

- doalpeyt/dalpursas smeay $f 909$ $- \text { doaltsiy smed } \in \text { biab }$: apou buysils ny of bunuingze puro huyserss ha pameof yind pajor'or s! doal \forall 	 - sopines raw è amy vornyag uopionumg fo vilid bSI aPoN \forall : OPON - spuproia >्झ 200 ressyal b mo armas abanion $口$

Series \& Parallel Circulrs:- mun minn mins. Series $R_{e q}=R_{1}+R_{2}$ $\operatorname{Req}=10+20=30 \Omega$ Resistor R_{1} \& R_{2} are Said to be in Series. because the sume current 'I' flows in both the resistors. Toral Resistance or equivalent Resistance is the sum of the two resistors or 'n' refistors. Same 54 is flowing in both $10 \Omega \& 20^{\circ} \Omega$ So they are connedred In series.	Parallel cirait/Shant Gircitr. (at Point 'Al currentyers splithe2) ey:- Resistors $R_{1} \& R_{2}$ are said to be connected in parallel, beciuse different currents (I_{1} in R_{1}) (I_{2} in R_{2}) are flowing. $\text { Req }=\frac{1}{R_{1}}+1 / R_{2} \text { or } R_{\text {eq }}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$ $R e q=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots \frac{1}{R_{n}}$ In this Corcair total current enters is loa, Ir is splithet \& 7 A eniers los 43 A enters 20 Ω, So, 10 e f 20Ω are in Parallel

Mm0s1 $=0$

	$v g=y$ $v G=\frac{z}{01}=\frac{n}{1}=y$ $y I=1$ Iめへ $m n_{1}$ s．Whe undy －imalqos －sumo u！$I / \lambda=y$ ainsisesay $E=y$ durs ul $\partial / \Lambda=I$ quath $E I$ rion us $x I=\Lambda \quad$ abralon $E 1$ －7！ubnacyt bulmanf quasem ay of muoysodasd hipasip $\operatorname{mimpl}_{\text {s,w40 }}$

EnggTree.com

EnggTree.com

EnggTree.com

	$(01-\times 01-)-(0+00 \mathrm{a})=\nabla\left[\begin{array}{ll} 09 & 01- \\ 01- & 07 \end{array}\right]=\nabla$ （2） ．．Pu．f．गpre s，caumes fuyn fa $\begin{aligned} & \text { (1) }-021=2 \text { nol- Inot } \\ & \quad 021=(2 n-1 n) 01+\operatorname{lno\varepsilon } \end{aligned}$ （dis od ）Idool to 7ny fiddy －iunynos －unoys f．mi？2f sof Huarem youniq pum ysam ay anios－ 1

EnggTree.com

EnggTree.com

EnggTree.com

FnggTree.com

	$\begin{aligned} \forall s 1= & \varepsilon / s h=\tau_{I} \\ t 991.7 & =\frac{9}{s \tau}=I_{I} \\ & \cdot \text { sacinos furnamba } \end{aligned}$ - lomera ay to seasisal aji mol furmols syudem dye un-190' sishiruty MPON bulso. $\forall s t \cdot g=\text { an } 1179 \text { hbnary tuasem }$ $\forall 0=5 \boxed{9} \cdot-579=\{n-7 n \leqslant 1 \text { oथd, winayt, quaum }$

EnggTree.com

EnggTree.com

EnggTree.com

 anno ' Renn hour uliy paurisso unyJalip ays undr hulpuadat: aON] (tuis and un arinos zy on anp asuxdsal ry put zapl mor (9) $\begin{aligned} & 11^{\varepsilon} I+1^{\varepsilon} I=\varepsilon_{I} \\ & 11^{2} I+1^{q} I=?_{I} \end{aligned}$ $11^{\prime} I+1^{\prime} I=I^{I}$; Sarcundsas minplipur	 (?21ml!) sasinog bation) sarinag safto ay tro mourly $\left(11045-21{ }^{1} 24 y \log -1 \wedge\right) 21400 \text { arenos }$ nuoflue daaly sammos ald.yाou yim foman o uI (1) - nup buyor sarmos ponplnipul a anp sasundsal to wrs omaq-alo aff fa unibs! saminos ald पा पui yim ymen oul - waront woy isod eadns

EnggTree.com

2rmap - easisae ver ubonayt -4urem ry suig maroayt lloyyod radrs fulbo O GOZ S! mot! v与 Whanh suaxm $\begin{aligned} t o \varepsilon & =7 I \\ t 02+t 101 & =9 I \end{aligned}$ $H O Z={ }_{11} 1 I$	- 4ryonll vi omá uxamay sapinip tol thank 2y ubnoyt varig of vol s! ves ubralyt fuxsen 2logn by hy may unyyod radns finun sasyor va ybnosyt fursern an fund

EnggTree．com

ADOTONHO3L 10 3LRIIISNI $\left.\sqrt{v i t t-1}=\frac{\varepsilon+力}{\varepsilon x \dagger}=v \varepsilon \\| v\right\rangle$ $t+0 \cdot \varepsilon=f_{5}$ $\forall t 0 . \varepsilon=t 0.1+1-z=$ $\cdots\urcorner I+n_{11} I+, 1 \tau=1_{I}$ 	ay to asnmar eqstsal $ช$ 区 ubnaly fuak．m 2yf a9 117 Io （fimaty sty $U_{1}, T_{I}=1 n$ asuls）$\forall z=$ TG os $H S \cdot 0=r n \quad t r=1 n$ （2）－ $0=2 n 9-1 n+7$ （1）－21－＝2nカト1 n t $7 \wedge y f c_{4}$

EnggTree.com

$\begin{aligned} \forall t 58 \cdot \tau & =t / 02=1 n \\ 0 z & =2 n g+\ln \tau \end{aligned}$ $7-d+4+d / u+\Lambda=I_{I}$ - bmurey 2y 250 	 $(4+1)$ (y,y) arunisisan siuluaray Hi si varym's smumida (timin lloys) sainos abanion ay to somaly: ?dass lasyar prool ay anmay $\overline{I d y s}$ - axurpadmi no axunsics ag n wiom faulag ul axmag abryion

EnggTree．com

DDOTONHSEL JO BINIIISNI $\begin{array}{r} \forall 8116 \cdot 8=7 I \\ \forall 8116.0=\frac{a 1+821 . b}{716 \cdot 11}=7 I \\ 7 a+48 / 4+1=7 I \end{array}$ II fuxim rol भ1．	（a）smag fiximp－1imsin vido apnas zorilas－4．mon frobs＇prol zowing $\begin{aligned} & \text { yid xinminion } \overline{2 d 215} \\ & \Lambda+1 t-t \mid=y_{1} \Lambda \end{aligned}$ $\wedge+1 \cdot \mid t \cdot 1+121=v 21+21=L_{11}$ papposi armos zbrulanall 1

EnggTree.com

4

EnggTree.com

EnggTree.com

EnggTree.com
EC 3251 Circuit Analysis
(2. Using Norton's thoorem, Delermine the current through
an ammeter cennuctel across $A 2 B$ of the circir, take the
resstrance of the ammeter as 0.5Ω

EnggTree.com

$V=I R$
$I=V / R$
$=11.0344$
$(1.3793+4)$
$\xrightarrow[\substack{\stackrel{\rightharpoonup}{0} \mid \sigma \\ \stackrel{\rightharpoonup}{\omega} \\ \pm \\ \stackrel{\rightharpoonup}{\omega}}]{\sim}$

EnggTree.com

EnggTree.com

stsijeuv ụnmio ISZEOG

7 loyan mad

EnggTree.com

EnggTree.com

EnggTree.com

$\text { , } 2, \text { bo a punchom =l }$:WMyPs -usog. eninfunpary un pausprad lapag ano usyiorians a uny!pity 2 in assud $=\phi$	bs eppod u! uyutem ag osm uns, z, ont xapdumery $\phi!^{a_{l}}=\phi{ }_{l}=2$ uery : wiso inlod - imoof imod ul usyum an aspo ung. on xaldug $\text { enphburpas u! ou xapduro } \Rightarrow 5 \Gamma+x=z$ Find himubrau! \& h find brae $\in x$ $1-\lambda=p$ - cury eninfumpay - plasonus is foo arsud ano apmildum off suasaidar inyt raquml xadurj a s! losbut \forall

-acopyd al speosnuy wh majjumil $\overrightarrow{\theta-7} m_{I}=I \quad \gamma \quad \bar{\phi} w_{\Lambda}=1$ bulmans masbosy sasoys	

$$
\begin{aligned}
& \overline{00 b+\phi} m_{I} 7 m=1 \\
& (0,0 b+7 m) \operatorname{sos} m_{I \neg m}=1
\end{aligned}
$$

\rightarrow

$\forall_{0} \overline{a 8} 7 \boldsymbol{r}=?$
ᄃ.

v \&s. $\varepsilon t!-\varepsilon \tau \cdot \tau \varepsilon=2$

EnggTree.com

EnggTree.com

	$\begin{aligned} & (s \cdot 2(+9 \cdot b) 2 \cdot 0!+\sin +9 \cdot \varepsilon \mid= \\ & (s-7 r+9 \cdot b) \\|(\tau \cdot a c)+s \cdot a!+9 \cdot 1+21= \\ & \left(s+9\left(\frac{1}{2}+4\right)_{2}\right)\|\mid(\varepsilon 1!-492)+u n 2+21=2 \end{aligned}$ 511: spuicuix artrog भ1 ro ounpodwi man गया $\begin{aligned} & \therefore \sim\left(2 \cdot \varepsilon(-91)=\frac{01}{(+1(-2) s}=u\right) z \\ & \because \therefore \cdot n=\frac{01}{(s)+c}=\forall 9 z \end{aligned}$ $7(8 \cdot o r+9 \cdot 1)=\frac{o l}{(2 r++1)+1}=\frac{8++r-2++r}{(+r-2)+r}=u_{b z}$ पौ०ल्याय L भ1 व रसझाजक

