPES

- 5. Determination of friction factor in pipes.
- 6. Determination of minor losses

C. PUMPS

- 7. Characteristics of Centrifugal pumps
- 8. Characteristics of Gear pump

- 9. Characteristics of Submersible pump
- 10. Characteristics of Reciprocating pump

OUTCOMES:

TOTAL : 45 PERIODS

On completion of the course, the student is expected to be able to

- CO1 Understand and Apply the concept of Bernoulli equation in fluid flow
- CO2 Calibrate the flow measuring devices in a pipe line/channel
- CO3 Measure friction factor in pipes and compare with Moody diagram
- CO4 Determine the performance characteristics of rotodynamic pumps.
- CO5 Determine the performance characteristics of positive displacement pumps.

REFERENCES:

- 1. Hydraulic Laboratory Manual
- 2. Modi P.N. and Seth S.M., Hydraulics and Fluid Mechanics. Standard Book House. New Delhi, 2017.
- Subramanya K, Fluid Mechanics and Hydraulic Machines, Tata McGraw Hill Edu. Pvt. Ltd. 2011

CE3361	SURVEYING AND LEVELLING LABORATORY	L.	т	Ρ	С
		0	0	3	1.5

OBJECTIVES:

• At the end of the course the student will possess knowledge about survey field techniques

LIST OF EXPERIMENTS: Chain Survey

1. Study of chains and its accessories, Aligning, Ranging, Chaining and Marking Perpendicular offset

2. Setting out works – Foundation marking using tapes single Room and Double Room **Compass Survey**

3. Compass Traversing – Measuring Bearings & arriving included angles Levelling - Study of levels and levelling staff

- 4. Fly levelling using Dumpy level & Tilting level
- 5. Check levelling

Theodolite - Study of Theodolite

- 6. Measurements of horizontal angles by reiteration and repetition and vertical angles
- 7. Determination of elevation of an object using single plane method when base is Accessible/inaccessible.

Tacheometry – Tangential system – Stadia system

- 8. Determination of Tacheometric Constants
- 9. Heights and distances by stadia Tacheometry
- 10. Heights and distances by Tangential Tacheometry

Total Station - Study of Total Station, Measuring Horizontal and vertical angles

- 11. Traverse using Total station and Area of Traverse
- 12. Determination of distance and difference in elevation between two inaccessible points using Total station

TOTAL: 45 PERIODS

COURSE OUTCOMES

On completion of the course, the student is expected to

- **CO1** Impart knowledge on the usage of basic surveying instruments like chain/tape, compass and levelling instruments
- **CO2** Able to use levelling instrument for surveying operations
- CO3 Able to use theodolite for various surveying operations
- **CO4** Able to carry out necessary surveys for social infrastructures
- **CO5** Able to prepare planimetric maps

REFERENCES:

- 1. T. P. Kanetkarand S. V. Kulkarni, Surveying and Levelling, Parts 1 & 2, Pune Vidyarthi Griha Prakashan, Pune, 24th Reprint, 2015.
- 2. Dr. B. C. Punmia, Ashok K. Jainand Arun K Jain, Surveying Vol. I & II, Lakshmi Publications Pvt Ltd, New Delhi, 17th Edition, 2016.
- 3. James M. Anderson and Edward M. Mikhail, Surveying, Theory and Practice, Seventh Edition, McGraw Hill 2001
- Bannisterand S. Raymond, Surveying, Seventh Edition, Longman 2004 a. David Clark, Plane and Geodetic Surveying for Engineers, Volume I, Constable and Company Ltd, London, CBS, 6th Edition, 2004.
- 5. David Clark and James Clendinning, Plane and Geodetic Surveying for Engineers, Volumell, Constable and Company Ltd, London, CBS, 6th Edition, 2004.
- 6. S. K. Roy, Fundamentals of Surveying, Second Edition, Prentice 'Hall of India 2004
- 7. K. R. Arora, Surveying Vol. I & II, Standard Book house, Eleventh Edition, 2013.

