CY8151

ENGINEERING CHEMISTRY

L T P C 3 0 0 3

OBJECTIVES:

- To make the students conversant with boiler feed water requirements, related problems and water treatment techniques.
- To develop an understanding of the basic concepts of phase rule and its applications to single and two component systems and appreciate the purpose and significance of alloys.
- Preparation, properties and applications of engineering materials.
- Types of fuels, calorific value calculations, manufacture of solid, liquid and gaseous fuels.
- Principles and generation of energy in batteries, nuclear reactors, solar cells, wind mills and fuel cells.

UNIT I WATER AND ITS TREATMENT

9

Hardness of water – types – expression of hardness – units – estimation of hardness of water by EDTA – numerical problems – boiler troubles (scale and sludge) – treatment of boiler feed water – Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning) external treatment –lon exchange process, zeolite process –desalination of brackish water – Reverse Osmosis.

UNIT II SURFACE CHEMISTRY AND CATALYSIS

9

Adsorption: Types of adsorption -adsorption of gases on solids -adsorption of solute from solutions -adsorption isotherms - Freundlich's adsorption isotherm Langmuir's adsorption isotherm -contact theory -kinetics of surface reactions, unimolecular reactions, Langmuir - applications of adsorption on pollution abatement.

Catalysis: Catalyst – types of catalysis – criteria – autocatalysis – catalytic poisoning and catalytic promoters - acid base catalysis – applications (catalytic convertor) – enzyme catalysis – Michaelis – Menten equation.

UNIT III ALLOYS AND PHASE RULE

9

Alloys: Introduction- Definition- properties of alloys- significance of alloying, functions and effect of alloying elements- Nichrome and stainless steel (18/8) —heat treatment of steel. Phase rule: Introduction, definition of terms with examples, one component system -water system - reduced phase rule - thermal analysis and cooling curves - two component systems - lead-silver system - Pattinson process.

UNIT IV FUELS AND COMBUSTION

9

Fuels: Introduction - classification of fuels - coal - analysis of coal (proximate and ultimate) - carbonization - manufacture of metallurgical coke (Otto Hoffmann method) - petroleum - manufacture of synthetic petrol (Bergius process) - knocking - octane number - diesel oil - cetane number - natural gas - compressed natural gas (CNG) - liquefied petroleum gases (LPG) - power alcohol and biodiesel. Combustion of fuels: Introduction - calorific value - higher and lower calorific values- theoretical calculation of calorific value - ignition temperature - spontaneous ignition temperature - explosive range - flue gas analysis (ORSAT Method).

UNIT V **ENERGY SOURCES AND STORAGE DEVICES**

9 Nuclear fission - controlled nuclear fission - nuclear fusion - differences between nuclear fission

and fusion - nuclear chain reactions - nuclear energy - light water nuclear power plant - breeder reactor - solar energy conversion - solar cells - wind energy. Batteries, fuel cells and supercapacitors: Types of batteries -primary battery (dry cell) secondary battery (lead acid battery, lithium-ion-battery) fuel cells – H₂-O₂ fuel cell.

TOTAL: 45 PERIODS

OUTCOMES:

The knowledge gained on engineering materials, fuels, energy sources and water treatment techniques will facilitate better understanding of engineering processes and applications for further learning.

TEXT BOOKS:

- 1. S. S. Dara and S. S. Umare, "A Textbook of Engineering Chemistry", S. Chand & Company LTD. New Delhi. 2015
- 2. P. C. Jain and Monika Jain, "Engineering Chemistry" Dhanpat Rai Publishing LTD, New Delhi, 2015
- 3. S. Vairam, P. Kalyani and Suba Ramesh, "Engineering Chemistry", Wiley India New Delhi, 2013.

REFERENCES:

- Friedrich Emich, "Engineering Chemistry", Scientific International PVT, LTD, New Delhi, 2014.
- Prasanta Rath, "Engineering Chemistry", Cengage Learning India PVT, LTD, Delhi, 2015. 2.
- 3. Agarwal, "Engineering Che Fruist dyamentals and Applications", Cambridge University Press, Delhi, 2015.