EnggTree.com

EnggTree.com

$0+-\quad 02=2 \wedge s \cdot 21+1 \wedge(5 \cdot 1!+1)$ apor－po7つy fu！fiddy	$\therefore 1!\mathrm{man}$ 1⿲amnmbs unnog hay $\begin{aligned} s \cdot 2 r & =2 \mathrm{~m} / 1=11 \cdot 0 \\ 7 r & =7 \mathrm{~m}!\Leftrightarrow+\mathrm{s} \cdot 0 \\ 4 r & =7 \mathrm{mr} \Leftrightarrow+1 \end{aligned}$ $\text { s/phey }=m \text {, }{ }_{0} \text { oloz }=7750002 \text {. }$ －umoces bat ag thasuag sisy

- lamoll thriano u! uny minbo sigy fo sind pard (Bu.Sins 2u.97) $\text { us a) uxम fip }=\left(n^{n}-!8\right) \text { so }=\left(!\theta-n^{\theta}\right) \operatorname{son} \text { asues }$ umump $\begin{aligned} \text { ac. } 4 \text { uspuadop tou saop } & =d \\ \text { bulbibs sue. } & =(t) d \end{aligned}$ - 1 uxpmos 8 and as ad fo sasiud dy	$(1 \theta-\wedge \theta) \cdot \operatorname{son} m_{\perp} m_{\lambda} \pi / 1=d$ sicanof linsitit os lumasuon (104: (2) 5905

EnggTree.com

 	couxulum sa uns (ty? $\begin{aligned} 1(0.09+70)) 4.951 & =(7) n \\ 1(00(+701) 50) 08 & =(7) 1 \end{aligned}$ - Thu eronll niysind ify ha pay asyo samod sbrianos s somod nonizumisul zilanimpor

EnggTree.com

 $(0=(\theta-1 \theta)$ 109 1flpasbud .a) (s) $\text { MS-r }=(\operatorname{sil} \cdot 1)(r+\dagger \cdot t) \frac{r}{T}=d$ s! eqs.uar fa.qagnosan iuamod 	 - a)unpodwı 'ry $\text { a jaxdipor eand absans म1 puy' } \tau_{0} \text {, } \tau-70 c=2$

EnggTree.com

EnggTree.com

EnggTree.com

EnggTree.com

EnggTree.com

EnggTree.com

EnggTree.com
Whoch is an inductive Impedance

[^0]Transients And Resonance In Rlc Circott
Here Ne ells examine tum types of Simple Crraits:
\rightarrow A Crust Comprising a resistor and Capacitor \rightarrow and a Circuit Comprising a resistor and an Inductor.
There are called $R C$ and RL.
The Source - free RC C Circuit:

* A source free RC Circuit Ochers When its be source is suddenly disconnected. The energy already stored in the capacitor is released to the resistors.
\rightarrow Consider a series Combination of a resistor and an intially charged Capacitor.

\rightarrow Objective is to determine the Circuit response, assome to be the, Voltage $\theta(E)$ across the copputor.
Sine capacitor initially charged, we con assume that of time $t=0$, the initial Voltage is,

Downloaded from EnggTree.com

$$
V(0)=V_{0} . \quad \text { EnggTree.com }
$$

Su the Comerpading Value of energy staxel

$$
w(0)=\frac{1}{2} C V_{0}^{2}
$$

Aoplying KCL at the node of the Cirmid,

$$
i_{c}+i_{R}=0
$$

We cnow twat $i_{C}=C \frac{d v}{d t}$ ant $i_{R}=\frac{Q}{R}$

$$
c \frac{d v}{d t}+\frac{v}{R}=0
$$

by rearranging

$$
\frac{d v}{v}=-\frac{1}{R C} d t
$$

Integrating botu Sidear.

$$
\ln v=-\frac{t}{R C}+\ln A
$$

$$
\frac{d x}{x}=\ln x
$$

$A \rightarrow$ intraration constant, thus,

$$
\frac{\ln v}{\ln A}=-\frac{t}{R C}
$$

Taliny powers of e produe

$$
\begin{aligned}
& \frac{V}{A}=e^{-t / R C} \\
& \therefore Q(t)=A e^{-t / R C}
\end{aligned}
$$

at initial condurion $V(0)=A=V_{0}$

$$
V\left(H_{\text {Bowntoaded from }}=\text { Engg }^{-t / R C}\right.
$$

Thin shows AEngTree.gemege Reerense of the RC Circuit is an exponential decay of the initial voltage.

The Response is due to tue instal carry shored ans the physical Charartensitics of the Circuit and not due to sone enteral voltage or current source, it is caver the natural response of the Cirait.
from the graph, As t-increases the voltage decreases toward zero. The rapidity ulim ulvich the voltage decreases is expressed in temp of the time constant (τ).
that, $t=\tau$
then $V(t)=V_{0} e^{-t / R C}$
Where $\tau=R C$

Inters of tine currant $=0.368 \mathrm{~V}_{0}$

$$
V(t)=V_{0} e^{-t / z}
$$

The. Zrivich in the crracit has bon Covid for a long time, and its opened at $t=0$. Find $V(t)$ for $t \geq 0$. Calculate the intial energy Stored in the capacitor.
solution:
for $t \angle O \rightarrow$ Switch Closed, the capaciter is an Open Circuit, to De.

visit voltage division Rube

$$
v_{c}(t)=20 \times \frac{9}{a+3}=15 v t<0
$$

Voltage across a capacitor Cannot change instantaneously, the voltage across the capacitor at $t=0^{-}$. is save at 120

$$
v_{c}(0)=V_{0}=15 \mathrm{~V}
$$

for $t>0$, the Suriteh is opened,

source tree RC circuits.
Req Downloaded $=10 \xrightarrow[\text { from EnggTree.com }]{\Omega}$

EnggTreè.com .
time Constant,

$$
\tau=\operatorname{Rag} C=60 \times 20 \times 10^{-3}=0.2 s
$$

The Voltage ares the Compactor for $t \geq 0 \quad r>$

$$
\begin{aligned}
v(t) & =V_{c}(0) e^{-t / \tau} \\
& =15 e^{-t / 0.2} \mathrm{~V} \\
v(t) & =15 e^{-5 t} \mathrm{~V}
\end{aligned}
$$

Initial summary store> in the Coppeite is

$$
\begin{aligned}
w_{c}(0) & =\frac{1}{2} C v_{c}^{2}(0) \\
& =\frac{1}{2} \times 20 \times 10^{-3} \times 15^{2} \\
W_{c}(0) & =2 \times 25]
\end{aligned}
$$

Ex:4:

If the Switch Orem at $t=0$, find $U(t)$ for $t \geq 0$, and $\omega_{c}(0)$.

Coburian:
for $t<0 \rightarrow$ Suite Closed capacitor of open Downloaded from EnggTree.com Circuited.

$$
\begin{aligned}
\frac{I_{1}}{M^{6}}+\sqrt{2}-\sum^{2} & \Rightarrow 24 \times \frac{3}{6+3} \\
& =8 \mathrm{~V}
\end{aligned}
$$

$$
V_{c}(t)=8 \mathrm{~V} \quad t<0 .
$$

for $t \geq 0$ Switch opener

$$
\frac{1}{6}+\frac{I}{I} \quad 3 \quad \text { Req }=3
$$

$$
T=R C=3 \times \frac{1}{6}=0.5 \mathrm{~s}
$$

Voltage across coprecitor, $t \geq 0$

$$
\begin{aligned}
v(t) & =v_{c}(0) e^{-t / 0 . s} \\
v(t) & =8 e^{-2 t} \cdot \\
w_{c}(0) & =\frac{1}{2} c v_{c}^{2}(0)
\end{aligned}=\frac{1}{2} \times \frac{1}{6} \times 8^{2} .
$$

Downloaded from EnggTree.com

THE SoURCE Eneggreetcom La. Slrcott

Dur gool to devemine tue Cirait Rerponse.

We, seleet the induetor Current as the response in order to take abivatige of the idea that the induetor Cerment Cannet Chape instantaneouily."

Assome at $t=0$ the. induetor hes mitial Curreat I_{0},

$$
i(0)=I_{0} .
$$

tue Comerpundiny, eaurgy Btorect in tue induetor,

$$
\omega(0)=\frac{1}{2} L I_{0}^{2}
$$

Apply KVL arrouns the larop,

$$
V_{2}+V_{R}=0
$$

$$
\begin{aligned}
& \text { but., } V_{L}=L \frac{d i}{d t} \cdot T \quad V_{R}=i \cdot R, \text { thens } \\
& L \frac{d i}{d t}+R i=0
\end{aligned}
$$

Downroated from EnggTree.com
for SimplifieannggTreedconide by 'L'

$$
\frac{d i}{d t}+\frac{R}{L} i=0
$$

Rearrayiy tews ans interqrating gives

$$
\begin{aligned}
& \int_{I_{0}}^{i(t)} \frac{d_{i}}{i}=-\int_{0}^{t} \frac{R}{L} d t \\
& \left.\ln i]_{I_{0}}^{i(t)}=-\frac{R t}{L}\right]_{0}^{t} \\
& \ln i(t)-\ln I_{0}=-\frac{R t}{L}+0 \\
& \ln \frac{i(t)}{I_{0}}=-\frac{R t}{L}
\end{aligned}
$$

Takin e power

$$
i(t)=I_{0} e^{-R t / L}
$$

Ini shous that the nalurel rexpase of the RL Circuit is an exponeatial decas of the initial current.

Downloaded from EnggTree.com

$$
i(t)=I_{0} e^{\text {Engqugerecom }}
$$

then we, can find volteng aerose thee resistor as

$$
V_{R}(t)=\hat{i}=I_{0} R e^{-t / \tau}
$$

Power dissipate in the Resister

$$
\begin{gathered}
P=V_{R} i=I_{0}^{2} R e^{-2 t / \tau} \\
=I_{0} R e^{-t / \tau} \times I_{0} e^{-t / \tau} \\
=I_{0}^{2} R e^{-2 t / \tau}
\end{gathered}
$$

Problem:
Assuming that $i(O)=L O A$, calculate $i(\theta)$ and $i_{x}(t)$ in the cormit.