EN3401

ENVIRONMENTAL LEGISLATIONS

LTPC 3 0 0 3

9

OBJECTIVES:

- To explain the role of law, policy and institutions in the conservation and management of natural resources as well as pollution control
- To introduce the laws and policies both at the national and international level relating to environment
- To equip the students with the skills needed for interpreting laws, policies and judicial decisions

UNIT I INTRODUCTION TO ENVIRONMENTAL LEGISLATIONS AND INTERNATIONAL SCENARIO 9

Significance of Environmental Law -International Environmental Law -Development of International Environmental Law -Source and General principals of International Environmental Law –General rights and obligations of States -General Issues of the international law related to environmental protection -Stockholm Declaration-Rio Declaration on Environment and Development-Basel Convention on the Control of Trans boundary Movement of Hazardous Wastes and their disposal-Convention of Biological Diversity-U.N Frame Work Convention on Climate Change-Montreal Protocol on Substances that deplete Ozone Layer-Kyoto Protocol.

UNIT II INDIAN CONSTITUTIONS AND ENVIRONMENTAL PROTECTION

Indian Constitution and Environmental Protection -Constitutional provisions concerning Environment Articles 14,15,(2) (b) 19 (e),21,31,32,38,39,42,47, 48-A,49,51,51-A: Indian Environmental Policy 2006 Administrative machinery for pollution control Common Law & Criminal Law Nuisance, Negligence, Strict liability and Absolute liability, Provisions of IPC relating to environmental problems (public nuisance u/s 268 and others (Sections 269,270,277,284,285,286,425 to 440) Section 133 of Cr.P.C.

UNIT III REMEDIES FOR ENVIRONMENTAL POLLUTION

Common Law Remedies/Remedies under Law of Tort – Penal Remedies – Indian Penal Code and Code of Criminal Procedure – Remedies under Constitutional Law – Writs – Public Interest Litigation - Public Liability Insurance Act, 1991 – The National Green Tribunal Act 2010

UNIT IV MAJOR INDIAN LEGISLATIONS

Water Act (1974) Air Act (1981) Environmental Protection Act (1986) Major Notifications, The Municipal solid Wastes (Management and Handling) Rules 2016-Bio Medical Wastes (Management and Handling) Rules 2016- Hazardous Wastes (Management and Handling Rules 2016-Environment Impact Assessment Notifications- Coastal Regulation Zone Notification- Public Hearing Notifications

UNIT V ENVIRONMENT AND DEVELOPMENT CASE LAWS

Meaning and concept of development - Its impact on environment; conflict between environment and development, Concept of Sustainable Development., Polluter Pay Principle, Precautionary Principle, Public Trust Doctrine. Landmark Judgments - Oleum gas leakage case, Rural Litigation and Entitlement Kendra, Dehradun, (1985) Supp SCC 487) Vellore Citizen Welfare Forum vs. Union of India, (1996) 5SCC 647) Ganga Pollution case (1988) I SCC) S. Jagannath vs. UOI (1997) SCC867) Vellore Citizens welfare forum case M.C. Mehta Vs. Kamalnath (1997) I SCC 388)

TOTAL: 45 PERIODS

OUTCOMES:

On completion of the course, the student is expected to

- CO 1. Understand origins and sources of environmental laws, and understand how and by whom environmental laws are made and interpreted
- CO 2. Understand the key principles of, and actors within, environmental laws
- CO 3. Understand the National Environmental Policy and Various Legislations enacted in line with Policy
- CO 4. Critically analyze environmental laws within various contexts and to evaluate laws against procedural and substantive criteria.
- CO 5. Understand and the Legal system operating in India and will be in a position to prepare compliance reports for getting environmental clearance.

REFERENCES:

- 1. Leelakrishnan P., Environmental Law in India, Butterworths Wadhwa, 3rd Edition 2010
- 2. Leelakrishnan P., Environmental Case Book, Lexis Nexis,2010
- 3. Shanthakumar S., Environmental Law An Introduction, Butterworths, 2008
- 4. Shyam Diwan and Armin Rosencranz, Enviromental Law and Policy in India, Oxford, 2002

EN3402

WATER SUPPLY ENGINEERING

L T P C 3 0 0 3

OBJECTIVES:
The course objective is to identify the sources and quantity of surface and ground water bodies and their demand for the public and also to study the quality of water and their treatment techniques.

