EnggTree.com

Reg. No.:	1,2							
neg. No			7		4	12.3	100	

Question Paper Code: 80208

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.

Second Semester

Marine Engineering

MA 8201 — MATHEMATICS FOR MARINE ENGINEERING – II

(Regulation 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

1. Find the order and degree of the differential equation

$$\frac{d^3y}{dx^3} - 7\frac{d^2y}{dx^2} + 8\frac{dy}{dx} + 7 = 0.$$

- 2. Find the differential equation of the family of $y^2 = 4 a x$.
- 3. Solve: $(D^4 4D^2 + 4)y = 0$
- 4. Find the particular integral of $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = (1 e^x)^2$.
- 5. Find the unit vector normal to the surface $x^2 + y^2 z = 10$ at (1, 1, 1).
- 6. State Stoke's theorem.
- 7. Prove that the function $e^{-2x}\cos 2y$ is harmonic.
- 8. Find the fixed points of $\frac{z-1}{z+1}$.
- 9. Find $[t \sin at]$.
- 10. Give the Laplace transform of the unit step function.

EnggTree.com

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) (i) Solve the following differential equation
$$(2xy + x^2)\frac{dy}{dx} = 3y^2 + 2xy$$
 using homogenous method. (8)

(ii) Solve
$$[y^2e^{xy^2} + 4x^3]dx + [2xye^{xy^2} - 3y^2]dy = 0$$
. (8)

Or

- (b) (i) Solve $(x+1)\frac{dy}{dx} y = e^{3x}(x+1)^2$ using linear first order equation. (8)
 - (ii) Solve $(x+1)\frac{dy}{dx} + 1 = 2e^{-y}$ using Bernoulli equation. (8)
- 12. (a) (i) Solve the equation $x^2y'' + 4xy' + 2y = e^{x^x}$. (8)
 - (ii) Solve $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = xe^x \sin x.$ (8)

Or

- (b) (i) Solve the following simultaneous equations $\frac{dy}{dx} + 5x 2y = 0$ and $\frac{dy}{dx} + 2x + y = 0$, given x = y = 0 when t = 0. (8)
 - (ii) Solve the equation $(D^4 + \alpha^2) y = \tan \alpha x$ by the method of variation of parameters. (8)
- 13. (a) Verify that Gauss divergence theorem. $\vec{F} = xz\vec{i} y^2\vec{j} + yz\vec{k}$ taken over the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. (16)

Or

- (b) (i) Prove that $\vec{F} = (2x + yz)\vec{i} + (4y + zx)\vec{j} (6z xy)\vec{k}$ is solenoidal as well as irrotational. Also find the scalar potential of \vec{F} . (8)
 - (ii) Find the angle between the surface $x \log z = y^2 1$ and $x^2y = 2 z$ at the point (1, 1, 1).

EnggTree.com

- (i) Prove that $\nabla^2 |f(z)|^2 = 4 |f'(z)|^2$.
 - Determine the analytic function whose real part $\frac{\sin 2x}{\cos h2y \cos 2x}$.(8) (ii)

- Find the bilinear transformation that maps the points ∞ , i, 0 onto (b) (i) $0, i, \infty$ respectively.
 - Find the image of |z-2i|=2 under the transformation $w=\frac{1}{z}$. (8)
- (a) (i) Evaluate $L^{-1} \left| \frac{1}{(s+1)(s-2)^2} \right|$. (8)
 - (ii) Find $L^{-1}\left[\frac{s^2}{\left(s^2+a^2\right)\left(s^2+b^2\right)}\right]$ using convolution theorem. (8)

- Or ${\rm transform} \quad {\rm solve} \quad y^{\prime\prime} 3y^{\prime} + 2y = e^{-t} \,,$ Using Laplace (b) given y(0) = 1, y'(0) = 0.(8)
 - Find the Laplace transform of $f(t) = \begin{cases} 1 & 0 < t < b \\ -1 & b < t < 2b. \end{cases}$ (8)

80208

3