Because of tie Dependent source, we insert a voltage source bim $v_{0}=I v$,

Apply kun

$$
1+2\left(i_{1}-i_{2}\right)=0
$$

Dovinloadèdidirem Enggttre $\overline{\text { Coom }}$

$$
4 i_{2}+2\left(i_{2}-i_{1}\right) \text { EnggTree.com }
$$

se

$$
\begin{aligned}
& 4 i_{2}+2 i_{2}-2 i_{1}-3 i_{1}=0 \\
& 6 i_{2}-5 i_{1}=0-1 \\
& i_{2}=\frac{5}{6} i_{1}
\end{aligned} \begin{aligned}
& 2 i_{1}-2 i_{2}=-1 \\
& -5 i_{1}+6 i_{2}=0
\end{aligned}
$$

$$
i,\left[\frac{2}{6}\right]+i=0
$$

$$
\begin{aligned}
& \therefore i_{0}=-i_{1}=-(-3)=3 A \\
& \therefore R_{e \gamma}=R_{\text {rux }}=\frac{V_{0}}{L_{0}}=\frac{1}{3} \Omega
\end{aligned}
$$

then the fime lonstant is

$$
T=\frac{L}{R_{\text {eq }}}=\frac{05}{1 / 3}=1.5 \mathrm{~s}
$$

the Correat throuph the inductos is,

$$
\begin{aligned}
& \text { Cowreat throuph the } \\
& i(t)=i(0) e^{-t / \tau}=10 e^{-t / 1 \cdot s} A t>0 \\
&=
\end{aligned}
$$

Vottage cueross the induuter is

$$
\begin{aligned}
& V=L \frac{d i}{d t}=0.5 \frac{d 10 e^{-t / 1.5}}{d t} \\
& \\
& =(0.5)(10)\left(-\frac{1}{1.5}\right) e^{-t / 1.5} \\
& v
\end{aligned}
$$

Downloaded from EnggTree.com

$$
\begin{aligned}
& b=\left|\begin{array}{cc}
2 & -2 \\
-5 & 6
\end{array}\right|=12-10=2 \\
& \Delta \Delta_{1}=\left|\begin{array}{cc}
-1 & -2 \\
0 & 6
\end{array}\right|=-6 \\
& i_{1}=\frac{\Delta_{1}}{\Delta}=\frac{-6}{2}=-3 \mathrm{~A}
\end{aligned}
$$

Since induut-EnggIne.com Ω resistor are in Parallel,

$$
i_{x}(t)=\frac{u}{2}=\frac{-3.33 e^{-t / 1.5}}{2}=-1.666 e^{-t / 1.5} \mathrm{~A}
$$

Ex: Find I and V_{x} in the circuit in figure, Let $i(0)=5 \mathrm{~A}$

Solurim: Given: $i(0)=5$
find: i and V_{x}
first fond Req,

Apply kv

$$
\begin{align*}
& -1+3 i_{1}+1\left(i_{1}-i_{2}\right)+2 v_{x}=0 \\
& 4 i_{1}-i_{2}+2\left(3 i_{1}\right)=-1 \\
& 10 i_{1}-i_{2}=+1 \tag{1}
\end{align*}
$$

Loop 2

$$
\begin{aligned}
& 1\left[i_{2}-i_{1}\right]+5 i_{2}-2 V_{x}=0 \\
& i_{2}-i_{1}+5 i_{2}-2\left(3 i_{1}\right)=0 \\
& 6 i_{2}-7 i_{1}=0
\end{aligned}
$$

Downloaded from Enggatree.con

$$
\begin{aligned}
& \quad 10 i_{1}-i_{2} \text { EngqTree.com } \\
& -7 i_{1}+6 i_{2}=0 \\
& \Delta=\left|\begin{array}{cc}
10 & -1 \\
-7 & 6
\end{array}\right|=60-7=53 \\
& \Delta_{1}=\left|\begin{array}{cc}
+1 & -1 \\
0 & 6
\end{array}\right|=+6 \\
& i_{1}=\frac{+6}{53}=+0.113 \\
& R_{e q}=R_{x x}=\frac{U_{0}}{I_{0}}=\frac{1}{+0.113}=8.8 \Omega \\
& \tau=\frac{L}{R_{e q}}=\frac{1 / 6}{8.8}=0.01898 \\
& i(t)=i(0) e^{-t / \tau} \\
& i(t)=5 e e^{-t / 0.0189}=5 e^{-53 t} A \\
& V_{x}=3 x-i(t) \\
& =3 x\left[-5 e^{-53 t}\right] \\
& V x=-15 e^{-53 t} V
\end{aligned}
$$

Ex 3: The Switch in tue circuit has been closes for a long time. At $t=0$ the Switch is Opened. Calculate. int) for $t>0$.

Solution:
at $t<0 \rightarrow$ Switch Closed,
Inductor aet as short Circuit.
$\rightarrow 16$ e, Resistor is Shane circuited.

$$
i_{1}=\frac{40}{5}=8 \mathrm{~A}
$$

and $\dot{U}(t)$ obtain by Current. divion rule

$$
i(t)=8 \times \frac{12}{12+4}=6 \mathrm{~A} \quad t<0
$$

Sine Current through an inductor Cannot Charge instantaneously.

$$
i(0)=i\left(0^{-}\right)=6 \mathrm{~A} \text { at } t=0
$$

When $t \geqslant 0 \rightarrow$ Suritch O pred, Voltolpow our ce dis Connected. Downloaded from EnggTree.com

EnggTree.com
Source Area RL Circuit

$$
\begin{aligned}
\text { Req } & \Rightarrow \int_{16}^{3}=2 \\
& =\frac{16 \times 16}{16+16}=8 \Omega
\end{aligned}
$$

\therefore time Constant

$$
T=\frac{2}{R e q}=\frac{2}{8}=\frac{1}{4} 3
$$

Thees

$$
\begin{aligned}
& i(t)=i(0) e^{-t / \tau} \\
& i(t)=6 e^{-4 t} A \quad t 20
\end{aligned}
$$

$\sum x: 4$

Ans: $i(t)=$ $2 e^{-2 t} A$

Ex:1.5 J_{n} the C. EnggTreecomn, find $L_{0}, V_{0}+$ i fos all. Hhe, assowing that the saiteh ewros open fors a long tive.

Coblution:
\Rightarrow for $t<0 \rightarrow$ Switch is open, then DC sauke Comented to Inductor, so it behaves like shere orreit.

$$
\begin{aligned}
& i=\frac{10}{3+2}=2 A ; t<0 \\
& l_{0}=i \times 3=2 \times 3=6, t \angle 0
\end{aligned}
$$

then $i(0)=2 A$.
\Rightarrow for $t>0 \rightarrow$ pheitch is closen, so that voltage sume is shont eiruitet

$$
\begin{aligned}
& R=9=\frac{3 \times 6}{3+6}=\frac{18}{c}=2 \\
& \tau=\frac{2}{\operatorname{Rev}}=\frac{2}{2}=1 \sec
\end{aligned}
$$

$$
\begin{aligned}
& i(t)=2 e^{- \text {EnggTree.com }_{A}} \\
& \therefore i(t)=2 e^{-t} A \text { at } t \geqslant 0
\end{aligned}
$$

Need to find io lee cumsent though 6Ω Rerither
by Curreat duvision Rule,

$$
i_{0} \text { or } i_{6}=\left(-2 e^{-t}\right) \times \frac{3}{9} \quad\left[\begin{array}{l}
\text { Nute: } \\
i(t) \text { is reverse } \\
\text { direction whe }
\end{array}\right.
$$ curront tworgh in

$$
i_{0}(t)=-\frac{2}{3} e^{-t} A
$$ 6Ω at $t>0$

$$
\begin{aligned}
v_{0}(t)=v_{L} & =L \frac{d i}{d t} \\
& =2 \times \frac{d\left(-2 e^{-t}\right)}{d t} \\
& =2 \times\left[-2(-1) e^{-t}\right] \\
& =2 \times 2 e^{-t} \\
u_{0}(t) & =4 e^{-t} V
\end{aligned}
$$

Ex:

Annuers

$$
\begin{aligned}
& i=\left\{\begin{array}{l}
4 A \quad t<0 \\
4 e^{-2 \pi} A \quad t \geq 0
\end{array}\right. \\
& v_{0}=\left\{\begin{array}{l}
4 V \quad t<0 \\
-8 / 3 e^{-2 t} v \quad t>0
\end{array}\right.
\end{aligned}
$$

Downloaded from EnggTree.com $m_{2}\left\{\begin{array}{l}2 t \quad t<0 \\ -4 / 3 e^{-2 t} A \quad t>0\end{array}\right.$

EnggTree.com
Unit Step function:
The Unit Step function $u(t)$ is ' O ' fo Negative values of ' t ' and ' 1 ' for positive Value of 't'.

$$
u(t)= \begin{cases}0, & t<0 \\ 1, & t>0\end{cases}
$$

The Unit Exp fevetion is Undefined of $t=0$, Where is changes abruptly from 0 to 1 .
\rightarrow If the abrupt changes ears at $t=$ to, then the site step function becomes,

$$
u\left(t_{\uparrow}^{--t}\right)
$$

$$
u\left(t-t_{0}\right)= \begin{cases}0, & t<t_{0} \\ 1, & t>t_{0}\end{cases}
$$

that $u(t)$ delayed by t_{0} seconder.
$\rightarrow I_{f}$ the change is at $t=-$ to, the Dit "step function becomes,

$$
u\left(t+t_{0}\right)= \begin{cases}\text { EnggTree.com }<-t_{0} \\ 1, & t>-t_{0}\end{cases}
$$

l.e $U(t)$ is advaneed by to seeonds.