UNIT I PUBLIC WATER SUPPLY SCHEMES AND QUANTITY OF WATER 8 Necessary and objectives of public water supply schemes – planning and financing – Quantity of water – water requirements – continuous and intermittent supply – water demand – variations in rate of demand- its effect on design – design period – population growth and forecast – estimating the quantity of water required.

Downloaded from EnggTree.com

9

9 10

UNIT II HYDROLOGICAL CONCEPTS AND SOURCES OF WATER

Hydrological concepts – hydrological cycle – Sources of water – Intakes – types of intakes – infiltration galleries – infiltration well – storage reservoirs – storage capacity by analytical method and mass curve method – types of wells – sanitary protection of wells – tests for yield of a well.

UNIT III QUALITY OF WATER AND TRANSPORTATION OFWATER

Quality of water – portable water and mineral water – contamination of water – sampling techniques– analysis of water – Bacteriological analysis- water borne diseases – water quality standards. Transportation of water – Hydraulics of pipe flow – pipes & its types – design of pipes – Joints – pipe appurtenances – pumps – types of pumps – selection of pumps.

UNIT IV PURIFICATION OF WATER

Treatment of water- working principles of all the unit process of water treatment, Purpose and its design – screening – plain sedimentation – coagulation sedimentation – filtration – disinfection – water softening and Desalination– Operation & Maintenance aspects of all the unit process.

UNIT V OTHER TREATMENTS AND DISTRIBUTION OF WATER

Removal of Iron and Manganese – Fluoridation and Defluoridation– distribution of water – Planning – Methods of distribution – Service Reservoirs – purpose – types – locations and height – Design aspects – requirements of good distribution system – layout of distribution system- Net work analysis – preventive methods to reduce wastage of water – pipe appurtenances – house service connection.

TOTAL: 45 PERIODS

OUTCOMES:

On completion of the course, the student is expected to

- **CO1** Understand the various components of water supply scheme
- CO2 Design of intake structure and conveyance system for water transmission
- **CO3** Understand the process of conventional treatment of water and design of water treatment system.
- CO4 Understand and design the various advanced treatment system and knowledge about the recent advances in water treatment process
- CO5 Design and evaluate water distribution system and water supply in buildings

TEXTBOOKS :

- 1. Garg. S.K., "Water Supply Engineering", Khanna Publishers, Delhi, September 2008
- 2. Punmia B.C, Arun K.Jain, Ashok K.Jain, "Water supply Engineering" Lakshmi publication private limited, New Delhi, 2016.
- 3. Birdie.G.S., "Water Supply and Sanitary Engineering", Dhanpat Rai and sons, 2018.

REFERENCES :

- 1. Fair. G.M., Geyer.J.C., "Water Supply and Wastewater Disposal", John Wiley and Sons, 1954.
- 2. Babbit.H.E, and Donald.J.J, "Water Supply Engineering", McGraw Hill book Co, 1984.
- 3. Steel. E.W.et al., "Water Supply Engineering" Mc Graw Hill International book Co, 1984.
- 4. Duggal. K.N., "Elements of public Health Engineering", S.Chand and Company Ltd, New Delhi, 1998.
- 5. Mark J. Hammer & Mark J. Hammer Jr., "Water and Waste Water Technology", Prentice Hall of India Pvt. Ltd., New Delhi, 2008.

8

12

EN3403 ENVIRONMENTAL MANAGEMENT SYSTEMS

• To impart an understanding of systems approach to Environmental Management as per ISO 14001 and skills for environmental performance assessment in terms of legal compliance, pollution prevention and continual improvement.

UNIT I ENVIRONMENTAL MANAGEMENTSTANDARDS

Unique Characteristics of Environmental Problems - Classification of Environmental Impact Reduction Efforts - Systems approach to Corporate environmental management - Business Charter for Sustainable Production and Consumption – Tools and Barriers - Evolution of Environmental Stewardship –National policies on abatement of pollution and conservation of resources - Charter on Corporate responsibility for Environmental protection - Environmental quality objectives – Rationale of Environmental standards: Concentration and Mass standards, Effluent and stream standards, Emission and ambient standards, Minimum national standards, environmental performance evaluation: Indicators, benchmarking

UNIT II PREVENTIVE ENVIRONMENTAL MANAGEMENT

Pollution control Vs Pollution Prevention - Opportunities and Barriers – Cleaner production and Clean technology, closing the loops, zero discharge technologies – Four Stages and nine approaches of Pollution Prevention - Getting management commitment – Analysis of Process Steps- source reduction, raw material substitution, toxic use reduction and elimination, process modification –Material balance – Technical, economical and environmental feasibility evaluation of Pollution Prevention options in selected industries –Preventive Environmental Management over Product cycle.

UNIT III ENVIRONMENTAL MANAGEMENT SYSTEM

ISO 14000 family- EMS as per ISO 14001– benefits and barriers of EMS – Understanding the organisation and its context- Understanding the needs and expectations of interested parties-Determining the scope of the environmental management system- Leadership and commitment-Environmental policy- Organizationalroles, responsibilities and authorities- Actions to address risks and opportunities- Environmental objectives and planning – Resources- Competence-Awareness-Communication-Documented Information –Operational Planning and Control- Emergency preparedness and response- Monitoring, measurement, analysis and evaluation - Management review

UNIT IV ENVIRONMENTAL AUDIT

Environmental management system audits as per ISO 19011-Internal Audits and Certification Audits – Principles of auditing- Roles and qualifications of auditors - Determining auditor competence- Managing an audit programme – Establishing and Implementing audit programme-Selecting audit team members and Assigning responsibility - Conducting an audit- opening meeting, Audit evidence gathering - Collecting and verifying information - Managing and maintaining audit programme records- closing meeting and reporting - Non conformance – Corrective and preventive actions - Continual improvement - compliance audits – waste audits and waste minimization planning – Environmental statement (form V) - Due diligence audit

UNIT V CASE STUDIES

Case studies on applications of EMS, Waste Audits and Pollution Prevention in Textile industry, Tanning industry, Electroplating, Pulp & Paper, Dairy, Chemical industries and service organizations.

TOTAL: 45 PERIODS

LT PC 3003

9

9

10

8

OUTCOMES:

- On completion of the course, the student is expected to
- **CO1** Explain the various elements of Corporate Environmental Management systems and audits complying to international environmental management system standards
- **CO2** Apply the knowledge of science and engineering fundamentals to pollution prevention assessment and environmental performance evaluation
- **CO3** Develop environmental management systems for organisations
- CO4 Conduct environmental management system audits taking into account the sustainability context
- **CO5** Conduct research pertinent to pollution prevention and communicate effectively to different stakeholders as well as engage in independent life-long learning

REFERENCES:

- 1. ISO 14001/14004:2016 Environmental management systems Requirements and Guidelines – International Organisation for Standardisation, 2015
- 2. ISO 19011: 2018, "Guidelines for auditing Management Systems, International Organisation for Standardisation, 2018
- 3. ISO 14031:2021, Environmental management -- Environmental performance evaluation Guidelines, International Organisation for Standardisation, 2015
- 4. Marek Bugdol and Piotr Jedynak, Integrated Management Systems, Springer International, 2015.
- 5. Ryan Dupont, Kumar Ganesan, Louis Theodore, Pollution Prevention: Sustainability, Industrial Ecology, and Green Engineering, Second Edition, CRC Press, 2016
- 6. Paul L Bishop †Pollution Prevention: Fundamentals and Practice€, McGraw- Hill International, Boston,2004.
- 7. Lennart Nilsson, Per Olof Persson, Lars Rydén, Siarhei Darozhka and Audrone Zaliauskiene, Cleaner Production Technologies and Tools for Resource Efficient Production, The Baltic University Environmental Management book series, Uppsala 2007

EN3404

MUNICIPAL SOLID WASTE MANAGEMENT

LTPC 3003

8

OBJECTIVES:

• To make the students conversant with different aspects of the types, sources, generation, storage, collection, transport, processing and disposal of municipal solid waste.