We use the Estep function to represent an abropt change in Voltoge or Coment.
examp, the boltoge,

$$
v(t)= \begin{cases}0 & , t<t_{0} \\ 1, & t>t_{0}\end{cases}
$$

It expresses inters of Wit Step favetion as,

$$
V(t)=V_{0} u\left(t-t_{0}\right)
$$

If to $=0$, then, Step voltege,

$$
U(t)=V_{0} u(t) .
$$

A voltege source Vou(t) is shown in figure.

from the EnggTree.com
that terminals $a-b$ are short Circuited
$v=0$ for $t<0$, and $v=V_{0}$ at terminals for $t>0$.

Sinioly, a Current Source of Ioll(t) is Shown in foqure,

(a)

(b)
from figure (b), Noriend that terminal $a+b$ Open Circuited $i=0$ for $t<0$, and $i=I_{0}$ flow for $t>0$.

STEP RESPONSENGefrife gon RC Circut
When the $d c$ source of an Rc cerait is suddenly applied, the valtage or Cument bource can be modeled as a Srep function and the response is known as a srep response.
\rightarrow The \&tep rerponse is the rexpunse of the circuit due to Suditen application If a dc vatage or Clumeat Source.
\rightarrow Consider the Re Croweit shown in
FFgure,

Which can be replaes by the Circuit,

$V_{S} \rightarrow$ is a Constant de Voltage burce Assome an initial Voltage V_{0} on the Copaitor, the Vorrage on the Caparitar camot change instank aneously,

$$
V\left(0^{-}\right)=V\left(0^{+}\right)=V_{0}
$$

Downloaded from EnggTree.com

Apply KCl_{2},

$$
\begin{aligned}
& i_{R}+i_{c}=i_{0} \\
& \frac{v}{R}+c \frac{d v}{d t}=\frac{V_{s} u(t)}{R} \\
& \frac{v}{R}-\frac{V_{s} u(t)}{R}+c \frac{d v}{d t}=0 \\
& \frac{v-V_{s} u(t)}{R}+c \frac{d y}{d t}=0
\end{aligned}
$$

divide by ' C '

$$
\begin{aligned}
& \frac{V-V_{s} u(t)}{R C}+\frac{d v}{d t}=0 \\
& \frac{d v}{d t}+\frac{v}{R C}=\frac{V_{s} u(t)}{R C}
\end{aligned}
$$

Where V is voltage aeross capaciter at $t>0$. So $u(E)=1$ at $t>0$.

$$
\frac{d v}{d t}+\frac{v}{R^{C}}=\frac{V_{s}}{R C}
$$

Rearranging tems,

$$
\begin{aligned}
& \frac{d v}{\partial t}=-\frac{d v-v_{s}}{R C} \\
& \frac{d v}{v-v_{s}}=-\frac{\partial t}{R C}
\end{aligned}
$$

Fite-grating both sid \rightarrow

$$
\int_{\text {Vownloaded from EnggTree.com }}^{\operatorname{gratin}}
$$

$$
\begin{aligned}
& \left.\left.\ln \left(v-V_{s}\right)\right]_{v_{0}}^{v(t)}=-\frac{\text { Eng Tree.com }}{R C}\right]_{0}^{t} \\
& \ln \left[v(t)-V_{s}\right]-\ln \left[V_{0}-V_{s}\right]=-\frac{t}{R C}+0 \\
& \ln \frac{v-V_{s}}{V_{0}-V_{s}}=-\frac{t}{R C}
\end{aligned}
$$

Tuking exponeatial of bom sider,

$$
\frac{V_{-}-V_{s}}{V_{0}-V_{s}}=e^{-t / R c}
$$

Wher $T=R C$

$$
\begin{aligned}
& \frac{V-V_{s}}{V_{0}-V_{s}}=e^{-t / \tau} \\
& V-V_{s}=\left(V_{0}-V_{s}\right) e^{-t / \tau} \\
& V(t)=V_{s}+\left(V_{0}-V_{s}\right) e^{-t / \tau}, \quad t>0
\end{aligned}
$$

hues /

$$
M(t)= \begin{cases}V_{0}, & t<0 \\ V_{3}+\left(V_{0}-V_{3}\right) e^{-t / \tau}, & t>0\end{cases}
$$

This is known as Complete Rerporse of the RC cirwit to a Sosdeen Application of De bortage Source. Capacitor is Initialy Charged. Downloaded from EnggTree.com

If we assume Capacitor is Uncharged initially $V_{0}=0$, So the equation becomes,

$$
V(t)=\left\{\begin{array}{lc}
0, & t<0 \\
V_{S} & \left(1-e^{-t / \tau}\right),
\end{array}, t>0\right.
$$

Can be written alternatively as,

$$
V(t)=V_{s}\left(1-e^{-t / \tau}\right) u(t)
$$

This is the complete step response of the RC Orwit when the capacitor is initially Uncharged.
\rightarrow The Cement through the Capociter is Obtained from above equation, by owing

$$
\begin{aligned}
I(t)= & C d u / d t \\
L(t) & \left.=C \frac{d v}{d t}=C \frac{d V_{s}\left(1-e^{-t / \tau}\right) u(t)}{d t}\right) \\
\tau & =R C, t>0, u(t)=1 \\
I(t) & =(C)\left(V_{s}\right)\left[-\left(-\frac{1}{\tau}\right) e^{-t / \tau}\right] \\
\tau(t) & =\frac{C}{\tau} V_{s} e^{-t / \tau} \\
i(t) & =\frac{V_{s}}{R} e^{-t / \tau} u(t)
\end{aligned}
$$

$$
\begin{aligned}
& \neg \mathcal{V}(t) \text { EnggTree.com } \\
& \text { Complete Response = Natural response it forced } \\
& \text { (stored exaxgy) Response }
\end{aligned}
$$

Complete Repose = Transient Respase + Steady Stare (temporary pare) Rapparee
(pormonent part)
Natural Response $=$ Transicat Response
forced Response = Steady State Response
Complete Response May be Corine ar,

$$
v(t)=V(\infty)+[v(0)-v(\infty)] e^{-t / \tau}
$$

$V(0) \rightarrow$ initial voltage
$V(\infty) \rightarrow$ final or steady state value.
To find Estop Response of an RC Orbit Requires three things,

1. The iNitial Capacitor Voltage, $Q(0) . t<0$
2. The final Capacitor Voltage $V(\infty)\}$
3. The time constant C.

Ex:1 The Suritch in figore hers been in poxtion A for a lorg time. At $t=0$, the switch moves to B. Detemine $Q(t)$ for $t>0$ and Cabealate its value at $t=i s$ and $L s$.

7 Chumin:
(*) For $t<0 \rightarrow$ Bunthen is ot position, 'A', capouitx ars like epen circuit.

Voltage coross 510 is voltag curres capacita.

Vsing vortage dinsion Rale

$$
\theta\left(\mathrm{O}^{-}\right)=24 \times \frac{5}{3+5}=15 \mathrm{~V}
$$

*) The capantor voltape caunt Cheme Tintantanamull, 80,

$$
v(0)=v\left(0^{-}\right)=v\left(0^{+}\right)=15 \mathrm{~V}
$$

* for $t>0 \rightarrow$ Suriter is in position ' B '.年 $0 . c \frac{1}{[}+300$

$$
R_{\text {tu }}=4 k \Omega
$$

Downloaded from EnggTree.com
tine Constant,

$$
T=R_{m} C=4 \times 10^{3} \times 0.5 \times 10^{-3}=2 \mathrm{~s}
$$

\rightarrow The capacitor acts Like Open Cirmit, to $d C$ ot Steady State,

$$
V(\infty)=30 V . \quad t>0
$$

Thus,

$$
\begin{aligned}
v(t) & V(\infty)+[V(0)-V(\infty)] e^{-t / \tau} \\
& =30+[15-30] e^{-0.5 t} V \\
V(t) & =30-15 e^{-0.5 t} V
\end{aligned}
$$

At $t=1$

$$
v(i)=30-15 e^{-0.5}=20.9 \mathrm{~V}
$$

At $t=4$,

$$
v(4)=30-15 e^{-2}=27.97 \mathrm{v}
$$

Ex:2: In - EnggTree.cam.
In figure the switch has been closed for o a hong time and is opened at $t=0$. find i ant v tor ale time.

Solution:
for $t<0 \rightarrow$ Switch closed

at $t<0$ the $30 u(t)=0$
So 10 V source commented cults capacitor
It behaves Open circuited.

$$
30 u(t)= \begin{cases}0 & t<0 \\ 30 & t>0\end{cases}
$$

No Current flow through 20Ω Resister,

$$
I=-\frac{v}{10}=-\frac{10}{10}=-1 \mathrm{~A}, \quad \theta=10 \mathrm{~V}
$$

capacitor voltage camor change instataneouly SO 1

$$
v(0)=v\left(0^{-}\right)=10 V
$$

for $t>0 \rightarrow$ Switch opened.