UNIT I SOURCES AND TYPES

Sources and types of municipal solid wastes-waste generation rates-factors affecting generation, characteristics-methods of sampling and characterization; Effects of improper disposal of solid wastes-Public health and environmental effects. Elements of solid waste management –Social and Financial aspects – Municipal solid waste (M&H) rules – integrated management-Public awareness; Role of NGO"s.

UNIT II ON-SITE STORAGE AND PROCESSING

On-site storage methods – Effect of storage, materials used for containers – segregation of solid wastes – Public health and economic aspects of open storage – waste segregation and storage – case studies under Indian conditions – source reduction of waste – Reduction, Reuse and Recycling.

UNIT III COLLECTION AND TRANSFER

Methods of Residential and commercial waste collection – Collection vehicles – Manpower– Collection routes – Analysis of collection systems; Transfer stations – Selection of location, operation & maintenance; options under Indian conditions – Field problems- solving.

8

UNIT IV OFF-SITE PROCESSING

Objectives of waste processing – Physical Processing techniques and Equipments; Resource recovery from solid waste composting and biomethanation; Thermal processing options – case studies under Indian conditions.

UNIT V DISPOSAL

Land disposal of solid waste; Sanitary landfills – site selection, design and operation of sanitary landfills – Landfill liners – Management of leachate and landfill gas- Landfill bioreactor– Dumpsite Rehabilitation

OUTCOMES:

The students completing the course will have

- **CO1** understand the nature and characteristics of municipal solid wastes and the regulatory requirements regarding municipal solid waste management
- **CO2** explains the segregation of solid waste and the onsite storage methods
- CO3 explains the various transfer methods and to know the site condition for the transfer station
- **CO4** select appropriate methods for processing and disposal of solid and hazardous wastes, taking into account the impact of the solutions in a sustainability context
- CO5 knowledge about selection of appropriate disposal methods and its handling in an efficient manner

TEXTBOOKS:

- 1. Tchobanoglous.G., Theisen, H. M., and Eliassen, R. Solid. Wastes: Engineering Principles and Management Issues. New York: McGraw Hill, 1977.
- 2. Vesilind, P.A. and Rimer, A.E., "Unit Operations in Resource Recovery Engineering", Prentice Hall, Inc., 1981
- 3. Paul T Willams, "Waste Treatment and Disposal", John Wiley and Sons, 2005

REFERENCES:

- 1. Manual on Municipal Solid Waste Management, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 2016.
- 2. Bhide A.D. and Sundaresan, B.B. Solid Waste Management Collection, Processingand Disposal, 2001
- 3. Manser A.G.R. and Keeling A.A, "Practical Handbook of Processing and Recycling of Municipal solid Wastes", Lewis Publishers, CRC Press, 1996
- 4. George Tchobanoglous and FrankKreith, Handbook of "Solid waste Management", McGraw Hill, New York, 2002

PROGRESS THROUGH KNOWLEDGE

EN3405 FATE AND TRANSPORT OF CONTAMINANTS IN THE ENVIRONMENT L T P C 3 0 0 3

OBJECTIVE:

• To educate the students on the mechanism of transport and fate of contaminants in the geosphere of the environment.

UNIT I EQUILIBRIUM AND TRANSPORT MECHANISMS

Concentration and Phase density – air-water equilibrium, Soil-water equilibrium, Earthen solid- air equilibrium. Liquid-chemical equilibrium – thermal equilibrium at environmental interfaces. Diffusion and mass transfer – molecular diffusion- Fick,s Law – eddy diffusion – mass transfer theories -fundamentals of heat transfer –heat and mass transfer.

UNIT II EXCHANGE RATES BETWEEN AIR AND WATER

Desorption of gases and liquids from aerated basins and rivers – completely mixed basin – plug flow basin – gas exchange rates between the atmosphere and the surface of rivers – exchange of chemical across the air – water interface of lakes and oceans.