After a long time, the circuit reaches Steady state I Capoitor curs like an open Crust again.
Downloaded from EnggTree.com

EnggTree.com
 Drvirion,

$$
V(\infty)=30 \times \frac{20}{20+10}=20 \mathrm{~V}
$$

find Rth by,

$$
R_{d u}=\frac{10 \times 20}{10+20}=\frac{200}{30}=\frac{20}{3} \Omega
$$

time Constant,

$$
\tau=R_{m} C=\frac{20}{3} \times \frac{1}{4}=\frac{20}{12}=\frac{5}{3} \mathrm{~s}
$$

Thes,

$$
\begin{aligned}
v(t) & =v(\infty)+[v(0)-v(\infty)] e^{-t / \tau} \\
& =20+[10-20] e^{-(3 / 5) t} \\
v(t) & =\left(20-10 e^{-0.6 t}\right) V
\end{aligned}
$$

To Obrain $i_{,}$
$i \rightarrow$ Sum of Cument throegh 20Ω and Capacitar.

$$
\begin{aligned}
L & =\frac{v}{20}+C \frac{d v}{d t} \\
& =\frac{20-10 e^{-0.6 t}}{20}+\frac{1}{4} \times \frac{d\left[20-10 e^{-0.6 t}\right]}{d t} \\
& =\text { Downloaded from EnggTree.com }
\end{aligned}=\left(1+e^{-0.6 t}\right) \mathrm{A}
$$

EnggTree.com
STEP RESPONSE OF AN RL CIRCUIT
Consider the RL Crorrit,

Quest goal is to fend the inductor Current i as the Great response.
Let the response be the Sum of the Natural Cument and the forced Current.

$$
\begin{equation*}
L=\underset{\substack{\downarrow \\ \text { Natural response }}}{i_{n}+i_{f}-(1)} \tag{1}
\end{equation*}
$$

Ne know that Natural response is the decaying exponential.

$$
\begin{equation*}
i_{n}=A e^{-t / \tau} \tag{2}
\end{equation*}
$$

$A \rightarrow$ is a constant
forced response is the value of the Cament lug time after switch is closed. At the time the inductor becomes shat Crruit and the Voltage across it is Zero. The entire source Voltage V_{s} appears ceros R, then,

$$
i_{f}=\frac{V_{s}}{R}
$$

Sub equation (2) + (B) in $(i$

$$
i=A e^{-t / \tau}+\frac{V_{s}}{R}
$$

Downloaded from EnggTree.com

We now determine thee Congtree.com As from the value of ' L '. Let J_{0} be initial current, The current through tue inductor cannot Change instantaneously,

$$
i\left(0^{+}\right)=i\left(0^{-}\right)=I_{0}
$$

Thus at $t=0$, then Equation (ii)
becomes,

$$
I_{0}=A+\frac{V_{s}}{R}
$$

then,

$$
A=I_{0}-\frac{V_{s}}{R}
$$

Sobrituriy ' A ' in equetim (H)

$$
i(t)=\frac{V_{s}}{R}+\left[I_{0}-\frac{V_{s}}{R}\right] e^{-t / \tau}
$$

This is the Complete response of the RL Circuit.

The Desporse in equation (5) may be
Written as,

$$
\begin{equation*}
i(t)=i(\infty)+[i(0)-i(\infty)] e^{-t / \tau} \tag{4}
\end{equation*}
$$

$L(0) \rightarrow$ initial Value
$L(\infty) \rightarrow$ final Value
is find the EnggTree.com response of an RL Clrait requires three things,

1. The initial injector current $i(0)$ at $t=0^{t}$
2. Final inductor Current $i(\infty).\} t>0$
3. The time constant τ.

If Switching takes ploce at time $t=$ to instead of $t=0$, equation becomes,

$$
i(t)=i(\infty)+\left[i\left(t_{0}\right)-i(\infty)\right] e^{-\left(t-t_{0}\right) / \tau}
$$

If $I_{0}=0$, then

$$
\begin{aligned}
& L(t)= \begin{cases}0_{1} & t<0 \\
\left.\frac{V_{S}}{R} C 1-e^{-t / \tau}\right), & t>0\end{cases} \\
& \therefore \quad I(t)=\frac{V_{S}}{R}\left(1-e^{-t / \tau}\right) u(t)
\end{aligned}
$$

Thin is the Step Response of the RL Grout ulith no initial inductor current.

The voltage across the inductor is Obtained by,

$$
v(t)=L \frac{d i}{d t}=V_{s} \frac{L}{\tau R} e^{-t / \tau}
$$

whee $\tau=\frac{L}{R}$

$$
\therefore \quad v(t)=V_{S} e^{-t / \tau} u(t)
$$

Downloaded from EnggTree.com
$\varepsilon_{x_{1}}:$
find $i(t)$ in the circuit for $t>0$. Assume that the switch hos been closed for a lang time.

Solution:

\rightarrow For $t<0, \rightarrow$ the Searich is ceresin position. So, the 3Ω Resistor is Short. Orcuited, 1 'Inductor aus like a sher cant.

The Current trough the inductor at $t=0^{-}$

$$
L\left(0^{-}\right)=\frac{10}{2}=5 \mathrm{~A}
$$

Tree the inductor current cannot change. instantaneously,

$$
i(0)=i\left(0^{-}\right)=i\left(0^{+}\right)=S A .
$$

\rightarrow for $t>0$, the switch is Open, 2Ω \& 3Ω are in Series,

$$
i(\infty)=\frac{10}{3+2}=2 \mathrm{~A} \text { at } t>0 \text {. }
$$

Therein Resistance ceros inturcter,

$$
R_{R o n}=2+3=5 \Omega \text {. }
$$

for time Constant,

$$
\tau=\frac{2}{R_{i n}}=\frac{1}{3} \times \frac{1}{5}=\frac{1}{15} \mathrm{~s}
$$

Thee I

$$
i(t)=i(\infty)+[i(0)-i(\infty)] e^{-t / \tau}
$$

$$
\begin{aligned}
& =2+(5-2) e^{\text {EnggTree.com }} \\
i(t) & =2+3 e^{-15 t} A \quad t>0
\end{aligned}
$$

PRC Pa nl:

The Switch in fig has been closed for a long time. It opens at $t=0$ find $\tau(t)$ for $t \geq 0$.

Solution:
for $t<0$ - Switch closed, so inductor shes circuited and $5 \Omega+10 \Omega$ are Short cercrites (no current flow though $5 \Omega+10-l$).

$$
i=3 A \quad t \angle 0
$$

So initial current through inductor Cannot champ instantaneously,

$$
i(0)=L\left(0^{-}\right)=3 \mathrm{~A} \quad t=0
$$

for $t>0$ Surisen opened, inducer like short circuit, the current I_{1} by $C D R$

$$
i(\infty)=3 \times \frac{10}{10+5}=2 A \quad t>0
$$

$$
\begin{aligned}
R_{\text {on }}=\frac{5 x^{\prime \prime} \phi}{15} & =\frac{50}{1,5}=323 / 3 / 51 \\
& =5+10=15 \Omega
\end{aligned}
$$

time constant,

$$
\tau=\frac{L}{R_{+n}}=\frac{1.5}{\frac{3.33}{15}}=\frac{0.4 .5 \mathrm{~s}}{0.1}
$$

Downloaded from EnggTree.com

EnggTree.com

$$
\begin{aligned}
i(t) & =i(\infty)+[i(0)-i(\infty)] e^{-t / \tau} \\
& =2+[3-2] e^{-t / 0} \\
i(t) & =\left(2+e^{-10 t}\right) A, t>0 .
\end{aligned}
$$

Ex2: At $t=0$, switch 1 in fig is cored, and Switch 2 is closed 4 s latex, find $i(t)$ for $t>0$. Calculate i for $t=2 s$ and $t=5 s$

Solution:
Need to consider tune time internals, $t<0,0<t<4, t>4$ Separately.
\rightarrow for $t<\mathrm{O} \rightarrow$ switches S_{1} + S_{2} core 0 pen, so

$$
i=0 . \quad i\left(0^{-}\right)=i(0)=0
$$

\rightarrow for $0<t \angle 4 \rightarrow S_{1}$ is closed so $4 \Omega-1$ Gr are in Series.

$$
\begin{aligned}
& G \Omega(d)=\frac{40}{4+6}=4 A \\
& R+4=4+6=10 \Omega \\
& \tau=\frac{2}{R+h}=\frac{5}{10}=\frac{1}{2}=0.5 \mathrm{~s} \\
& \text { Downloaded from EnggTree.com }
\end{aligned}
$$

EnggTree.com

$$
\begin{aligned}
& \text { Thes, } \\
& L(t)=(\infty)+[i(0)-i(\infty)] e^{-t / \tau} \\
& L(1)=4+(0-4) e^{-2 t}=4\left(1-e^{-2 t}\right) A \\
& 0<t<4
\end{aligned}
$$

\rightarrow for $t>4, S_{2}$ is Cosed, 10001 Souse is Comnated. Ther Lsadran Chaqe beses not eyfect the indeverer Cureat becouse rene Cument Camer Chonge abopptly. The initial curveat is,

$$
i(4)=i\left(4^{-}\right)=4\left(1-e^{-5}\right) \simeq 4 \mathrm{~A}
$$

To find $i(\infty)$, Lut θ be thea voluage at rode P in fig, using $K C L$,

$$
\begin{aligned}
& \frac{40-V}{4}+\frac{10-V}{2}=\frac{V}{6} \\
& \frac{40}{4}-\frac{V}{4}+\frac{v 0}{2}-\frac{V}{2}=\frac{V}{6} \\
& 10+5-\frac{V}{4}-\frac{V}{2}-\frac{V}{6}=0 \\
& -V\left[\frac{1}{4}+\frac{1}{2}+\frac{1}{6}\right]=-15 \Rightarrow v=16.3636 \\
& \therefore L(\infty)=2.727 \mathrm{~A}
\end{aligned}
$$

Theverin revistance at inducters teminal,

$$
R_{m}=[4 \| 2]_{\text {Downloaded from EnggTree.com }}^{6}+6=\frac{4 \times 2}{3}+6=\frac{22}{3}
$$

$$
\begin{aligned}
& C=\frac{L}{R_{+4}}=\frac{5}{22 / 3}=\frac{15}{22} \\
& \therefore \quad L(t)=i(\infty)+[i(4)-i(\infty)] e^{(-t-4) / \tau} \\
& t \geq 4
\end{aligned}
$$

Note: $(t-4)$ is time delay

$$
\begin{aligned}
& \text { Note: }(t-4) \text { is } \\
& i(t)=2.727+(4-2.727) e^{-(t-4) / c} \\
&=2.727+1.273 e^{-(t-4) / 0.6818} \\
& i(t)=2.727+1.273 e^{-1.4667(t-4)}, t \geq 4 \\
& \therefore \quad i(t)= \begin{cases}0, & t<0 \\
4\left(1-e^{-2 t}\right) & 0 t<4 \\
2.727+1.273 e^{-1.466(t-4)}, & t>4\end{cases}
\end{aligned}
$$

At: $t=2$

$$
\begin{aligned}
& i(2)=4\left(1-e^{-4}\right)=3.93 \mathrm{~A} \\
& t=4 \\
& i(5)=2.727+1.273 e^{-1.4667} \\
& =3.02 \mathrm{~A}
\end{aligned}
$$

THE SOURCE- FREE EnggTree.com RES RLC CIRCUIT

Consider Berries Rule Cirwit, initial Inductor Current $\rightarrow I_{0}$ gat $t=0$
\rightarrow the initial value of the derivative of i,

$$
\frac{d i(0)}{d t}=-\frac{1}{4}\left[R I_{0}+V_{0}\right]
$$

[This equation used to find A_{2} Constant].
\rightarrow Characteristic equation of i,
[roots of equation]

$$
\begin{aligned}
& S_{1}=-\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}} \\
& S_{2}=-\frac{R}{2 L}-\sqrt{\left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}}
\end{aligned}
$$

Where $\alpha=\frac{R}{2 L} \rightarrow \omega_{0}=\frac{1}{\sqrt{L C}}$

$$
\therefore S_{1}=-\alpha+\sqrt{\alpha^{2}-\omega_{0}^{2}}+S_{2}=-\alpha-\sqrt{\alpha^{2}-\omega_{0}^{2}}
$$

Thus, Natural resgonieecom of the Series Rile circe is,

$$
i(t)=A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t}
$$

A, find by initial value $i(0)$ A_{2} find by $\frac{d i(0)}{d t}$
Based of S_{1} \& S_{2} there are thee types of Solutions
(1.) If $\alpha>\omega_{0} \rightarrow$ Overdamped Case

Response is,

$$
L(t)=A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t}
$$

(2) Critically Damped Response $\alpha=60$

$$
S_{1}=s_{2}=-\alpha=-\frac{R}{2 L}
$$

Response is,

$$
L(t)=\left(A_{2}+A_{1} t\right) e^{-\alpha t}
$$

(3) $\alpha<w_{0}$ Under damped Case

$$
\begin{aligned}
& S_{1}=-\alpha+\sqrt{-\left(\omega_{0}^{2}-\alpha^{2}\right)}=-\alpha+j \omega_{d} \\
& S_{2}=-\alpha-\sqrt{-\left(\omega_{0}^{2}-\alpha^{2}\right)}=-\alpha-j \omega_{d}
\end{aligned}
$$

$W_{d}=\sqrt{\text { Down from-Engg }{ }^{2} \text { dee.comping frequeeray. }}$
$\mathrm{O}_{0} \rightarrow$ Ondanggiree.cemequeay
Response is,

$$
L(t)=e^{-\alpha t}\left(B_{1} \cos \omega_{d} t+B_{2} \sin \omega_{d} t\right)
$$

time Constant $\rightarrow 1 / \alpha$

$$
\text { Period } \rightarrow T=2 \pi / \omega_{d}
$$

Example problem 1:
find $i(t)$ in the cirait. Assume that the Cirwit has reached steady State at $t=0^{-}$.

Solution: for $t<0 \rightarrow$ Switch is closed. The capacitor behaves like open circuit, \rightarrow Inductor alts Like Shoo Circuit, then the equivalent correct is,

$$
\frac{\text { initial }}{\text { Current Indue }} i(0)=\frac{10}{4+6}=1 A \text { and }
$$

Voltage Q (Bowniead from fig free. com $=6 \mathrm{~V}\left[\begin{array}{l}\text { Voltage } \\ \text { above } \\ 6 \Omega\end{array}\right]$
$i(0) \rightarrow$ EnggTree.com
\rightarrow Cument trrough inductor
$U(0) \rightarrow$ Voltage aerrese Cepaitor.

* for $t>0, \rightarrow$ Suritch opered, equivalut

Source free RLe Eirwit

Roots are cabulated as,

$$
\begin{aligned}
\alpha & =\frac{R}{2 L}=\frac{9}{2 \times 0.5}=9 \\
\omega_{0} & =\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{0.5 \times 0.02}}=10 \\
S_{1,2} & =-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}} \\
& =-9 \pm \sqrt{9^{2}-10^{2}}=-9 \pm \sqrt{81-100} \\
S_{1,2} & =-9 \pm j 4.359 \quad\left[S_{1,2}=-\alpha \pm j \omega_{\alpha}\right]
\end{aligned}
$$

$\alpha<\omega_{0} \rightarrow$ Underdamped

$$
\begin{aligned}
& i(t)=e^{-\alpha t}\left(A_{1} \cos \omega_{2} t+A_{2} \sin \omega_{2} t\right) \\
& L(t)=e^{-9 t}\left(A_{1} \cos 4.359 t+A_{2} \sin 4.359 t\right)
\end{aligned}
$$

A_{1} y A_{2} findengdryee cdinitial conditions.
At $t=0$,

$$
i(0)=1=A_{1}
$$

then A_{2} find by,
(1)

$$
\begin{aligned}
\left.\rightarrow \frac{d i}{d t}\right|_{t=0} & =-\frac{1}{L}[R i(0)+v(0)] \\
& =-2[9-6]=-6 A / \mathrm{s}
\end{aligned}
$$

$U(0)=V_{0}=-6 \rightarrow$ because of [oppostte direction of capacitor voltage \rightarrow 6Ω resister Voltage.]

Now, denivate $L(\epsilon)$
(2)

$$
\begin{aligned}
& \rightarrow \frac{d i}{d t}=-9 e^{-a t}\left(A_{1} \cos 4.359 t+H_{2} \sin \right. \\
&4.359 t) \\
&+e^{-9 t}(4.359)\left[-A_{1} \sin 4.359 t+A_{2}\right. \\
&\cos 4.359 t]
\end{aligned}
$$

Imposing the two equations, (1) p (2) at $t=0$

$$
\left.\begin{array}{rl}
-6 & =-9\left[A_{1}+0\right]+4.359\left[0+A_{2}\right] \\
-6 & =-9[1]+4.359\left[A_{1}=1\right.
\end{array}\right]=\frac{3}{4.359}=0.6882
$$

Sub values A_{1}, A_{2} in $i(t)$

EnggTree.com

Complete rerponse,

$$
i(t)=e^{-9 t}(\cos 4.359 t+0.6882 \sin 4.359 t)
$$

Sousce free Raralle ReCCKT.
($\alpha>$ wo $)$ over dampel

$$
\begin{aligned}
& V(t)=A_{1} e^{s_{1} t}+A_{2} e^{s 2 t} \\
&\left(\alpha=\omega_{0}\right) \cdot \text { Croncaly } \\
& \text { Dumper Case } \\
& V(t)=\left(A_{1}+A_{2} t\right) e^{-d t}
\end{aligned}
$$

($\alpha<\omega_{0}$) under kurpejcan.

$$
\begin{aligned}
& S_{1 / 2}=-\alpha \pm \omega_{1} \\
& \omega_{2}=\sqrt{\omega_{0}^{2}-\alpha^{2}} \\
& v(t)=e^{-\alpha t}\left(A _ { 1 } \left(0 \omega_{c} t+A_{2} C_{0 i n} \omega_{c}(t)\right.\right. \\
& \frac{V_{0}}{R}+I_{0}+C \frac{d(0)}{d^{\prime} t}=0 \\
& \frac{d V(\theta)}{d t}=\frac{-\left(V_{0}+R I_{0}\right)}{R C}
\end{aligned}
$$

EnggTree.com
Th the pausidel cher bue $v(t)$ ytor too ashuring $V(0)=5 \mathrm{~V}, \quad \dot{U}(0)=0, \quad L=1 H \quad E C=10 \mathrm{om} \mathrm{F}$ uniter here lales: $R=1.923 \Omega, R=5 \Omega, R=6.25 \Omega$
buy

$$
\begin{aligned}
& \text { if } R=1.923 .2 \\
& \alpha=\frac{1}{2 R C}=\frac{1}{2 \times 1.923 \times 10 \times 10^{-3}}=26 \\
& \omega_{0}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{1 \times 10 \times 10^{-3}}}=10
\end{aligned}
$$

Sin aryob

$$
S_{1,2}=-2 \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}=-2,-50
$$

2. He correnmany reffemie is.

$$
V(t)=A_{1} e^{-2 t}+A_{2} e^{-50 t}
$$

luikel gatinhiss boget $A_{12} A_{2}$

$$
\begin{gathered}
V(0)=5=A_{1}+A V \\
\frac{d V(6)}{d r}=\frac{-V(0)+R_{i}(0)}{R C}=\frac{-5+0}{1.423 \times 10 \times 10^{-3}}=-260
\end{gathered}
$$

Byf differentushug

$$
\frac{d v}{d t}=-2 A_{1} e^{-2 t}-50 A_{2} e^{-50 t}
$$

Att=0

$$
-260=-2 A_{1}-50 A_{2}
$$

Downloaded from EnggTree.com

$$
\begin{aligned}
& A_{1}=-0.2083 \\
& A_{2}=5.208 \\
& \text { debs } A_{12} 2.12 \\
& \quad v(t)=-\left(8.20 .83 e^{-2 t}+5.208 e^{-50 t}\right.
\end{aligned}
$$

ajer
$R=5$

$$
x=\frac{1}{2 R C}=\frac{1}{2 \times 5 \times 10 \times 10^{-3}}=10
$$

While $\omega_{0}=$ wremains the sume.
$\alpha=\omega_{0}=10$, the reppense is cribinely dampee?,

$$
\begin{aligned}
S_{1}=S_{2}= & -10 \\
& v(t)=\left(A_{1}+A_{2} t\right) e^{-10 t}
\end{aligned}
$$

woyer $A_{1} \& A_{2}$

$$
\begin{aligned}
v(0) & =5=A_{1} \\
\frac{d v(0)}{d t} & =\frac{-V(0)+R u(0)}{R c}=-\frac{5+0}{5 \times 10 \times 10-3}=-100
\end{aligned}
$$

Byat deff.