TOTAL: 45 PERIODS

8

9

UNIT III EXCHANGE RATES BETWEEN WATER AND THE EARTHERN MATERIAL 9

Dissolution of chemicals -natural convection dissolution – water interface – mass transfer coefficients at the sediment – water interface. Flux of chemicals between sediment and the overlying seawater – movement of chemicals through the benthic boundary layer.

UNIT IV EXCHANGE RATES BETWEEN AIR AND SOIL

Turbulence above the air – soil interface – the Richardson number – chemical flux rates through the lower layer of the atmosphere –evaporation of liquid chemicals spilled on land – chemical flux rates through the upper layer of earthen material.

UNIT V CONTAMINANT TRANSPORT ANALYSIS

Potential theory- Potential Functions- Stream Function – Travel time along with Stream Functions-Residential Time Distribution Theory- Analysis of Chemical Spills and Contaminant plumes – Fourier analysis of Initial value – point spill analysis- vertically mix spill analysis- Horizontal Plane Source analysis

TOTAL: 45 PERIODS

9

g

OUTCOME

On completion of the course, the student is expected to

- CO 1. Understand the equilibrium and transport mechanisms
- CO 2. Have a knowledge of gas exchange rates between air and water
- CO 3. Have a knowledge of gas exchange rates between water and soil
- CO 4. Have a knowledge of gas exchange rates between air and soil.
- CO 5. Understand contaminant transport analysis

TEXT BOOKS:

- 1. Thibodeaux, L.J, "Environmental Chemo dynamics: Movement Of Chemicals In Air, Water and Soil", 2nd edition ., Wiley Intercedence, New York, 1996.
- 2. Schnoor, J.L., Environmental Modelling Fate and Transport of Pollutants in Water, Air and Soil, John Wiley & Sons Inc., New York, 1996.
- 3. Walton, J.C., Fate and Transport of Contaminants in the Environment, College Publishing 2008.
- 4. Charbeneau, R.J., Groundwater Hydraulics and Pollutant Transport, Waveland Press, 2006

REFERENCES:

- 1. Zheng, C., and Bennett, G.D., Applied Contaminants Transport Modelling, Wiley-Blackwell, 2002.
- 2. Samiullah, Y., Prediction of the Environmental Fate of Contaminants, Springer 2011.
- 3. David Chin., Water Quality Engineering in Natural Systems: Fate and Transport Process in the Environment, Wiley-Blackwell, 2013.
- 4. Hemond, H.F., and Fechner, E.J., Chemicals Fate and Transport in the Environment, Academic Press, 2014.
- 5. Cussler, E.L, Diffusion: Mass Transfer In Fluid Systems, Cambridge University press, 1994

CCE331 AIR AND NOISE POLLUTION CONTROL ENGINEERING L T P C 3 0 0 3

OBJECTIVES:

• To impart knowledge on the sources, effects and control techniques of air pollutants and noise pollution.

Downloaded from EnggTree.com

UNIT I GENERAL

Atmosphere as a place of disposal of pollutants – Air Pollution – Definition - Air Pollution and Global Climate - Units of measurements of pollutants - Air quality criteria - emission standards - National ambient air quality standards - Air pollution indices - Air quality management in India.

UNIT II SOURCES, CLASSIFICATION AND EFFECTS

Sources and classification of air pollutants - Man made - Natural sources - Type of air pollutants - Pollution due to automobiles - Analysis of air pollutants - Chemical, Instrumental and biological methods. Air pollution and its effects on human beings, plants and animals - Economic effects of air pollution - Effect of air pollution on meteorological conditions - Changes on the Meso scale, Micro scale and Macro scale.

UNIT III SAMPLING, METEOROLOGY AND AIR QUALITY MODELLING

Sampling and measurement of particulate and gaseous pollutants - Ambient air sampling - Stack sampling. Environmental factors - Meteorology - temperature lapse rate and stability – Adiabatic lapse rate - Wind Rose - Inversion – Wind velocity and turbulence - Plume behavior - Dispersion of air pollutants- Air Quality Modeling.