$$
\frac{d v}{d t}=\left(-10 A_{1}-10 A_{2} t+A_{2}\right) e^{-10 t}
$$

At $r=0$

$$
\begin{aligned}
& -100=-10 A_{1}+A_{2} \\
& A_{1}=5 \\
& A_{2}=-50 \quad v(t)=(5-50 t) e^{-10 t} v
\end{aligned}
$$

(a)e3

EnggTree.com
Then $k=6.25 \Omega$

$$
e: 1 / 2 R c=\frac{1}{2 \times 6 \times 5 \times 10 \times 10^{-3}}=8
$$

White $\omega_{0}=10$ remains the kane, As t Lavo in thislere

$$
s_{1 / 2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}=-8 \pm j 0
$$

hence

$$
v(t)=\left(A_{1} \cos 6 t+A_{2} \sin 6 t\right) e-8 t
$$

We obtan $\mathrm{H}_{1} \& \mathrm{~A}_{2}$

$$
\begin{gathered}
V(0)=5=A_{1} \\
\frac{d V(0)}{d t}=\frac{-V(0)+R(i(0)}{R C}=\frac{-5+0}{6.25 \times 10 \times 10^{-3}}=-\frac{80}{}
\end{gathered}
$$

But differnti sut

$$
\frac{d v}{d t}=\left(-8 A_{1}+\cos 6 t-8 A_{2} \sin 6 t-6 A_{1} \sin 6 t+6 A_{2} \cos 6 t\right) x^{-x}
$$

At $t=0$,

$$
\begin{aligned}
& -80=-8 A_{1}+6 A_{2} \\
& A_{1}=5, A_{2}=-6.667 \text { Ther } \\
& V(t)=-(5 \cos 6 t-6.667 \sin 6 t) e^{-8 t}
\end{aligned}
$$

EnggTree.com
Sint V(I), for $t \rightarrow 0$ in the RUL

$\sin \quad t<0$

$$
V(0)=\frac{50 \times 40}{50+30}=250
$$

cinchial cument 'Hoceiph the indeltrs

$$
\begin{gathered}
u(0)=-\frac{40}{30+50}=-0.5 A \\
\frac{d V(0)}{d t}=\frac{-V(0)+R u(0)}{R C}=\frac{25-50 \times 005}{50 \times 20 \times 10^{-6}}=0
\end{gathered}
$$

$t>0$
Switch is ifores, 30Ω \& vige are bepern.

$$
\begin{aligned}
& \alpha=\frac{1}{2 R C}=\frac{1}{2 \times 50 \times 20 \times 10^{-6}=500} \\
& \omega_{0}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{0.4 \times 20 \times 10^{-6}}=354} \\
& S_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega 0^{2}} \\
& =-500 \pm \sqrt{250000-124,9976}=-500 \pm 354 \\
& S_{1}=-854 \quad S_{2}=-146
\end{aligned}
$$

EnggTree.com
She arevo we have ovedunge I hefen

$$
V(t)=A 1 e^{-554 t}+A_{2} e^{-186 t}
$$

Atro

$$
\begin{aligned}
& V(0)=25=A_{1}+A_{2} \\
& A_{2}=25-A_{1}
\end{aligned}
$$

Tuing ine dewonk of $v\left(\frac{t}{t}\right)$

$$
\begin{gathered}
\frac{d V}{d t}=-8.54 A_{1} e^{-854 t}-146 A_{2} e^{-146 t} \\
\frac{d V(0)}{d t}=0 .-854 A_{1}-146 \mathrm{AL} \\
0=854 A 1+146 \mathrm{Az} \\
A_{1}=-5.156 \\
A_{2}=30.16 \\
V(t)=-5.156 e^{-854 t}+30.16 e^{-146 t} \mathrm{~V}
\end{gathered}
$$

Consider the circuit in Fig. 13.16. Determine the coupling coescient. Calculate the energy stored in the coupled inductors at the $t=1 \mathrm{~s}$ if $v=60 \cos \left(4 t+30^{\circ}\right) \mathrm{V}$.

Solution:

The coupling coefficient is

$$
k=\frac{M}{\sqrt{L_{1} L_{2}}}=\frac{2.5}{\sqrt{20}}=0.56
$$

Figure 13.16
For Example 13.3.
indicating that the inductors are tightly coupled. To find the energy stored, we need to calculate the current To find the current, we need to obtain the frequency-domain equivalent of the circuit.

$$
\begin{aligned}
60 \cos \left(4 t+30^{\circ}\right) & \Rightarrow 60 / 30^{\circ}, \omega=4 \mathrm{rad} / \mathrm{s} \\
5 \mathrm{H} & \Rightarrow j \omega L_{1}=j 20 \Omega \\
2.5 \mathrm{H} & \Rightarrow j \omega M=j 10 \Omega \\
4 \mathrm{H} & \Rightarrow j \omega L_{2}=j 16 \Omega \\
\frac{1}{16} \mathrm{~F} & \Rightarrow \frac{1}{j \omega C}=-j 4 \Omega
\end{aligned}
$$

The frequency-domain equivalent is shown in Fig. 13.17. We now apply mesh analysis. For mesh 1.

$$
\begin{equation*}
(10+j 20) \mathbf{I}_{1}+j 10 \mathbf{I}_{2}=60 \angle 30^{\circ} \tag{13.3.1}
\end{equation*}
$$

For mesh 2,

$$
\begin{gather*}
j 10 \mathbf{I}_{1}+(j 16-j 4) \mathbf{I}_{2}=0 \\
\mathbf{I}_{1}=-1.2 \mathbf{I}_{2} \tag{13,3}
\end{gather*}
$$

EnggTree.com

13.4 Linear Transiormers

substituting this into Eq. (13.3.1) yields

$$
\mathbf{I}_{2}(-12-j 14)=60 / 30^{\circ} \quad \Rightarrow \quad I_{2}=3.254 / 160.6^{\circ} \mathrm{A}
$$

$$
\mathbf{I}_{1}=-1.2 \mathrm{I}_{2}=3.905 /-19.4^{\circ} \mathrm{A}
$$

In the time-domain,

$$
i_{1}=3.905 \cos \left(4 t-19.4^{\circ}\right), \quad i_{2}=3.254 \cos \left(4 t+160.6^{\circ}\right)
$$

At time $t=1 \mathrm{~s}, 4 t=4 \mathrm{rad}=229.2^{\circ}$, and

$$
\begin{aligned}
& i_{1}=3.905 \cos \left(229.2^{\circ}-19.4^{\circ}\right)=-3.389 \mathrm{~A} \\
& i_{2}=3.254 \cos \left(229.2^{\circ}+160.6^{\circ}\right)=2.824 \mathrm{~A}
\end{aligned}
$$

The total energy stored in the coupled inductors is

$$
\begin{aligned}
w & =\frac{1}{2} L_{1} i_{1}^{2}+\frac{1}{2} L_{2} i_{2}^{2}+M i_{1} i_{2} \\
& =\frac{1}{2}(5)(-3.389)^{2}+\frac{1}{2}(4)(2.824)^{2}+2.5(-3.389)(2.824)=20.73 \mathrm{~J}
\end{aligned}
$$

Figure 13.17
Frequency-domain equivalent of the circuit in Fig. 13.16.

For the circuit in Fig. 13.18, determine the coupling coefficient and the energy stored in the coupled inductors at $t=1.5 \mathrm{~s}$.

Figure 13.18
For Practice Prob. 13.3.

Example 13.7

An ideal transformer is rated at $2400 / 120 \mathrm{~V}, 9.6 \mathrm{kVA}$, and has 50 turns on the secondary side. Caloover
(a) the turns ratio, (b) the number of turns on the primary side, and (c) the rement ratings for the and secondary windings.

Solution:

(a) This is a step-down transformer, since $V_{1}=2,400 \mathrm{~V}>V_{2}=120 \mathrm{~V}$.
(b)

$$
n=\frac{V_{2}}{V_{1}}=\frac{120}{2,400}=0.05
$$

$$
n=\frac{N_{2}}{N_{1}} \quad \Rightarrow \quad 0.05=\frac{50}{N_{1}}
$$

$$
N_{1}=\frac{50}{0.05}=1,000 \mathrm{turns}
$$

(c) $S=V_{1} I_{1}=V_{2} I_{2}=9.6 \mathrm{kVA}$. Hence,

$$
\begin{gathered}
I_{1}=\frac{9,600}{V_{1}}=\frac{9,600}{2,400}=4 \mathrm{~A} \\
I_{2}=\frac{9,600}{V_{2}}=\frac{9,600}{120}=80 \mathrm{~A} \quad \text { or } \quad I_{2}=\frac{I_{1}}{n}=\frac{4}{0.05}=80 \mathrm{~A}
\end{gathered}
$$

Practice Problem 13.7

The primary current to an ideal transformer rated at $3300 / 110 \mathrm{~V}$ is 3 A . Calculate: (a) the turns ratio. (b) te kVA rating, (c) the secondary current.

Answer: (a) $1 / 30$, (b) 9.9 kVA , (c) 90 A .

Example 13.8

For the ideal transformer circuit of Fig. 13.37, find: (a) the source current I_{1}, (b) the output volage 1 . and (c) the complex power supplied by the source.

Figure 13.37
For Example 13,8.