UNIT IV AIR POLLUTION CONTROL MEASURES

Control - Source correction methods - Control equipments - Particulate control methods – Bag house filter - Settling chamber - cyclone separators - inertial devices - Electrostatic precipitator - scrubbers - Control of gaseous emissions - Absorption - Absorption equipments - adsorption and combustion devices (Theory and working of equipments only).

UNIT V NOISE POLLUTION AND ITS CONTROL

Sources of noise – Units and Measurements of Noise - Characterization of Noise from Construction, Mining, Transportation and Industrial Activities, Airport Noise – General Control Measures – Effects of noise pollution – auditory effects, non-auditory effects. Noise Menace– Prevention and Control of Noise Pollution – Control of noise at source, control of transmission, protection of exposed person - Control of other types of Noise Sound Absorbent

TOTAL: 45 PERIODS

OUTCOMES:

On completion of the course, the student is expected to

- **CO1** Understand various types and sources of air pollution and its effects
- CO2 Know the dispersion of air pollutants and their modeling
- **CO3** Know about the principles and design of control of particulate pollutants
- CO4 Understand the principles and design of control of gaseous pollutant
- CO5 Know the sources, effects and control of vehicular, indoor air and noise pollution

TEXTBOOKS:

- 1. C. S. Rao, "Environmental Pollution Control Engineering", Wiley Eastern Limited, 2006.
- 2. M. N. Rao, H. V. N. Rao, Air pollution, Tata McGraw Hill Pvt Ltd, New Delhi, 2017
- 3. Dr. Y. Anjaneyulu, "Air Pollution and Control Technologies", Allied publishers Pvt. Ltd., 2019.

REFERENCES:

- 1. Noel De Nevers, "Air pollution control Engineering", McGraw Hill International Edition, McGraw Hill Inc, New Delhi, 2000.
- 2. Air Pollution act, India, 1987
- 3. Peterson and E.Gross Jr., "Hand Book of Noise Measurement", 7th Edition, 1974
- 4. Mukherjee, "Environmental Pollution and Health Hazards", causes and effects, 1986
- 5. Antony Milne, "Noise Pollution: Impact and Counter Measures", David & Charles PLC, 1979.
- 6. Kenneth wark, Cecil F.Warner, "Air Pollution its Origin and Control", Harper and Row Publishers, New York, 1998.

9

9

9

q

EN3411 ENVIRONMENTAL CHEMISTRY AND MICROBIOLOGY LABORATORY L T P C 0 0 4 2

OBJECTIVES:

- To train in the analysis of physico-chemical parameters with hands on experience
- To train the students in the analysis of various microbiological techniques, microbiological analysis, enzyme assay, pollutant analysis and operation of bioreactors.

A: Environmental Chemistry

- 1. Estimation of hardness in Water sample by volumetric titration
- 2. Estimation of Chloride in Water sample by volumetric titration
- 3. Determination of sulphate
- 4. Determination of phosphate
- 5. Determination of Total Solids, Total suspended solids, Total dissolved solids
- 6. Determination of COD in the wastewater sample
- 7. Determination of BOD in the wastewater sample

B: Environmental Microbiology

- 1. Preparation of culture media
- 2. Isolation and Culturing of Microorganisms
- 3. Gram Staining of bacteria
- 4. Bacteriological analysis of wastewater (Coliforms & Streptococcus) MPN Technique
- 5. Bacteriological analysis of wastewater (Coliforms & Streptococcus MF technique

OUTCOMES

- **CO1** Analyze the water quality parameters such as hardness chloride and sulphate
- CO2 Characterize the wastewater parameters like phosphate, solids COD and BOD
- CO3 Prepare culture media necessary for microbial growth
- CO4 Isolate and culture the bacteria identify the bacteria -able to handle microscope
- **CO5** Analyze the coliform count in the wastewater.

REFERENCES

1. APHA, "Standard Methods for the Examination of Water and Wastewater", 23rd Ed. Washington, 2017

2. "Laboratory Manual for the Examination of water, wastewater soil, Rump, H.H. and Krist, H. – Second Edition, VCH, Germany, 3rd Edition, 1999.

3. Charles P. Gerba, "Environmental Microbiology: A laboratory manual", Elsevier Publications, 3rd, 2014