Solution:

(a) The $20-\Omega$ impedance can be reflected to the primary side and we get

$$
\mathbf{Z}_{R}=\frac{20}{n^{2}}=\frac{20}{4}=5 \Omega
$$

Thus,
(b) Since both I_{1} and I_{2} leave the dotted terminals,

$$
\begin{aligned}
& \mathbf{Z}_{\text {in }}=4-j 6+\mathbf{Z}_{R}=9-j 6=10.82 /-33.69^{\circ} \Omega \\
& \mathbf{I}_{1}=\frac{120 / 0^{\circ}}{\mathbf{Z}_{\text {in }}}=\frac{120 / 0^{\circ}}{10.82 \angle-33.69^{\circ}}=11.09 / 33.69^{\circ} \mathrm{A} \\
& \text { eave the dotted terminals }
\end{aligned}
$$

(c) The complex power supplied is

$$
\begin{aligned}
& \mathbf{I}_{2}=-\frac{1}{n} \mathbf{I}_{1}=-5.545 / 33.69^{\circ} \mathrm{A} \\
& \mathbf{V}_{o}=20 \mathbf{I}_{2}=110.9 \angle 213.69^{\circ} \mathrm{V}
\end{aligned}
$$

$$
\mathbf{S}=\mathbf{V}_{s} \mathbf{I}_{1}^{*}=\left(120 \angle 0^{\circ}\right)\left(11.09 \angle-33.69^{\circ}\right)=1,330.8 \angle-33.69^{\circ} \mathrm{VA}
$$

In the ideal transformer circuit of Fig. 13.38, find \mathbf{V}_{o} and the comple Practice Problem 13.8

Figure 13.38
For Practice Prob. 13.8.
Answer: $178.9 / 116.56^{\circ} \mathrm{V}, 2,981.5 /-26.56^{\circ} \mathrm{VA}$.

Calculate the power supplied to the $10-\Omega$ resistor in the ideal transformer circuit of Fig. 13.39.

Figure 13.39
For Example 13.9.
*aflection to the secondary or primary side cannot be done with this circuit: there is direct connection primary and secondary sides due to the $30-\Omega$ resistor. We apply mesh an

$$
-120+(20+30) \mathbf{I}_{1}-30 \mathbf{I}_{2}+\mathbf{V}_{1}=0
$$

or

$$
50 \mathbf{I}_{1}-30 \mathbf{I}_{2}+\mathbf{V}_{1}=120
$$

For mesh 2,

$$
-\mathbf{V}_{2}+(10+30) \mathbf{I}_{2}-30 \mathbf{I}_{1}=0
$$

or

$$
-30 \mathbf{I}_{1}+40 \mathbf{I}_{2}-\mathbf{V}_{2}=0
$$

At the transformer terminals,

$$
\begin{aligned}
\mathbf{V}_{2} & =-\frac{1}{2} \mathbf{V}_{1} \\
\mathbf{I}_{2} & =-2 \mathbf{I}_{1}
\end{aligned}
$$

(Note that $n=1 / 2$.) We now have four equations and four unknowns, but our goal is to get $I_{2} . S_{0}$ substitute for \mathbf{V}_{1} and \mathbf{I}_{1} in terms of \mathbf{V}_{2} and \mathbf{I}_{2} in Eqs. (13.9.1) and (13.9.2). Equation (13.9.1) beconec

$$
-55 \mathbf{I}_{2}-2 \mathbf{V}_{2}=120
$$

and Eq. (13.9.2) becomes

$$
15 \mathbf{I}_{2}+40 \mathbf{I}_{2}-\mathbf{V}_{2}=0 \quad \Rightarrow \quad \mathbf{V}_{2}=55 \mathbf{I}_{2}
$$

Substituting Eq. (13.9.6) in Eq. (13.9.5),

$$
-165 \mathbf{I}_{2}=120 \quad \Rightarrow \quad I_{2}=-\frac{120}{165}=-0.7272 \mathrm{~A}
$$

The power absorbed by the $10-\Omega$ resistor is

$$
P=(-0.7272)^{2}(10)=5.3 \mathrm{~W}
$$

Practice Problem 13.9

Find \mathbf{V}_{o} in the circuit of Fig. 13.40.

Figure 13.40
For Practice Prob. 13.9.

Example 13.4

In the circuit of Fig. 13.24, calculate the input impedance and current \mathbf{I}_{1}. Take $\mathbf{Z}_{1}=60-j 100 \Omega$, $\mathbf{Z}_{2}=30+j 40 \Omega$, and $\mathbf{Z}_{L}=80+j 60 \Omega$.

Figure 13.24
For Example 13.4.

Solution:

From Eq. (13.41),

$$
\begin{aligned}
\mathbf{Z}_{\text {in }} & =\mathbf{Z}_{1}+j 20+\frac{(5)^{2}}{j 40+\mathbf{Z}_{2}+\mathbf{Z}_{L}} \\
& =60-j 100+j 20+\frac{25}{110+j 140} \\
& =60-j 80+0.14 /-51.84^{\circ} \\
& =60.09-j 80.11=100.14 /-53.1^{\circ} \Omega
\end{aligned}
$$

Find the input impedance of the circuit in Fig. 13.25

$$
\underbrace{\text { the circuit in Fig. } 13.25}_{\mathbf{I}_{1}=\frac{\mathbf{V}}{\mathbf{Z}_{\text {in }}}=\frac{50 / 60^{\circ}}{100.14 \angle-53.1^{\circ}}=0.5 \angle 113.1^{\circ} \mathrm{A}}
$$

Practice Problem 13.4
m the voltage source.

For Practice Prob. 13.4.
Answer: $8.58 / 58.05^{\circ} \Omega, 1.165 /-58.05^{\circ} \mathrm{A}$.

Example 13.5

Determine the T-equivalent circuit of the linear transformer in Fig. 13.26(a).

Figure 13.26
For Example 13.5: (a) a linear transformer, (b) its
T-equivalent circuit.

Solution:

Given that $L_{1}=10, L_{2}=4$, and $M=2$, the T-equivalent network has the following parameters:

$$
\begin{aligned}
L_{a}=L_{1}-M & =10-2=8 \mathrm{H} \\
& =2 \mathrm{H}, \quad L_{c}=
\end{aligned}
$$

$$
L_{b}=L_{2}-M=4-2=2 \mathrm{H}
$$

The Tequivalent circuit is shown in Fig. 13.26(b). We have assumed that reference directions for currents voltage polarities in is shown in Fig. 13.26(b). Windings conform to those in Fig. 13.21. Ohery and may need to replace M with $-M$, as Example 13.6 illustrates.

EnggTree.com

Practice Problem 13.5

For the linear transformer in Fig. 13.26(a), find the Π equivalent network.
Answer: $L_{A}=18 \mathrm{H}, L_{B}=4.5 \mathrm{H}, L_{C}=18 \mathrm{H}$.

Example 13.6

Solve for $\mathbf{I}_{1}, \mathbf{I}_{2}$, and \mathbf{V}_{o} in Fig. 13.27 (the same circuit as for Practice Prob. 13.1) using the $T_{\text {-equirylen }}$ circuit for the linear transformer.

Figure 13.27
For Example 13.6.

Solution:

Notice that the circuit in Fig. 13.27 is the same as that in Fig. 13.10 except that the reference direction for current I_{2} has been reversed, just to make the reference directions for the currents for the magnetically coupled coils conform with those in Fig. 13.21.

(a)

(b)

Figure 13.28
For Example 13.6: (a) circuit for coupled coils of Fig. 13.27, (b) T-equivalent circuit.

We need to replace the magnetically coupled coils with the T-equivalent circuit. The relevant portion of the circuit in Fig. 13.27 is shom in Fig. 13.28(a). Comparing Fig. 13.28(a) with Fig. 13.21 shows that there are two differences. First, due to the current reference directions and voltage polarities, we need to replace M by $-M$ to make Fig. $13.28 / 2$ conform with Fig. 13.21. Second, the circuit in Fig. 13.21 is in the ine: domain, whereas the circuit in Fig. 13.28(a) is in the frequency-domin The difference is the factor $j \omega$; that is, L in Fig. 13.21 has been replacel with $j \omega L$ and M with $j \omega M$. Since ω is not specified, we can assumb $\omega=1 \mathrm{rad} / \mathrm{s}$ or any other value; it really does not matter. With these tiv differences in mind,

$$
L_{a}=L_{1}-(-M)=8+1=9 \mathrm{H}
$$

$$
L_{b}=L_{2}-(-M)=5+1=6 \mathrm{H}, \quad L_{c}=-M=-1 \mathrm{H}
$$

Thus, the T-equivalent circuit for the coupled coils is as shown in Fig. 13.28(b).
Inserting the T-equivalent circuit in Fig. 13.28(b) to replace the two coils in Fig. 13.27 gives the equivide circuit in Fig. 13.29, which can be solved using nodal or mesh analysis. Applying mesh analysis, we ofth

$$
j 6=\mathbf{I}_{1}(4+j 9-j 1)+\mathbf{I}_{2}(-j 1)
$$

and

$$
0=\mathbf{I}_{\mathbf{1}}(-j 1)+\mathbf{I}_{2}(10+j 6-j 1)
$$

From Eq. (13.6.2),

$$
\mathbf{I}_{1}=\frac{(10+j 5)}{j} \mathbf{I}_{2}=(5-j 10) \mathbf{I}_{2}
$$

EnggTree.com

Ideal Transformers

573

Sobstituting Eq. (13.6.3) into Eq. (13.6.1) gives

$$
\begin{aligned}
& j 6=(4+j 8)(5-j 10) \mathbf{I}_{2}-j \mathbf{I}_{2}=(100-j) \mathbf{I}_{2} \approx 100 \mathbf{I}_{2} \\
& \text { e compared with } 1, \text { the imasinar. }
\end{aligned}
$$

Since 100 is very lar
$100-j \approx 100$. Hence,

[^0]: $$
 \text { From } S=V_{r_{m} s} I_{r m s} s^{*}
 $$

 $\operatorname{GH\cdot H}=a \cos \times 21$
 s! quaum ynad

 $$
 \begin{aligned}
 & \text { *t.19! } 5+9.98 \\
 & \begin{aligned}
 &=85.6+j 51.7 \mathrm{~A} \\
 &=\underline{=100 \angle 31.13^{\circ} \mathrm{A}} \\
 & \text { Thas Irms }=100 \mathrm{~L}-31.13^{\circ} \text { \& the Peak }
 \end{aligned} \\
 & \frac{\text { suen }}{S}={ }_{x} \text { sule I } \\
 & \frac{007021}{7029!+2 t)^{101}}
 \end{aligned}
 $$

